Covering Spaces
of 3-orbifolds

Marc Lackenby

University of Oxford
Conjecture:

Any closed orientable hyperbolic 3-orbifold with non-empty singular locus has large fundamental group.
LARGE GROUPS

A GROUP IS LARGE IF SOME FINITE INDEX SUBGROUP ADMITS A SURJECTIVE HOMOMORPHISM ONTO A NON-ABELIAN FREE GROUP.

LARGENESS \Rightarrow

1. \(v_b, = \infty \) WHERE

 \[v_b,(G) = \sup \left\{ v_i(G_i) : G_i \leq G \right\} \]

2. SUPER-EXPONENTIAL SUBGROUP GROWTH

3. LINEAR GROWTH OF \(p \)-HOMOLOGY
BASIC PRINCIPLE

EASIER

3-MANIFOLDS
WITH NON-EMPTY
BOUNDARY

HARDER

CLOSED
3-MANIFOLDS

3-ORBIFOLDS
WITH NON-EMPTY
SINGULAR LOCUS

THEOREM: [COOPER-LONG-REID]

LET M BE A COMPACT ORIENTABLE
IRREDUCIBLE 3-MANIFOLD WITH NON-EMPTY
BOUNDARY. THEN EITHER M = B^3, S^1 x D^2,
T^3 x I OR K^3 x I, OR IF M IS LARGE.
Theorem 1: Let M be a compact orientable 3-manifold, and let K be a knot in M such that $M - K$ has a finite-volume hyperbolic structure. For any $n \in \mathbb{N}$, let $M(K, n)$ be the orbifold obtained by placing a singularity along K of order n. Then if $M(K, n)$ is large for infinitely many n.
The Evidence

II: Subgroup Growth

For a finitely generated group G, let $S_n(G)$ be the number of subgroups with index $\leq n$, 'subgroup growth function'.

Two functions $f, g : \mathbb{N} \rightarrow \mathbb{N}$ have the same growth type if

$\exists K > 1 \ s.t \ f(n)^{1/K} \leq g(n) \leq f(n)^K$

G large $\Rightarrow S_n(G)$ has growth type $2^{n \log n}$
Let O be a compact orientable 3-orbifold with non-empty singular locus and a finite volume hyperbolic structure.

Theorem 2: $\pi_1 O$ has at least exponential subgroup growth.

In fact, the subnormal subgroup growth has exponential growth type.

Alternative formulation: Any lattice in $\text{PSL}(2, \mathbb{C})$ with torsion has at least exponential subgroup growth.
Contrast this with what is known for hyperbolic 3-manifolds:

Theorem [Lubotzky]

Let \(M \) be a closed hyperbolic 3-manifold. Then \(\forall \varepsilon > 0, \exists \kappa > 0 \) s.t.

\[
5^n (\pi, M) \geq 2^k (\log n)^{3-\varepsilon}
\]
The Evidence

III: Linear Growth of p-Homology

Let p be a prime.

Let \mathbb{F}_p be the field of order p.

For a group G,

Let $d_p(G) = \dim H_1(G; \mathbb{F}_p)$

We say that a collection $\{G_i\}$ of finite index subgroups has linear growth of p-homology if

$$\inf \frac{d_p(G_i)}{[G_i:G]} > 0$$

Very strong condition.

G large \Rightarrow G has a nested collection of finite index subgroups with linear growth of p-homology.
Theorem 3: \([L]\) \(\pi_1 \mathcal{O}\) has a nested collection of finite index subgroups with linear growth of \(p\)-homology, for some prime \(p\).

Let \(\{\mathcal{O}_i\}\) be the corresponding covering spaces. (We may in fact take these to be manifolds.)

The Heegaard gradient of \(\{\mathcal{O}_i \to \mathcal{O}\}\) is

\[
\inf_{\text{deg}(\mathcal{O}_i \to \mathcal{O})} \chi^1(\mathcal{O}_i),
\]

where

\[
\chi^1(\mathcal{O}_i) = \min \{ -\chi(F) : F \text{ is a Heegaard surface for } \mathcal{O}_i \}.
\]

Linear growth of \(p\)-homology

\(\Rightarrow\) positive Heegaard gradient
Theorem: Let M be a closed orientable irreducible 3-manifold, and let $(M_i \to M^3)$ be a nested sequence of finite-sheeted regular covering spaces of M. Suppose that

1) The Heegaard gradient of $(M_i \to M^3)$ is positive, and

2) $\pi_1 M$ does not have property (τ) w.r.t. $(\pi_i M_i)$.

Then M_i is Haken $V_i \geq 0$.
Focus on Thm 2 \& 3

Note: Thm 3 \implies Thm 2.

Let \(G = \pi, 0 \)

Suppose \(\{G_i\} \) has linear growth of \(p \)-homology. Then:

\[\begin{align*}
N^0 \text{ subgps of } G_i \text{ with index } p \\
\geq |H_i(G_i; \mathbb{F}_p)| - 1 \\
\geq p^{d_p(G_i)} \\
\geq p^{[G:G_i] \times \text{const}}
\end{align*} \]
Let O be closed orientable hyperbolic
3-orbifold with non-empty sing locus.

Key Lemma: If the singular locus is a link L and a prime p divides the order of every component of L, then $dp(\pi, O) \geq 1|L|$.

Proof: $O - \partial(\mathcal{O})$ is a compact orientable 3-manifold M.

$\Rightarrow \quad dp(M) \geq \frac{1}{2} dp(\partial M) = |L|$.

π, O is obtained from π, M by killing p^{th} powers of words. This leaves dp unchanged. \square
1. Pass to a coveting space \(O' \) where the singular locus is a non-empty link, and where each component has order a prime \(p \).

(Use Selberg's Thm).

2. Pass to a coveting space \(O'' \) with these properties, and where \(d_p(\pi, O'') \geq 11 \).

(Slight generalisation of a result of Lubotzky)

3. Find coveting spaces \(O; \to O'' \) where

\[|\text{sing } (O;) | \geq \deg m (O; \to O'') \]

\[\Rightarrow \]

\[d_p(\pi, O;) \]

This \(\Rightarrow \) linear growth of \(p \)-homology.
Set $\Gamma = \pi, 0^\circ / \langle \pi, \mathbb{D}(C) \rangle$.

Finite index subgroups of Γ:

\Rightarrow --- --- --- of $\pi, 0^\circ$ containing $\langle \pi, \mathbb{D}(C) \rangle$.

\Rightarrow Finite covers of 0° s.t. inverse image of C is a collection of copies of C.

Thm: [Golod - Shafarevich] If $\Gamma: \langle x, x^2 \rangle$ and $d_\rho(\Gamma)^2 > d_\rho(\Gamma) - 1 \times 1 + 1 \times 1$,

then Γ has a nested sequence of finite index subgroups.
THM: [L] Let M be a 3-manifold that is commensurable with a compact orientable finite-volume hyperbolic 3-orbifold with non-empty singular locus. Then:

i) $\pi_1 M$ has exponential subnormal subgroup growth

ii) M has a nested sequence of cones with positive HEEGAARD gradient.

EXAMPLES:

1. MANIFOLDS WITH HEEGAARD GENUS 2

2. ARITHMETIC HYPERBOLIC 3-MANIFOLDS

[Reid]
POSSIBLE APPROACHES TO
THE CONJECTURE

1. IT FOLLOWS FROM A GROUP-THEORETIC
 CONJECTURE OF LUBOTZKY & ZELMANOV
 RELATING TO PROPERTY (τ).

2. THERE IS A LINK WITH THE THEORY
 OF ERROR-CORRECTING CODES.