CYCLIC BRANCHED COVERS OF PRIME KNOTS

joint with N. BOILEAU

ICTP TRIESTE - 23rd JUNE 2005
Nakanishi - Sakuma.

\[M \rightarrow n\text{-fold cyclic branched cover of } K \text{ and } K' \]
\[\cong \mathbb{Z}_n \otimes \mathbb{Z}_n \text{-fold branched cover of } \mathbb{D} \]

\[(S^3, K) \quad (S^3, K') \]
\[\quad \]

\[(S^3, L = \overline{K \cup K'}) \]
\[\overline{K}, \overline{K'} \text{ trivial} \]
\[(\ell_K(\overline{K}, \overline{K'}), n) = 1 \]

N.B. \(\mathbb{Z}_n \otimes \mathbb{Z}_n = \langle h, h' \rangle \) acts on \(M \)

\(h \) deck transformation for \(K \)
\(h' \) deck transformation for \(K' \)

\(h' \) (resp. \(h \)) induces an \(n \)-axial symmetry of \(K \) (resp. \(K' \)) with trivial quotient

\[n = 3 \quad 9^2_{35} \]
Theorem (Zimmermann)

If \(k \) hyperbolic, \(n \geq 3 \) then

\(k \) and \(k' \) are related by Nakamura and Sakuma's standard abelian construction.

ie. \((S^3, k) \xrightarrow{\mathcal{R}} (S^3, k') \xrightarrow{\mathcal{H}} (S^3, L = \mathcal{R} \cup \mathcal{R}') \)
Consequences:

1. Three cyclic branched covers of orders ≥ 3 determine a hyperbolic knot.

2. A hyperbolic knot has at most one n-twin if $n \geq 3$.

Definition: k' is an n-twin of k if k and k' have the same n-fold cyclic branched cover.
Proof:

1. If k is hyperbolic \Rightarrow the symmetries of k commute (not necessarily an axis of symmetry for k = trivial knot \Rightarrow $A_k k =$ Hopf link.

2. If k is hyperbolic, Smith's conjecture \Rightarrow symmetries of k of order ≥ 3 are unique.

N.B. \times hyperbolicity is only used to prove:

1. Commutativity of symmetries \Rightarrow

2. Uniqueness of symmetries \Rightarrow

\times In 1. reason by contradiction and show that k is trivial.
Q: Is the standard abolition situation the only possible one?

No, need to require:

- \(k \) is prime

 e.g. \(k \) non-invertible then \(k = \lambda + k' \) and \(k' = k' + k' \) have the same \(n \)-fold cyclic branched cover for all \(n \geq 3 \)

- \(n \geq 3 \)

 e.g. for \(n = 3 \) one has Conway mutation...
New Construction (Boileau - P.):

* $L = L_1 \cup L_2 \cup \ldots \cup L_m$, $m \geq 3$, L hyperbolic
* $L_1 \cup L_k$ and $L_2 \cup L_k$ Hopf for all $k \geq 3$
* $L_3 \cup \ldots \cup L_m$ trivial link
* L_1 and L_2 non-exchangeable
* $\langle lk(L_1, L_2), n \rangle = 1$, e.g. $\langle lk(L_1, L_2), 1 \rangle = 1$.

$N' = (S^3, K)$, $(S^3, K') = N'$

\[(S^3, L) = (L_1 \setminus \bar{K}) \cup (L_2 \setminus \bar{K'}) \cup L_3 \cup \ldots \cup L_m) \]
\[(S^3, K) = (N' \setminus \sim L_3 \cup \ldots \cup L_m) \cup \bigcup_{i=3}^{m} E_i \quad \text{k' image of k} \]
\[(S^3, K') = (N' \setminus \sim L_3 \cup \ldots \cup L_m) \cup \bigcup_{i=3}^{m} E_i \quad \text{k image of k'} \]
\[E_i = \text{knot exterior} \]
Theorem 1. (Boileau, P.)

Let K be a prime knot, p an odd prime. Assume that K' is a p-twin of K. Then either K and K' arise from the standard abelian construction or the deck transformation for K' induces a partial axial symmetry of K.

i.e. $\exists P \subseteq E(K) = S^3 \setminus \mathcal{N}(K)$, P union of geometric pieces of the JSJ decomposition of $E(K)$ such that

* $P \supseteq O_p : E(K) \setminus UT = O_p$ connected component containing $\text{DECK}(K)$

 Te JSJ
 $W(T) = p$
 $T = \text{torus}$

* the deck transformation for K' induces a symmetry φ of P such that

 $\varphi(O_p) = O_p$

 $\text{Fix}(\varphi) \subseteq O_p$, $\text{Fix}(\varphi) \neq \emptyset$
Idea of Proof:

Let M be the p-fold cyclic branched cover for K and K'. Let $M = \bigcup_{i} V_i$; the JSJ-decomposition of M into geometric pieces.

* The dual JSJ-graph is a tree

Let h (resp. h') be the deck transformation for K (resp. K')

* If $h(V_i) = h'(V_i) = V_i$, then, up to conjugation,
 \[[h|_{V_i}, h'|_{V_i}] = 1. \]

* If $Fix(h) \subset V_i$ then, up to conjugation,
 \[h'(V_i) = V_i. \]

Lack of commutativity appears in a well-specified case
Theorem 2 (Boileau P.)

Let K admit three rotational symmetries with pairwise distinct odd prime orders and with trivial quotient.

Then K is the trivial knot.
J. H. C. Whitehead described all possible axial symmetries for a composite knot.

\[\Rightarrow \] Composite knots cannot admit symmetries with trivial quotient.

\[\Rightarrow K \text{ must be prime.} \]

Theorem (Sakuma)

If \(K \) is **totally prime** (i.e. all its companions are prime) and **pedigreed** (i.e. no companion has winding \#0),

then, up to conjugation, its symmetries of order \(\geq 3 \) commute.

\[\Rightarrow \] If \(K \) is totally prime and pedigreed,

then \(K \) is trivial.

Else:

Use Dehn surgery to construct a new non trivial knot, which is totally prime and pedigreed and satisfies the hypotheses of Theorem 2.
Lemma A (Boileau, P.)

K a prime knot. Then there is at most one odd prime p such that K has a p-twin inducing a partial symmetry. Moreover, if $q^i p$ is an odd prime which is the order of an axial symmetry of K with trivial quotient then \mathcal{D}^p consists of precisely two components (one being $\mathcal{S}(K)$) and $\text{Fix}(\tau) \subseteq E(K) \setminus \mathcal{D}^p$.

NB. The situation of figure can indeed happen.
Lemma B

Let \(\gamma \) and \(\gamma' \) be two axial symmetries of distinct odd prime orders and trivial quotient for a prime knot \(K \).

Then both \(\text{Fix}(\gamma) \) and \(\text{Fix}(\gamma') \) are contained in the geometric component of the JSJ-decomposition for \(E(K) \) adjacent to \(\text{DE}(K) \).
Theorem 3 (Kojima, P.)

Let K be a prime knot.

(a) there are at most two odd prime numbers for which K admits a p-twin.

(b) For any given odd prime p, K admits at most one p-twin.

⇒ three cyclic branched covers of odd prime orders suffice to determine a prime knot.

COMPARE WITH:

Theorem (Kojima)

A prime knot is determined by a cyclic branched cover provided its order is sufficiently large.
(a) By contradiction, assume there are three odd primes.

* If the corresponding p-twins all arise from the standard abelian construction then Theorem 2 tells us that K is trivial.
 \[\Rightarrow \] it is determined by each of its covers (by Smith's conjecture)

* One can thus assume that one (and, by Lemma A, at most 1) p-twin induces a partial symmetry.
 Let τ and ψ be the axial symmetries with trivial quotient induced by the other twins.

 - By Lemma A, $\text{Fix}(\psi)$ and $\text{Fix}(\tau)$ are not
 in the JSJ component containing $\text{DE}(K)$.
 - On the other hand, by Lemma B, $\text{Fix}(\psi)$ and $\text{Fix}(\tau)$ belong to the component containing $\text{DE}(K)$.

 Contradiction!
Theorem (Sakuma)

Up to conjugation, the symmetries of a prime knot are unique provided that their order is odd.

⇒ At most one p-twist inducing an axial symmetry of K.

Non technical in the other case
(follows from the fact that if two deck transformations coincide on a geometric piece of the cover, then they coincide everywhere)