

SMR.1663-18

SUMMER SCHOOL ON PARTICLE PHYSICS

13 - 24 June 2005

Physics at New Colliders

J. ELLIS C.E.R.N. Theory Division CH-1211 Geneva 23 SWITZERLAND

Physics at New Colliders

Lectures at the Summer School on Particle Physics Abdus Salam ICTP, Trieste, June 2005

Plan of the Lectures

- Status of the Standard Model
- Open issues beyond the Standard Model
- Origin of particle masses
- Search for the Higgs boson
- Supersymmetry
- Searches for supersymmetry
- Possible other new physics at colliders

Summary of the Standard Model

Particles and $SU(3) \times SU(2) \times U(1)$ quantum numbers:

L_L E_R	$\left(\begin{array}{c}\nu_{e}\\e^{-}\end{array}\right)_{L}, \left(\begin{array}{c}\nu_{\mu}\\\mu^{-}\end{array}\right)_{L}, \left(\begin{array}{c}\nu_{\tau}\\\tau^{-}\end{array}\right)_{L}\\e_{R}^{-}, \mu_{R}^{-}, \tau_{R}^{-}\end{array}\right)_{L}$	(1,2,- 1) (1,1,- 2)
Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L} $ $ u_{R}, c_{R}, t_{R} $ $ d_{R}, s_{R}, b_{R} $	$(\mathbf{3,2,+1/3})$ $(\mathbf{3,1,+4/3})$ $(\mathbf{3,1,-2/3})$

Lagrangian: $\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{a\ \mu\nu}$ + $i\bar{\psi} D\psi + h.c.$ + $\psi_i y_{ij} \psi_j \phi + h.c.$ + $|D_{\mu}\phi|^2 - V(\phi)$ Higgs potential

gauge interactions matter fermions Yukawa interactions

Status of the Standard Model

- Perfect agreement with all *confirmed* accelerator data
- Consistency with precision electroweak data (LEP et al) *only if there is a Higgs boson*
- Agreement seems to require a relatively light Higgs boson weighing < 300 GeV
- Raises many unanswered questions: mass? flavour? unification?

Precision Tests of the Standard Model

Pulls in global fit

Lepton couplings

Open Questions beyond the Standard Model

Susy

Sus

Susv

- What is the origin of particle masses? due to a Higgs boson? + other physics? solution at energy < 1 TeV (1000 GeV)
- Why so many types of matter particles? matter-antimatter difference?
- Unification of the fundamental forces?
 at very high energy ~ 10¹⁶ GeV?
 probe directly via neutrino physics, indirectly via masses, couplings
- Quantum theory of gravity?

(super)string theory: extra space-time dimensions?

Some particles have mass, some do not

Where do the masses come from ?

Newton:

Weight proportional to Mass

Einstein:

Energy related to Mass

Neither explained origin of Mass

Are masses due to Higgs boson? (yet another particle)

The Higgs Mechanism

• Postulated effective Higgs potential:

$$V[\phi] = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

• Minimum energy at non-zero value:

$$\phi_0 = <0|\phi|0> = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ +v \end{pmatrix} v = \sqrt{\frac{-\mu^2}{\lambda}}$$

- Non-zero masses: $M_f = y_f \frac{v}{\sqrt{2}}$ $M_W = \frac{g v}{2}$
- Components of Higgs field: $\phi(x) = \frac{1}{\sqrt{2}}(v + \sigma(x))e^{i\pi(x)}$
- π massless, σ massive:

$$m_H^2 = 2\mu^2 = 2\lambda v$$

Constraints on Higgs Mass

 Electroweak observables sensitive via quantum loop corrections:

$$m_W^2 \sin^2 \theta_W = m_Z^2 \cos^2 \theta_W \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

• Sensitivity to top, Higgs masses:

$$\frac{3\mathbf{G}_F}{8\pi^2\sqrt{2}}m_t^2 = \frac{\sqrt{2}\mathbf{G}_F}{16\pi^2}m_W^2(\frac{11}{3}\ln\frac{M_H^2}{m_Z^2} + \dots), M_H >> m_W$$

 Preferred Higgs mass: m_H ~ 126 GeV
 Compare with lower limit from direct searches: m_H > 114 GeV

Higgs Detection at the LHC

Theorists getting Cold Feet

- Composite Higgs model? conflicts with precision electroweak data
- Interpretation of EW data?
 - consistency of measurements? Discard some?
- Higgs + higher-dimensional operators? corridors to higher Higgs masses?
- Little Higgs models? extra `Top', gauge bosons, `Higgses'
- Higgsless models? strong WW scattering, extra D?

Loop Corrections to Higgs Mass²

• Consider generic fermion and boson loops:

• Each is quadratically divergent: $\int^{4} d^{4}k/k^{2}$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + ...]$$

• Leading divergence cancelled if

$$\lambda_S = y_f^2$$

Elementary Higgs or Composite?

- Higgs field: $<0|H|0> \neq 0$
- Quantum loop problems

 Cut-off Λ ~ 1 TeV with Supersymmetry?

- Fermion-antifermion condensate
- Just like QCD, BCS superconductivity
- Top-antitop condensate? needed $m_t > 200 \text{ GeV}$
 - New technicolour force? inconsistent with precision electroweak data?

Heretical Interpretation of EW Data

Higgs + Higher-Order Operators

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^p} \mathcal{O}_i^{(4+p)}$$

Precision EW data suggest they are small: why?

Dimension six operator $c_i = -1$ $c_i = +1$ $\mathcal{O}_{WB} = (H^+ \sigma^a H) W^a_{\mu\nu} B_{\mu\nu}$ 9.013 $\mathcal{O}_H = |H^+ D_\mu H)|^2$ 4.27.0 $\mathcal{O}_{LL} = \frac{1}{2} (\bar{L} \gamma_\mu \sigma^a L)^2$ 8.28.8 $\mathcal{O}_{HL} = i (H^+ D_\mu H) (\bar{L} \gamma_\mu L)$ 148.0

95% lower bounds on Λ/TeV

But conspiracies are possible: m_H could be large, even if believe EW data ...?

Corridor to

Do not discard possibility of heavy Higgs

Generic Little Higgs Spectrum

 $10 \text{ TeV} \stackrel{\text{1}}{+} \begin{array}{c} \text{UV completion ?} \\ \text{$sigma model cut-off} \end{array}$

1 TeV + colored fermion related to top quark new gauge bosons related to SU(2) new scalars related to Higgs

200 GeV 1 or 2 Higgs doublets, possibly more scalars

Loop cancellation mechanisms

Supersymmetry

W

Little Higgs

Higgsless Models?

• Four-dimensional versions:

Strong WW scattering @ TeV, incompatible with precision data?

• Break EW symmetry by boundary conditions in extra dimension:

delay strong WW scattering to ~ 10 TeV? Kaluza-Klein modes: $m_{KK} > 300$ GeV? compatibility with precision data?

• Warped extra dimension + brane kinetic terms?

Lightest KK mode @ 300 GeV, strong WW @ 6-7 Te

The Large Hadron Collider (LHC)

Proton- Proton Collider 📕

7 TeV +

1,000,000,000 collisions/second

7 TeV

Total energy over 14,000 proton masses

Primary targets:
Origin of mass
Nature of Dark Matter
Primordial Plasma
Matter vs Antimatter

The First Magnets are in the Tunnel

Installation of the First LHC Magnets

Overall View of the Large Hadron Collider (LHC)

Overall view of the LHC experiments.

1954-2004

CMS Under Construction

Recycling Russian naval shells

ATLAS Experiment

Huge Statistics thanks to High Energy and Luminosity					
Event ra	tes in ATLAS	S or CMS at $L = 1$	$0^{33} \text{ cm}^{-2} \text{ s}^{-1}$		
Process	Events/s	Events per year <u>To</u> at j	<u>tal</u> statistics <u>collected</u> revious machines by 2007		
$W \rightarrow e_V$	15	108	10 ⁴ LEP / 10 ⁷ Tevatron		
Z→ ee	1.5	107	10 ⁷ LEP		
$t\bar{t}$	1	107	10 ⁴ Tevatron		
$b\overline{b}$	106	10 ¹² - 10 ¹³	10 ⁹ Belle/BaBar ?		
H m=130 GeV	0.02	105	?		
<u>ĝĝ</u> m= 1 TeV	0.001	104			
Black holes m > 3 TeV (M _D =3 TeV, n=4)	0.0001	10 ³			
LHC is a fa	ictory for any	thing: top, W/Z, I	Higgs, SUSY, etc		

mass reach for discovery of new particles up to $m \sim 5 \text{ TeV}$

The LHC Physics Haystack(s)

- Cross sections for heavy particles $\sim 1 / (1 \text{ TeV})^2$
- Most have small couplings $\sim \alpha^2$
- Compare with total cross section $\sim 1/(100 \text{ MeV})^2$
- Fraction ~ 1/1,000,000,000,000
- Need ~ 1,000 events for signal
- Compare needle
 ~ 1/100,000,000 m³
- Haystack $\sim 100 \text{ m}^3$
- Must look in ~ 100,000 haystacks

A Simulated Higgs Event in CMS

A la recherche du Higgs perdu ...

Higgs Production at the LHC

Some Sample Higgs Signals

Higgs Detection at the LHC

International Linear Collider

- e^+e^- collisions up to $E_{cm} = 1$ TeV
- Preferred choice for next collider
- Now subject of Global Design Effort
- Hope for decision
 2010 2012
- To be constructed by 2015 – 2020?

Tasks for the TeV ILC

- Measure m_t to $\leq \pm 100$ MeV
- If there is a light Higgs of any kind, pin it down:
 - Does it have standard model couplings?
 - What is its precise mass?
- If there are extra light particles: Measure mass and properties
- If LHC sees nothing new below ~ 500 GeV:
 - Look for indirect signatures

Measure Little Higgs Decays @ LC

Sensitivity to Strong WW scattering

Measuring a WW Resonance

Physics at New Colliders

Lectures at the Summer School on Particle Physics Abdus Salam ICTP, Trieste, June 2005

Plan of the Lectures

- Status of the Standard Model
- Open issues beyond the Standard Model
- Origin of particle masses
- Search for the Higgs boson
- Supersymmetry
- Searches for supersymmetry
- Possible other new physics at colliders

What is Supersymmetry (Susy)?

- Unifies matter and force particles?
- Links fermions and bosons

 Exclusion principle vs laser coherence

 Relates particles of different spins

 0 ¹/₂ 1 3/2 2
 - Higgs Electron Photon Gravitino Graviton
- Helps fix masses, unify fundamental forces

Why Supersymmetry (Susy)?

- Hierarchy problem: why is $m_W \ll m_P$? ($m_P \sim 10^{19}$ GeV is scale of gravity)
- Alternatively, why is

$$G_{\rm F} = 1/{m_{\rm W}}^2 >> G_{\rm N} = 1/{m_{\rm P}}^2 ?$$

• Or, why is

 $V_{Coulomb} >> V_{Newton}$? $e^2 >> G m^2 = m^2 / m_P^2$

• Set by hand? What about loop corrections? $\delta m_{H,W}^2 = O(\alpha/\pi) \Lambda^2$

- Cancel boson loops <> fermions
- Need $|m_B^2 m_F^2| < 1 \text{ TeV}^2$

Loop Corrections to Higgs Mass²

• Consider generic fermion and boson loops:

• Each is quadratically divergent: $\int^{4} d^{4}k/k^{2}$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$
$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + ...]$$

• Leading divergence cancelled if

$$\lambda_S = y_f^2$$

Dark Matter in the Universe

Astronomers tell us that most of the matter in the universe is invisible

We will look for it with the LHC

Lightest Supersymmetric particles?

We shall look for them with the LHC Astronomers say that most of the matter in the Universe is invisible Dark Matter

Supersymmetry Algebra

• Simply stated:

- Q|Boson > = |Fermion >Q|Fermion > = |Boson >
- Spinorial charges obey algebra:
 - $[P^{\mu}, Q_{\alpha}] = 0 = [P^{\mu}, \bar{Q}^{\dot{\alpha}}]$ $\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2(\sigma_{\mu})_{\alpha\dot{\beta}}P^{\mu}$ $\{Q_{\alpha}, Q_{\beta}\} = \{\bar{Q}^{\dot{\alpha}}, \bar{Q}^{\dot{\beta}}\} = 0$
- Only possible symmetry of S-matrix that combines particles of different spins
- Supermultiplets: chiral (0, 1/2), vector (1/2, 1)

Simplest Supersymmetric Field Theory

• Free scalar boson and free spin-1/2 fermion:

 $S = \int d^4x \, \mathcal{L}_{scalaire} + \mathcal{L}_{fermion}$ $\mathcal{L}_{scalaire} = -\partial^{\mu}\phi \, \partial_{\mu}\phi^*$ $\mathcal{L}_{fermion} = -i\psi^{\dagger}\bar{\sigma}^{\mu} \, \partial_{\mu}\psi$

Transform boson to fermion:

 $\delta \phi = \epsilon^{\alpha} \psi_{\alpha} \quad \text{et} \quad \delta \phi^* = \bar{\epsilon}_{\dot{\alpha}} \, \bar{\psi}^{\dot{\alpha}}$

$$\Rightarrow \delta \mathcal{L}_{scalaire} = -\epsilon^{\alpha} \left(\partial^{\mu} \psi_{\alpha} \right) \partial_{\mu} \phi^* - \partial^{\mu} \phi \,\overline{\epsilon}_{\dot{\alpha}} \left(\partial_{\mu} \overline{\psi}^{\dot{\alpha}} \right)$$

- Fermion to boson: $\delta\psi_{\alpha} = i(\sigma^{\mu}\epsilon^{\dagger})_{\alpha}\partial_{\mu}\phi$ et $\delta\bar{\psi}^{\dot{\alpha}} = -i(\epsilon\,\sigma^{\mu})^{\dot{\alpha}}\partial_{\mu}\phi^{*}$
- Lagrangian changes by total derivative: action $A = \int d^4x L(x)$ invariant
- Supersymmetry: QQ = P

$$\phi \rightarrow \psi \rightarrow \partial \phi, \ \psi \rightarrow \partial \phi \rightarrow \partial \psi$$

Supersymmetry with Interactions

More Supersymmetric Field Theories

- Gauge bosons + adjoint spin-1/2 fermions = supersymmetric gauge theory
- Effective potential fixed by Yukawa, gauge couplings: $V = g^2 \phi^2 \phi^{*2} + y^2 \phi^2 \phi^{*2}$

 \rightarrow prediction for Higgs mass

 $m_h < m_Z$ at tree level, loops

$$\delta m_h^2 \propto \frac{m_t^4}{m_W^2} \ln\left(\frac{m_{\tilde{t}}^2}{m_t^2}\right) + \dots$$

 Graviton minimally coupled to spin-3/2 fermion = supergravity

Minimal Supersymmetric Extension of Standard Model (MSSM)

Particles + spartners

$$\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} e.g., \ \begin{pmatrix} \ell \ (lepton) \\ \tilde{\ell} \ (slepton) \end{pmatrix} or \begin{pmatrix} q \ (quark) \\ \tilde{q} \ (squark) \end{pmatrix} \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} e.g., \ \begin{pmatrix} \gamma \ (photon) \\ \tilde{\gamma} \ (photino) \end{pmatrix} or \begin{pmatrix} g \ (gluon) \\ \tilde{g} \ (gluino) \end{pmatrix}$$

- 2 Higgs doublets, coupling μ , ratio of v.e.v.'s = tan β
- Unknown supersymmetry-breaking parameters: Scalar masses m₀, gaugino masses m_{1/2}, trilinear soft couplings A_λ bilinear soft coupling B₁
- Often assume universality:
 - Single m_0 , single $m_{1/2}$, single A_{λ} , B_{μ} : not string?
- Called constrained MSSM = CMSSM
- Gravitino mass? Minimal supergravity: not string? $m_{3/2} = m_0, B_{\mu} = A_{\lambda} - m_0$

Lightest Supersymmetric Particle

Stable in many models because of conservation of R parity: $R = (-1)^{2S-L+3B}$ where S = spin, L = lepton #, B = baryon #Particles have R = +1, sparticles R = -1: Sparticles produced in pairs Heavier sparticles \rightarrow lighter sparticles Lightest supersymmetric particle (LSP) stable

Possible Nature of LSP

• No strong or electromagnetic interactions Otherwise would bind to matter Detectable as anomalous heavy nucleus Possible weakly-interacting scandidates **Sneutrino** (Excluded by LEP, direct searches) Lightest neutralino χ Gravitino (nightmare for detection)

Constraints on Supersymmetry

 Absence of sparticles at LEP, Tevatron selectron, chargino > 100 GeV squarks, gluino > 250 GeV

• Indirect constraints

Higgs > 114 GeV, b -> s γ

 Density of dark matter lightest sparticle χ: WMAP: 0.094 < Ω_χh² < 0.124

 $a_{\rm c} = 11.659\,000 + (10^{-10})$

g_u - 2

Sparticles may not be very light

How 'Likely' are Heavy Sparticles?

Supersymmetric Benchmark Studies

Summary of LHC Scapabilities ... and Other Accelerators

> LHC almost `guaranteed' to discover supersymmetry if it is relevant to the mass problem

Example of Benchmark Point

Spectrum of Benchmark SPS1a ~ Point B of *Battaglia et al*

> Several sparticles at 500 GeV LC, more at 1000 GeV, some need higher E

Examples of Sparticle Measurements

Can one estimate the scale of supersymmetry?

Precision Observables in Susy

Sensitivity to $m_{1/2}$ in CMSSM along WMAP lines for different A

Tasks for the TeV ILC

- Measure m_t to $\leq \pm 100$ MeV
- If there is a light Higgs of any kind, pin it down:
 - Does it have standard model couplings? What is its precise mass?
- If there are extra light particles: Measure mass and properties
- If LHC sees nothing new below ~ 500 GeV:

Look for indirect signatures

Added Value of LC Measurements

	Sau office	C. March								7
	$m_{\rm SPS1a}$	LHC	LC	LHC+LC		$m_{ m SPS1a}$	LHC	I.C	LHC+L	.C
h	111.6	0.25	0.05	0.05	H	399.6		1.5	1.5	-
A	399.1		1.5	1.5	H+	407.1		1.5	1.5	
χ_1^0	97.03	4.8	0.05	0.05	χ_2^0	182.9	4.7	1.2	0.08	
χ_3^0	349.2		4:0	4.0	$\chi_4^{\bar{0}}$	370.3	5.1	4.0	2.3	
χ_1^{\pm}	182.3		0.55	0.55	χ_2^{\pm}	370.6		3.0	3.0	
\tilde{g}	615.7	8.0		6.5						
\tilde{t}_1	411.8		2.0	2.0						
$ ilde{b}_1$	520.8	7.5		5.7	\tilde{b}_2	550.4	7.9		6.2	
\tilde{u}_1	551.0	19.0		16.0	\tilde{u}_2	570.8	17.4		9.8	
\widetilde{d}_1	549.9	19.0		16.0	\tilde{d}_{2}	576.4	17.4		9.8	
\widetilde{s}_1	Determination of CMSSM parameters 17.4								9.8	
\tilde{c}_1	-	SPS1a	StartF	it LHC	Δ_{LHC}	; LC	Δıc	LH	C+LC	Δ_{LH}
\tilde{e}_1	M_0	100	50	00 100.03	4.0) 100.03	0.09		100.04	(0.08)
\tilde{r}	$M_{1/2}$	250	50	0 249.95	1.8	3 250.02	0.13		250.01	0.11
\tilde{v}^{1}	aneta	10	5	50 9.87	1.3	9.98	0.14		9.98	0.14
Ve	A_0	-100		0 -99.29	31.8	3 -98.26			-98.25	

Tests of Unification Ideas

Sparticles may not be very light

Sparticles may not be very light

Example of CLIC Sparticle Search

Accuracy in measuring sparticle masses squared

Can test unification of sparticle masses – probe of string models?

Physics at New Colliders

Lectures at the Summer School on Particle Physics Abdus Salam ICTP, Trieste, June 2005

Plan of the Lectures

- Status of the Standard Model
- Open issues beyond the Standard Model
- Origin of particle masses
- Search for the Higgs boson
- Supersymmetry
- Searches for supersymmetry
- Possible other new physics at colliders

The Big Collider in the Sky

Strategies for Detecting Supersymmetric Dark Matter

 Annihilation in galactic halo $\chi - \chi \rightarrow$ antiprotons, positrons, ...? • Annihilation in galactic centre $\chi - \chi \rightarrow \gamma + \dots$? Annihilation in core of Sun or Earth $\chi - \chi \rightarrow \nu + \dots \rightarrow \mu + \dots$ Scattering on nucleus in laboratory $\chi + A \rightarrow \chi + A$

Annihilation in Galactic Halo

Annihilations in Galactic Centre

Annihilations in Solar System ...

Prospective experimental sensitivities

Benchmark scenarios

JE + Feng + Matchev + Olive

Scattering Cross Sections in Benchmark Scenarios

More General Supersymmetric Models

• MSSM with more general pattern of supersymmetry breaking:

non-universal scalar masses m_0

and/or gaugino masses $m_{1/2}$

and/or trilinear couplings A₀

- Nature of the lightest supersymmetric particle (LSP)
- Extended particle content: non-minimal supersymmetric model (NMSSM)

Non-Universal Scalar Masses

Different sfermions with same quantum #s? e.g., d, s squarks? disfavoured by upper limits on flavourchanging neutral interactions Squarks with different #s, squarks and sleptons? disfavoured in various GUT models e.g., $d_R = e_L$, $d_L = u_L = u_R = e_R$ in SU(5), all in SO(10) Non-universal susy-breaking masses for Higgses? No reason why not!

Non-Universal Higgs Masses

- Generalize CMSSM (+) $m_{\rm Hi}^2 = m_0^2 (1 + \delta_i)$
- Free Higgs mixing μ , pseudoscalar mass m_A
- Larger parameter space
- Constrained by vacuum stability

Possible Nature of LSP

• No strong or electromagnetic interactions Otherwise would bind to matter Detectable as anomalous heavy nucleus Possible weakly-interacting scandidates **Sneutrino** (Excluded by LEP, direct searches) Lightest neutralino χ Gravitino (nightmare for detection)

Possible Nature of NLSP

- NLSP = next-to-lightest sparticle
- Very long lifetime due to gravitational decay, e.g.: $\Gamma_{\tilde{\tau} \to \tilde{G}\tau} = \frac{1}{48\pi} \frac{1}{M_P^2} \frac{m_{\tilde{\tau}}^5}{m_{2/2}^2} \left(1 - \frac{m_{3/2}^2}{m_{\tilde{\tau}}^2}\right)^4$
- Could be hours, days, weeks, months or years!
- Generic possibilities:

 lightest neutralino χ
 lightest slepton, probably lighter stau

 Constrained by astrophysics/cosmology

Constraints on Unstable Relics

- $^{7}Li < BBN?$
- Effect of relic decays?
- Problems with D/H
- ³He/D too high!
- Interpret as upper limits on abundance of metastable heavy relics

Different Regions of Sparticle Parameter Space if Gravitino LSP

Density below

WMAP limit

Decays do not affect

BBN/CMB agreement

Regions Allowed in Different Scenarios for Supersymmetry Breaking

Supersymmetric spectra in NUHM and GDM benchmark scenarios

Spectra in NUHM and GDM Benchmark GCDM Benchmark Scenarios Typical example of non-universal Higgs masses: $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ Models with gravitino LSP Models with stau NLSP Models with stau NLSP		Model	α	β	γ	δ	ϵ	ζ	η
Spectra in NUHM and GDM Benchmark Benchmark Scenarios Typical example of non-universal Higgs masses: $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ Models with gravitino LSP Models with stau NLSP Models with stau NLSP		$m_{1/2}$	285	360	240	750	440	1000	1000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Snootro in	m_0	210	230	330	500	20	100	20
NUHM and GDM Benchmark Scenarios Nppical example of non-universal Higgs masses: $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ Models with stau NLSP Models with stau NLSP Models with stau NLSP	Specifa III	$\tan \beta$	10	10	20	10	15	21.5	23.7
NUHM and GDM m_t 178 178 178 178 178 178 178 178 178 Benchmark Scenarios $ \mu $ 375 500 325 978 610 1176 1161 h^0 115 117 114 122 119 124 124 H^0 266 325 240 1177 641 1307 1277 H^2 265 325 240 1177 641 1307 1277 H^{\pm} 277 335 253 1179 646 1310 1279 χ_1^0 113 146 95 323 183 436 436 χ_2^0 212 279 178 625 349 840 840 χ_3^0 388 515 341 954 578 1176 1165 χ_4^1 406 528 358 964 593 1186 1175 χ_4^1 406 528 358 964 593 1186 1175 χ_4^1 406 528 358 964 593 1186 1175 χ_4^1 406 529 360 965 594 1186 1176 $m_{H_1}^2$ 279 177 625 349 840 840 χ_3^0 388 515 341 954 578 1176 1165 χ_4^1 406 528 358 964 593 1186 1175 χ_4^1 212 279 177 625 349 840 840 χ_5^2 408 529 360 965 594 1186 1175 $m_{H_1}^2$ 279 177 625 349 840 840 χ_5^2 408 529 360 965 594 1186 1176 μ_{L} 296 346 376 702 298 664 657 r_1 212 239 315 564 150 340 322 r_1 212 239 315 564 150 340 322 r_1 212 239 315 564 150 340 322 r_2 298 348 377 700 302 661 655 r_1 212 228 377 366 697 287 660, 652 r_1 212 239 315 564 150 340 322 r_2 298 348 377 700 1302 661 655 r_1 212 239 315 564 150 340 322 r_2 298 348 377 700 1302 661 655 r_1 21532 897 1892 1889 μ_8 , ν_R 637 778 607 1480 867 1817 1814 d_L , s_L 663 797 617 1534 901 1893 1891 d_R , s_R 637 778 607 1480 867 1817 1814 d_L , s_L 653 777 617 1534 901 1893 1891 d_R , s_R 630 768 599 1474 864 1807 1805 r_1 471 596 433 1159 682 1472 173 b_1 590 775 540 1385 824 1726 1733 b_2 629 767 549 1468 862 1727 1428 1757		$\operatorname{sign}(\mu)$	+	+	+	+	+	+	+
m _t 178 176 161 165 177 178 178 176 1161 <t< th=""><th>NITIM and CDM</th><th>A_0</th><th></th><th>0</th><th></th><th></th><th>25</th><th>127</th><th>25</th></t<>	NITIM and CDM	A_0		0			25	127	25
$\frac{\text{Masses}}{\text{Scenarios}} \xrightarrow{\text{Masses}} \xrightarrow{\text{b}} \text{$	INUTIVI allu UDIVI	m_t	178	178	178	178	178	178	178
Benchmark Scenarios $ \mu $ 375 500 325 978 610 1176 116 M^0 115 117 114 122 119 124 124 M^0 265 325 240 1177 641 1307 1277 M^0 265 325 340 840 840 χ_0^0 113 146 95 323 183 436 436 χ_0^0 113 146 95 323 183 436 430 χ_0^1 113 146 95 323 183 436 430 χ_0^1 113 146 95 323 183 436 430 χ_0^1 113 146 95 323 186 1176 $m_{H_1}^2$ $-(333GeV)^2$ $m_{H_2}^2$ $=(294GeV)^2$ g^2 $s33$ 370 $m_{H_1}^2$ $=(333GeV)^2$ $m_{H_2}^2$ $=(294GeV)^2$ g^2 $s33$ 377 700 302 661 652 $m_{H_1}^2$ $=(233GeV)^2$ $m_{H_2}^2$ $=(294GeV)^2$ $m_{H_2}^2$ 238 337 700 302 661 652 $m_{H_1}^2$ $=(233GeV)^2$ $m_$		Masses	075	200	0.05	070	010	1150	1101
DeficitionDeficition h° 115 117 114 122 119 124 124 124 h° h° 115 117 114 122 119 124 124 h° h° 265 325 240 1177 641 1307 1277 A° 265 325 240 1177 641 1307 1279 M° 113 146 95 323 183 436 436 λ_{2}° 212 279 178 625 349 840 840 λ_{3}° 388 515 341 954 578 1176 1165 λ_{4}° 406 528 358 964 593 1186 1176 $m_{H_{1}}^{2} = -(333GeV)^{2}$ $m_{H_{2}}^{2} = +(294GeV)^{2}$ $\frac{9}{e_{L}}$ μ_{L} 206 346 376 702 298 664 657 $m_{H_{1}}^{2} = -(333GeV)^{2}$ $m_{H_{2}}^{2} = +(294GeV)^{2}$ $\frac{1}{e_{L}}$ μ_{L} 226 331 150 340 322 $m_{H_{1}}^{2} = -(333GeV)^{2}$ $m_{H_{2}}^{2} = +(294GeV)^{2}$ $\frac{1}{e_{L}}$ $\frac{1}{e_{L}}$ $\frac{1}{e$	Donohmork	$ \mu $	375	500	325	978	610	1176	1161
Scenarios H^0_{μ} 266 325 240 1177 641 1307 1277 A^0_{μ} 265 325 240 1177 641 1307 1277 H^{\pm} 277 335 253 1179 646 1310 1279 M^0_{μ} 212 279 178 625 349 840 840 λ^0_{μ} 113 146 95 323 183 436 436 $non-universal Higgs masses:m^2_{\mu_1}212279177625349840840\chi^0_{\mu}40652835896459311861175M^2_{H_1}2-(333GeV)^2m^2_{H_2}=+(294GeV)^2m^2_{\mu}296346376702298664657m^2_{H_1}=-(333GeV)^2m^2_{H_2}=+(294GeV)^2m^2_{\mu}2263463766772287660652m^2_{H_1}=-(333GeV)^2m^2_{H_2}=+(294GeV)^2m^2_{\mu}296346376677287660652m^2_{H_1}=-(333GeV)^2m^2_{H_2}=+(294GeV)^2m^2_{\mu}296346376677287660652m^2_{H_1}=-(333GeV)^2m^2_{H_2}=+(294GeV)^2m^2_{\mu}298348377700302664657Models with gravitino LSP$	DEHCIIIIark	h ⁰	115	117	114	122	119	124	124
Scenarios A_{1}^{0} 265 325 240 1177 641 1307 1277 $M^{1} \pm$ 277 335 253 1179 646 1310 1279 χ_{1}^{0} 113 146 95 323 183 436 436 χ_{2}^{0} 212 279 178 625 349 840 840 χ_{3}^{0} 388 515 341 954 578 1176 1165 non-universal Higgs masses: $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ 2408 529 360 965 594 1186 1176 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ 2408 529 360 965 594 1186 1176 Models with gravitino LSP $m_{H_2}^2 = +(294 \text{GeV})^2$ 2285 337 367 697 287 660 652 v_{τ} 285 337 364 695 285 651 644 u_L, c_L 648 793 612 1532 897 1892 W_{e}, v_{μ} 285 337 364 695 285 651 644 u_R, c_R 637 778 607 1480 867 1817 1849 M_{e}, s_R 630 768 793 612 1532 897 1892 1889 M_{e}, s_R 630 768 793 612 1532 897 1892 1889 M_{e}, s_R		H ⁰	266	325	240	1177	641	1307	1277
Scenario SH [±] 277335253117964613101279 χ_0^0 11314695323183436436 χ_2^0 212279178625349840840 χ_2^0 212279178625349840840 χ_3^0 38851534195457811761165non-universal Higgs masses: $m_{H_1}^2$ 279177625349840840 χ_2^1 20936652835896459311861175 $m_{H_1}^2$ $= -(333 \text{GeV})^2$ $m_{H_2}^2$ $= +(294 \text{GeV})^2$ $m_{L_2}^2$ 268337367607287660652 $m_{H_1}^2$ $= -(333 \text{GeV})^2$ $m_{H_2}^2$ $= +(294 \text{GeV})^2$ $m_{L_2}^2$ 298346376702298664657 $m_{H_1}^2$ $= -(333 \text{GeV})^2$ $m_{H_2}^2$ $= +(294 \text{GeV})^2$ $m_{L_2}^2$ 298346376702298664657 $m_{H_1}^2$ $= -(333 \text{GeV})^2$ $m_{H_2}^2$ $= +(294 \text{GeV})^2$ $m_{L_2}^2$ $m_{R_2}^2$	Saanariaa	A^0	265	325	240	1177	641	1307	1277
Typical example of non-universal Higgs masses: χ_1^0 11314695323183436436 χ_2^0 212279178625349840840 χ_3^0 38851534195457811761165 χ_4^0 40652835896459311861175 χ_2^{\pm} 40852936096559411861176 χ_2^{\pm} 208346376702298664657 m_{H_1} 212239315564450340322 χ_1 223315564450340322 χ_2 298348377700302661655 χ_1 χ_2 298348377700302661655 χ_2 298348377700302661655 χ_1 χ_2 298348377700302	Scenarios	H [±]	277	335	253	1179	646	1310	1279
Typical example of non-universal Higgs masses: χ_2^0 χ_3^0 212 279 279 178 625 349 840 840 χ_2^0 χ_3^0 388 515 341 954 578 578 1176 1165 1165 non-universal Higgs masses: χ_4^0 χ_{\pm}^1 406 528 528 358 964 593 593 1186 1176 1165 $m_{H_1}^2 = -(333 {\rm GeV})^2$, $m_{H_2}^2 = +(294 {\rm GeV})^2$ g^0 e_R , μ_R 216 241 216 241 216 241 216 241 216 241 228 337 367 697 697 287 660 652 652 τ_1 Models with gravitino LSP u_R , c_R 637 r_R e_R , μ_R 637 r_78 607 1480 867 1817 1814 d_L , s_L Models with stau NLSP u_R , c_R 637 r_78 607 r_1 1534 901 1893 1891 1891 d_R , s_R Models with stau NLSP u_R , e_L e_{29} r_{27} e_{27} 540 1468 862 862 1781 175		χ_1^0	113	146	95	323	183	436	436
Typical example of non-universal Higgs masses: χ_0^3 388 515 341 954 578 1176 1165 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ χ_{\pm}^4 406 528 358 964 593 1186 1175 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ g 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ g 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ g 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ g 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ g 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ g 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ g 674 835 575 1610 986 2097 2097 $Models$ with gravitino LSP $m_{H_2}^2 = 2298$ 348 377 700 302 661 655 M_2 M_2 M_2 M_2 M_2 M_2 M_2 <th></th> <th>χ^0_2</th> <th>212</th> <th>279</th> <th>178</th> <th>625</th> <th>349</th> <th>840</th> <th>840</th>		χ^0_2	212	279	178	625	349	840	840
Typical example of non-universal Higgs masses: χ_1^{δ} χ_1^{\pm} 406 528 358 964 593 1186 1175 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ \tilde{g} 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ \tilde{g} 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ \tilde{g} 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ \tilde{g} 674 835 575 1610 986 2097 2097 ω_r ω_μ 285 337 367 697 287 660 652 $Models$ with gravitino LSP ω_r ω_μ 285 337 364 695 285 651 644 ω_r ω_R c_R 637 778 607 1480 867 1817 1814 M_a ω_r ω_R c_83 797 617 1534 901 1893 1891 ω_R ω_R c_83 797 617 1534 901 1893 1891 ω_R ω_R 630 768 599 1474 864 1807 1805 ω_R </th <th></th> <th>$\chi_3^{\overline{0}}$</th> <th>388</th> <th>515</th> <th>341</th> <th>954</th> <th>578</th> <th>1176</th> <th>1165</th>		$\chi_3^{\overline{0}}$	388	515	341	954	578	1176	1165
$\frac{\chi_{1}^{2}}{\chi_{2}^{2}} = \frac{212}{408} \frac{279}{529} \frac{177}{625} \frac{625}{349} \frac{840}{840} \frac{840}{270}$ non-universal Higgs masses: $m_{H_{1}}^{2} = -(333 \text{GeV})^{2}, m_{H_{2}}^{2} = +(294 \text{GeV})^{2}$ $m_{H_{1}}^{2} = -(333 \text{GeV})^{2}, m_{H_{2}}^{2} = +(294 \text{GeV})^{2}$ $m_{H_{1}}^{2} = -(333 \text{GeV})^{2}, m_{H_{2}}^{2} = +(294 \text{GeV})^{2}$ $\frac{\chi_{1}^{2}}{2} = \frac{212}{279} \frac{177}{360} \frac{625}{94} \frac{349}{1186} \frac{840}{1176}$ $\frac{\chi_{1}^{2}}{2} \frac{408}{529} \frac{360}{965} \frac{965}{594} \frac{594}{1186} \frac{1176}{1176}$ $\frac{\chi_{1}^{2}}{298} \frac{644}{346} \frac{657}{376} \frac{702}{697} \frac{298}{285} \frac{664}{651} \frac{652}{651}$ $\frac{\chi_{1}}{2} \frac{212}{239} \frac{239}{315} \frac{315}{564} \frac{564}{150} \frac{150}{340} \frac{322}{322}$ $\frac{\chi_{1}}{2} \frac{298}{298} \frac{348}{377} \frac{377}{700} \frac{302}{302} \frac{661}{655} \frac{655}{651} \frac{644}{648}$ $\frac{\chi_{1}}{2} \frac{298}{63} \frac{348}{777} \frac{377}{700} \frac{302}{302} \frac{661}{655} \frac{655}{651} \frac{644}{648}$ $\frac{\chi_{1}}{2} \frac{\kappa_{2}}{652} \frac{653}{784} \frac{607}{607} \frac{1480}{1897} \frac{867}{1817} \frac{1814}{814} \frac{4171}{6596} \frac{653}{433} \frac{797}{617} \frac{1534}{1534} \frac{901}{1893} \frac{1891}{1893} \frac{1891}{48} \frac{48}{68}, \frac{86}{175} \frac{1756}{175} \frac{1575}{155} \frac{1610}{55} \frac{1472}{55} \frac{15}{564} \frac{1575}{155} \frac{164}{55} \frac{1472}{55} \frac{15}{564} \frac{1575}{150} \frac{1472}{155} \frac{15}{564} \frac{1575}{150} \frac{1472}{155} \frac{15}{564} \frac{1575}{155} \frac{16}{55} \frac{1472}{55} \frac{15}{564} \frac{15}{564} \frac{1575}{155} \frac{16}{55} \frac{14}{55} \frac{15}{564} \frac{15}{564} \frac{15}{55} \frac{15}{564} \frac{15}{56} \frac{15}{55} \frac{15}{564} \frac{15}{55} \frac{15}{56} \frac{15}{56} \frac{15}{55} \frac{15}{56} \frac{15}{56$	Typical example of	χ_4^0	406	528	358	964	593	1186	1175
non-universal Higgs masses: $\chi_{\frac{1}{2}}^{\pm}$ 40852936096559411861176 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ g 674 835 575 161098620972097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ e_L, μ_L 296346376 702 298664657 e_L, μ_L 296346376697287660652 v_e, ν_{μ} 285337367697287660652 τ_1 212239315564150340322 τ_2 298348377700302661655 ν_{τ} 285337364695285651644 u_L, c_L 648793612153289718921889 u_R, c_R 637778607148086718171814 d_L, s_L 653797617153490118931891 d_R, s_R 630768599147486418071472 t_1 471596433115968214651472 t_2 652784600142987917581756 b_1 590727540139582417261723 b_2 629767594146886217811775	i ypical chample of	χ_1^{\pm}	212	279	177	625	349	840	840
Non-universal Higgs masses: λ_2^2 674 835 575 1610 986 2097 2097 $m_{H_1}^2 = -(333 \text{GeV})^2$, $m_{H_2}^2 = +(294 \text{GeV})^2$ e_L, μ_L 296 346 376 702 298 664 657 e_R, μ_R 216 241 328 571 169 383 370 e_R, μ_R 216 241 328 571 169 383 370 e_R, μ_R 216 241 328 571 169 383 370 e_R, ν_R 237 367 697 287 660 652 τ_1 212 239 315 564 150 340 322 τ_1 212 239 348 377 700 302 661 655 ν_τ 285 337 364 695 285 651 644 u_L, c_L 648 793 612 1532 897 1892 1889 u_R, c_R 637 778 607 1480 867 1817 1814 d_L, s_L 653 797 617 1534 901 1893 1891 d_R, s_R 630 768 599 1474 864 1807 1805 t_1 471 596 433 1159 682 1465 1472 b_1 590 727 540 1395 824 1726 1723 b_2 629 767 <th< th=""><th>• 1 TT</th><th>χ_2^{\pm}</th><th>408</th><th>529</th><th>360</th><th>965</th><th>594</th><th>1186</th><th>1176</th></th<>	• 1 TT	χ_2^{\pm}	408	529	360	965	594	1186	1176
$\begin{split} m_{H_1}^2 &= -(333 \text{GeV})^2, \ m_{H_2}^2 = +(294 \text{GeV})^2 \\ \hline m_{H_1}^2 = -(333 \text{GeV})^2, \ m_{H_2}^2 = +(294 \text{GeV})^2 \\ \hline m_{H_1}^2 &= -(333 \text{GeV})^2, \ m_{H_2}^2 = +(294 \text{GeV})^2 \\ \hline m_{H_1}^2 &= (216 \ 241 \ 328 \ 571 \ 169 \ 383 \ 370 \ 697 \ 287 \ 660 \ 652 \ 71 \ 212 \ 239 \ 315 \ 564 \ 150 \ 340 \ 322 \ 72 \ 298 \ 348 \ 377 \ 700 \ 302 \ 661 \ 655 \ 72 \ 72 \ 285 \ 337 \ 364 \ 695 \ 285 \ 651 \ 644 \ 72 \ 72 \ 285 \ 337 \ 364 \ 695 \ 285 \ 651 \ 644 \ 807 \ 1892 \ 1889 \ 867 \ 1817 \ 1814 \ 864 \ 1807 \ 1893 \ 1891 \ 867 \ 1817 \ 1814 \ 864 \ 867 \ 1817 \ 1814 \ 864 \ 867 \ 1817 \ 1814 \ 864 \ 867 \ 1817 \ 1814 \ 864 \ 867 \ 1877 \ 1805 \ 862 \ 1465 \ 1472 \ 12 \ 652 \ 784 \ 600 \ 1429 \ 879 \ 1758 \ 1756 \ 81 \ 590 \ 727 \ 540 \ 1395 \ 824 \ 1726 \ 1723 \ 852 \ 852 \ 1756 \ 1756 \ 852 \ 1756 \ 852 \ 1756 \ 1756 \ 852 \ 1756 \ 1756 \ 1756 \ 17556 \ 1$	non-universal Higgs masses:	$\tilde{\tilde{g}}$	674	835	575	1610	986	2097	2097
$\begin{split} m_{H_1}^2 &= -(333 \text{GeV})^2, \ m_{H_2}^2 = +(294 \text{GeV})^2 \\ \hline m_{H_1}^2 &= -(333 \text{GeV})^2, \ m_{H_2}^2 = +(294 \text{GeV})^2 \\ \hline m_{H_1} &= -(333 \text{GeV})^2, \ m_{H_2}^2 = +(294 \text{GeV})^2 \\ \hline m_{H_1} &= 216 & 241 & 328 & 571 & 169 & 383 & 370 \\ \hline m_{e}, \nu_{\mu} && 285 & 337 & 367 & 697 & 287 & 660 & 652 \\ \hline \tau_1 && 212 & 239 & 315 & 564 & 150 & 340 & 322 \\ \hline \tau_2 && 298 & 348 & 377 & 700 & 302 & 661 & 655 \\ \hline m_{\tau} && 285 & 337 & 364 & 695 & 285 & 651 & 644 \\ \hline m_{L}, c_{L} && 648 & 793 & 612 & 1532 & 897 & 1892 & 1889 \\ \hline m_{R}, c_{R} && 637 & 778 & 607 & 1480 & 867 & 1817 & 1814 \\ \hline m_{L}, s_{L} && 653 & 797 & 617 & 1534 & 901 & 1893 & 1891 \\ \hline m_{R}, s_{R} && 630 & 768 & 599 & 1474 & 864 & 1807 & 1805 \\ \hline m_{L} && 471 & 596 & 433 & 1159 & 682 & 1465 & 1472 \\ \hline m_{L} && 471 & 596 & 433 & 1159 & 682 & 1465 & 1472 \\ \hline m_{L} && 471 & 596 & 433 & 1159 & 682 & 1465 & 1472 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 590 & 727 & 540 & 1395 & 824 & 1726 & 1723 \\ \hline m_{L} && 50 & 50 & 747 & 540 & 1468 & 862 & 1781 & 1775 \\ \hline m_{L} && 50 & 50 & 51 & 540 & 1468 & 5$		e_L, μ_L	296	346	376	702	298	664	657
n_1 ν_e, ν_μ 285 337 367 697 287 660 652 τ_1 212 239 315 564 150 340 322 τ_2 298 348 377 700 302 661 655 ν_τ 285 337 364 695 285 651 644 u_L, c_L 648 793 612 1532 897 1892 1889 u_R, c_R 637 778 607 1480 867 1817 1814 d_L, s_L 653 797 617 1534 901 1893 1891 d_R, s_R 630 768 599 1474 864 1807 1805 t_1 471 596 433 1159 682 1465 1472 t_2 652 784 600 1429 879 1758 1756 b_1 590 727 540 1395 824 1726 1723 b_2 629 767 594 1468 862 1781 1775	$m_{H_{\star}}^2 = -(333 \text{GeV})^2, \ m_{H_{\star}}^2 = +(294 \text{GeV})^2$	e_R, μ_R	216	241	328	571	169	383	370
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_1 ()) H_2 ()	ν_e, ν_μ	285	337	367	697	287	660	652
Models with gravitino LSP τ_2 298348377700302661655 ν_{τ} 285337364695285651644 u_L, c_L 648793612153289718921889 u_R, c_R 637778607148086718171814 d_L, s_L 653797617153490118931891 d_R, s_R 630768599147486418071805 t_1 471596433115968214651472 t_2 652784600142987917581756 b_1 590727540139582417261723 b_2 629767594146886217811775		$ au_1$	212	239	315	564	150	340	322
Nodels with gravitino LSP ν_{τ} 285337364695285651644 u_L, c_L 648793612153289718921889 u_R, c_R 637778607148086718171814 d_L, s_L 653797617153490118931891 d_R, s_R 630768599147486418071805 t_1 471596433115968214651472 t_2 652784600142987917581756 b_1 590727540139582417261723 b_2 629767594146886217811775		$ au_2$	298	348	377	700	302	661	655
Nodels with graviumo LSP u_L, c_L 648793612153289718921889 u_R, c_R 637778607148086718171814 d_L, s_L 653797617153490118931891 d_R, s_R 630768599147486418071805 d_R, s_R 630768599147486418071805 b_1 596433115968214651472 b_1 59072754013958241726 b_2 62976759414688621781	M = 1 = 1 =141 =141 =141	ν_{τ}	285	337	364	695	285	651	644
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Models with gravitino LSP	u_L, c_L	648	793	612	1532	897	1892	1889
Models with stau NLSP a_L, s_L b_{53} 797 617 1534 901 1893 1891 d_R, s_R 630 768 599 1474 864 1807 1805 t_1 471 596 433 1159 682 1465 1472 t_2 652 784 600 1429 879 1758 1756 b_1 590 727 540 1395 824 1726 1723 b_2 629 767 594 1468 862 1781 1775		u_R, c_R	637	778	607	1480	867	1817	1814
Models with stau NLSP a_R, s_R b_{30} 768 599 1474 864 1807 1805 t_1 471 596 433 1159 682 1465 1472 t_2 652 784 600 1429 879 1758 1756 b_1 590 727 540 1395 824 1726 1723 b_2 629 767 594 1468 862 1781 1775		a_L, s_L	653	701	517	1534	901	1893	1891
Models with stau NLSP t_1 471 596 453 1159 682 1465 1472 t_2 652 784 600 1429 879 1758 1756 b_1 590 727 540 1395 824 1726 1723 b_2 629 767 594 1468 862 1726 1723		a_R, s_R	630	168	599	1474	864	1465	1805
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Models with stau NLSP	ι_1	650	590 784	433	1490	870	1400	14756
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		L_2	500	797	540	1429	894	1796	1799
	And the second	b_1	620	767	594	1468	862	1781	1723
De Roeck, IE, Gianotti, Moortgat, Olive + Pane	De Roeck, IE, Gianotti, Moortoat, Olive + Pana	02	029	101	0.94	1400	002	1101	1110

Properties of NUHM and GDM Models

Relic density $\Omega_{\chi}h^2, b \to s\gamma$ and $g_{\mu} - 2$ in post-WMAP benchmark scenarios, also τ_{NLSP} in the GDM models

	addill						
		β	γ	δ	ϵ	ζ	$\eta ightarrow$
$\Omega_{LSP}h^2$	0.12	0.10	0.09	0.07	1.0×10^{-3}	$0.9 imes 10^{-2}$	$1.6 imes 10^{-3}$
$\delta a_{\mu}(10^{-9})$	1.5	1.0	2.6	0.2	1.8	0.5	0.5
$B_{s\gamma}(10^{-4})$	4.1	4.4	2.8	3.7	3.6	3.6	3.6
$\tau_{NLSP}(s)$	∞	∞	∞	$1.8 imes 10^4$	$3.3 imes10^6$	$2.0 imes 10^6$	$6.8 imes10^4$

- Relic density ~ WMAP in NUHM models
- Generally < WMAP in GDM models

Need extra source of gravitinos at high temperatures, after inflation?

• NLSP lifetime: $10^4 s < \tau < few X \ 10^6 s$

De Roeck, JE, Gianotti, Moortgat, Olive + Pape

Final States in GDM Models with Stau NLSP

- All decay chains end with lighter stau
- Generally via χ

De Roeck, JE.

- Often via heavier sleptons
- Final states contain
 2 staus, 2 τ,
 often other leptons

(inanotti

			2
Final state	ϵ	ζ	η
via χ_2^0			
$\tilde{q}_L \rightarrow q l l \tilde{\tau}_1 \tau$	6%	7%	6%
$\tilde{q}_L \to q l l l' l' \tilde{\tau}_1 \tau$	0.5%	2.3%	2.9%
$\tilde{q}_L \to q(Z^0, h^0) \tilde{\tau}_1 \tau$	1.3%	4%	4%
$ ilde q_L o q au au au_1 au$	1.2%	0.8%	0.6%
$ ilde{q}_L ightarrow q au au l l ilde{ au}_1 au$	0.1%	0.3%	0.3%
$\tilde{q}_L \rightarrow q \tilde{ au}_1 au$	4%	1.3%	1.5%
decays with νs	18%	17%	17%
via χ_1^{\pm}			
$\tilde{q}_L \to q' W \tilde{\tau}_1 \tau$	6%	10%	10%
decays with νs	57%	56%	54%
via χ_1^0			
$ ilde{q}_R o q ilde{ au}_1 au$	92%	75%	69%
$\tilde{q}_R \rightarrow q l l \tilde{\tau}_1 \tau$	8%	25%	31%
			STATISTICS INCOME.

Stau Momentum Spectra

- $\beta\gamma$ typically peaked ~ 2
- Staus with $\beta\gamma < 1$ leave central tracker after next beam crossing
- Staus with $\beta\gamma < \frac{1}{4}$ trapped inside calorimeter
- Staus with $\beta \gamma < \frac{1}{2}$ stopped within 10m
- Can they be dug out?

1	Model	ϵ	ζ	η
	Number of particles with	850	7	7
C.L.	$eta\gamma < 0.25$			
	Range in C (cm)	60	136	129
	Range in Fe (cm)	29	65	61
	Number of particles with	7700	100	90
	$eta\gamma < 0.5$			
2.	Range in C (cm)	600	1360	1290
16	Range in Fe (cm)	290	650	610

Kinematic Distributions: Point ε

 Staus come with many jets & leptons with p_T hundreds of GeV, produced centrally

100 150 200 250 300 350 400 450 500

Mean

EMS.

lepton P₇, GeV/c

Underflow

Overflow

84.71

77.08

Leading Lepton P_T

500

400

300

200

100

number of leptons

De Roeck, JE, Gianotti, Moortgat, Olive + Pa

Kinematic Distributions: Point ζ

Staus come with \bullet many jets & leptons with p_T hundreds of GeV, produced centrally

De Roeck, JE, Gianotti, Moortgat, Olive

umber of lepton:

200 E

180 E

160 H 140

120 100

20

7295

1.136

-0.01038

Mear

BMS

2

3

Eta

Underflow

Overflow

Stau Mass Measurements by Time-of-Flight

0.5 0.6 0.7 0.8 0.9

Entrie

Mean

DMS

Underflov

deltam/m

Overflow

0.05650

0.03028

m

 ΔM

M

• < 1% with full sample

De Roeck, JE. Gianotti, Moortgat, Olive

Extra Dimensions at Colliders?

Problems of Quantum Gravity

• Gravity grows with energy:

$$\sigma_G \sim E^2/m_P^4$$

• Two-graviton exchange is infinite:

$$\int^{\Lambda \to \infty} d^4k \left(\frac{1}{k^2}\right) \leftrightarrow \int_{1/\Lambda \to 0} d^4x \left(\frac{1}{x^6}\right) \sim \Lambda^2 \to \infty$$

- Gravity is a non-renormalizable theory
- Pure states evolve to mixed states?

Incompatible with Conventional Quantum mechanics

$$\sum_{i} |\mathbf{c}_{i}|^{2} |\mathbf{B}_{i} > < \mathbf{B}_{i}|$$

String Theory

- Point-like particles \rightarrow extended objects
- Simplest possibility: lengths of string
- Open and/or closed
- Quantum consistency fixes # dimensions:
- Bosonic string: 26, superstring: 10
- Must compactify extra dimensions, scale $\sim 1/m_P$?
- Perturbative string unification scale:

$$M_{GUT} = O(g) \times \frac{m_P}{\sqrt{8\pi}} \simeq \text{few} \times 10^{17} \text{GeV}$$

Close to GUT scale, but larger?

How large could extra Dimensions be?

- 1/TeV?
 - could break supersymmetry, electroweak
- micron?
 - can rewrite hierarchy problem
- Infinite?
 - warped compactifications
- Look for black holes, Kaluza-Klein excitations @ colliders?

And if gravity becomes strong at the TeV scale ...

Black Hole Production at LHC?

Measuring Extra Dimensions

Identifying a Graviton Resonance

Summary

- There are good prospects for new physics discoveries with upcoming colliders
- Reasons to expect new physics @ TeV Higgs, supersymmetry, extra dimensions (?)
- Distinctive experimental signatures
- The LHC @ CERN will open new energy range
- Linear e+e- colliders could explore in more detail LHC will tell us the optimal energy