

International Atomic Energy Agency

SMR.1663-17

SUMMER SCHOOL ON PARTICLE PHYSICS

13 - 24 June 2005

QCD Phase Transitions and Heavy ion Collisions - Part 3

R. VENUGOPALAN Department of Physics Brookhaven National Laboratory Building 510A P.O. Box 5000 Upton, NY 11973-5000 U.S.A.

xQCD: What has RHIC wrought? From CGC to QGP

Raju Venugopalan Brookhaven National Laboratory

ICTP, Trieste, June 20th -24th, 2005

Lecture III: What has RHIC wrought? From CGC to QGP

Lecture IV: Exploring the QCD Phase diagram

Outline of lecture III

Heavy Ion Collisions at RHIC

From CGC to QGP? Understanding thermalization in high energy heavy ion collisions.

(BRAHMS)

RHIC COLLISIONS

(VNI simulations)

Gold-Gold collisions at $\sqrt{s} = 200 \,\text{GeV} \,/\,\text{nucleon}$

Polarized (and un-polarized) p-p collisions at $\sqrt{s} = 200 \, \text{GeV} \, / \, \text{nucleon}$

 \Box Run 3- deuteron-Gold collisions at $\sqrt{s} = 200 \,\mathrm{GeV} \,/\,\mathrm{nucleon}$

□ Current run- Cu+Cu: polarized pp at 410 GeV, ...

A "birds eye" view of RHIC

HEAVY-ION EXPERIMENTS

Facility	Location	System	Energy (CMS)
AGS	BNL, New York	Au+Au	2.6-4.3 GeV
SPS	CERN, Geneva	Pb+Pb	8.6-17.2 GeV
RHIC	BNL, New York	Au+Au	200 GeV
LHC	CERN, Geneva	Pb+Pb	5.5 TeV

Results from the RHIC Au-Au experiments:

<u>Bulk features:</u> Energy, Centrality & Rapidity dependence of inclusive hadron distributions.

Flavor: Baryon #, Strangeness, Charm.

Flow: Radial & Elliptic flow.

Hanbury-Brown-Twiss: Two particle Bose-Einstein correlations.

"High" p_t physics:

a) High p_t inclusive hadron spectrum relative to p-p (central/peripheral)

b) p_t dependence of azimuthal anisotropy,

c) back-to-back jet correlations.

d) direct photons & di-leptons; J/psi's

Event-by-event physics:

p-p and d-Au ``control experiments" crucial to develop consistent framework

Melting Colored Glass in Heavy Ion Collisions

Traditional view of heavy ion collisions

An alternative perspective...

Weak coupling techniques may be applicable...

Hadronic collisions in the color glass framework

Solve Yang-Mills equations for two light cone sources: $(
ho_1,
ho_2)$

> All quantum information on evolution of sources in $W[\rho_1] \,\&\, W[\rho_2]\,$ - must be averaged over

"Simpler" Cold Matter: proton/Deuteron - A scattering

RHIC data on Deuteron-Gold scattering.

Claim: Key features can be understood in CGC approach

gluon production in D-A: systematic power counting

► K_t factorization holds for inclusive gluon production lowest order in $\rho_p/k_{\perp 1}^2$ but all orders _{Kovchegov-Mueller} in $\rho_A/k_{\perp 2}^2$

RHIC DATA ON THE CRONIN EFFECT in D-Au Collisions

Compute R_pA

Dumitru, Jalilian-Marian Jalilian-Marian, Gelis Accardi

Inversion of centrality dependence due to softening Of the spectrum at small x

Very high energy

Kharzeev,Kovchegov,Tuchin Baier, Kovner, Wiedemann; Albacete, Armesto, Salgado, Kovner, Wiedemann Blaizot, Gelis, RV Iancu, Itakura, Triantafyllopolous

Broadening of azimuthal correlations due to CGC

Kharzeev, Levin, McLerran

Other tests-photons and di-leptons in forward region

⁶ p_T (GeV/c)

Back to Nucleus-Nucleus Collisions...

 $(\rho_{A1}/k_{\perp}^2, \, \rho_{A2}/k_{\perp}^2 \sim 1)$

All such diagrams of Order O(1)

Yang-Mills Equations for two nuclei

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho_{1}^{a}(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho_{2}^{a}(x_{\perp})\delta(x^{+})$$
Initial conditions
from matching
eqns. of motion
on light cone
$$\tau = \sqrt{2x^{+}x^{-}}; \eta = \frac{1}{2}\ln\left(\frac{x^{+}}{x^{-}}\right)$$

.

Lattice Formulation

Krasnitz, RV

\Box Hamiltonian in $A^{\tau} = 0$ gauge; per unit rapidity,

$$H = \frac{\tau}{2} \int d^2 r_{\perp} \left[p^{\eta} p^{\eta} + \frac{1}{\tau^2} E_r E_r + \frac{1}{\tau^2} (D_r \Phi) (D_r \Phi) + F_{xy} F_{xy} \right]$$

For ``perfect'' pancake nuclei, boost invariant configurations $A_r(\tau, \eta, r_{\perp}) = A_r(\tau, r_{\perp}) \; ; \; A_\eta(\tau, \eta, r_{\perp}) = \Phi(\tau, r_{\perp})$

Solve Hamilton's equations in real time for space-time evolution of glue in Heavy Ion collisions

Initial energy & multiplicity of <u>produced</u> gluons depends on Q_s

$$\frac{1}{\pi R^2} \frac{dE}{d\eta} = \frac{0.25}{g^2} Q_s^3 \qquad \frac{1}{\pi R^2} \frac{dN}{d\eta} = \frac{0.3}{g^2} Q_s^2$$

Straight forward extrapolation from fits of saturation models to HERA data

$$(Q_s^2)^{\text{RHIC}} = A^{1/3} \left(\frac{x_0}{x_{\text{RHIC}}}\right)^{0.3} \text{GeV}^2$$

RHIC:
$$Q_s \approx 1.4 \text{ GeV}$$

LHC: $Q_s \approx 2.2 \text{ GeV}$

Predictions for Au+Au multiplicity at RHIC

Successful KLN phenomenology for multiplicities at RHIC

Kharzeev,Levin,N ardi

Parton/Hadron duality assumed

But...

 $(E_{\perp}/N)^{\rm CGC} \approx Q_s$ $(E_{\perp}/N)^{\rm RHIC} \approx Q_s/3$

OK, if system does P dV work - hydrodynamics...

Elliptic flow of colored glass

$$v_2 N = \sqrt{\frac{2}{\pi}} \int_0^\infty \frac{dt}{\sqrt{t}} \left(T^{xx}(t) - T^{yy}(t) \right)$$

Transverse pressure in x (y) direction

Classical description breaks down when

occupation # f << 1: $(\tau \approx 1/Q_s)$

v_2 & E_t/N data suggest strong "final state" re-scattering after classical phase -

fields -> particles

Can thermalization be understood in weak coupling?

Melting CGC to QGP

L. McLerran, T. Ludlam, Physics Today

Emerging Consensus...final state interactions are essential.

The evidence from low p_t physics

Azimuthal Anisotropy-Elliptic flow

P. Huovinen nucl-th/0305064

Flow of different particle species consistent with expectations from ideal relativistic hydrodynamics

Flow at High p_T in 200 GeV Au+Au

Flow reaches a maximum ~3 GeV/c, then decreases slowly Sizable real flow to ~8 GeV/c in mid-central collisions

Carl Gagliardi, Hard probes 04

Strong conclusions from comparing data with hydro calculations:

early thermalisation time (v_2)

sensitivity to equation of state (particle spectra, v_2)

low viscosity (v_2)

Next few runs and LHC will be decisive

What is the evidence from high p_t?

through hot matter

Control Experiment

(PHENIX, nucl-ex/0401001)

Reconstructing Jets from Azimuthal correlations

STAR data show clear dependence of correlations on path length in medium

Finding the Associated Hadrons

with the dense medium

CarL Gagliardi, Hard probes 04

Evidence of novel final state effects

- Flow at low p_t
- high p_t suppression
- systematics of azimuthal correlations
- Clearly distinct from cold matter probed in d-Au

All models that explain these distinct features have to assume very dense, strongly interacting matter: consistent with the QGP ...many open questions remain for RHIC to explore! - RHIC II