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The Plan:

Lecture 1: Motivation and Introduction to Supersymmetry

Lecture 2: Supersymmetric Interactions and the

Minimal Supersymmetric Standard Model

Lecture 3: Models of Supersymmetry Breaking

Lecture 4: Signals for Supersymmetry

Based in part on “A supersymmetry primer”, hep-ph/9709356

A .pdf file of these lectures can be found at:

http://zippy.physics.niu.edu/ICTP05/

2



Lecture 1: Motivation and Introduction

to Supersymmetry
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There are many reasons to believe that the next discoveries beyond the presently

known Standard Model will involve supersymmetry (SUSY).

Some of them are:

• A good cold dark matter particle

• A light Higgs boson, in agreement with precision electroweak constraints

• Unification of gauge couplings

• Mathematical beauty

• Indirect effects (that come and go!) on observables like the anomalous

magnetic moment of the muon and Z → bb.

However, in my opinion, they are all insignificant compared to the one really good

reason to suspect that supersymmetry is real.

That is. . .
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The Hierarchy Problem

Consider the potential for H , the complex scalar

field that is the electrically neutral part of the

Standard Model Higgs field:

V (H) = m2
H |H|2 +

λ

2
|H|4

V(H)

|H|174 GeV
|

For electroweak symmetry breaking to agree with the experimental mZ , we need:

〈H〉 =
√
−m2

H/λ ≈ 175 GeV

The requirement of unitarity in the scattering of Higgs bosons and longitudinal W

bosons tells us that λ is not much larger than 1. Therefore,

−(few hundred GeV)2 <∼ m2
H < 0.

However, this appears fine-tuned (in other words, incredibly and mysteriously

lucky!) when we consider the likely size of quantum corrections to m2
H .
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Contributions to m2
H from a Dirac fermion

loop:

H
λf λf

f

f

The correction to the Higgs squared mass parameter from this loop diagram is:

∆m2
H =

λ2
f

16π2

[−2M2
UV + 6m2

f ln (MUV/mf ) + . . .
]

where λf is the coupling of the fermion to the Higgs field H .

MUV should be interpreted as the ultraviolet cutoff scale(s) at which new physics

enters to cut off the loop integrations.

So m2
H is sensitive to the largest mass scales in the theory.
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For example, some people believe that String Theory is responsible for modifying

the high energy behavior of physics, making the theory finite. Going from string

theory to field theory, integrations over Euclidean momenta are modified

according to: ∫
d4p [. . .] →

∫
d4p e−p2/M2

string [. . .]

Using this, one obtains from each Dirac fermion one-loop diagram:

∆m2
H ∼ −

λ2
f

8π2
M2

string + . . .

A typical guess is that Mstring is comparable to MPlanck ≈ 2.4× 1018 GeV.

This makes it difficult to explain how m2
H could be so small, after incorporating

these relatively huge corrections.
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The Hierarchy Problem is that we already know:

|m2
H |

M2
Planck

<∼ 10−32

Why should this number be so small, if individual radiative corrections ∆m2
H can

be of order M2
Planck or M2

string, multiplied by loop factors?

This applies even if you don’t trust String Theory (and why should you?), and

some other unspecified quantum gravitation effects at MPlanck, or any other very

large mass scale, make the loop integrals converge.

An incredible coincidence seems to be required to make the corrections to the

Higgs squared mass cancel to give a much smaller number.
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Scalar loops give a “quadratically divergent”

contribution to the Higgs squared mass also.

Suppose S is some heavy complex scalar

particle that couples to the Higgs.
λS

S

H

∆m2
H =

λS

16π2

[
M2

UV − 2m2
S ln (MUV/mS) + . . .

]
(Note that the coefficient of the M2

UV term from a scalar loop has the opposite

sign of the fermion loop.)

In dimensional regularization, the terms proportional to M2
UV do not occur. One

could adopt dimensional regularization (although it seems unphysical for this

purpose), and also assume that the Higgs does not couple directly to any heavy

particles. But there is still a problem. . .
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Indirect couplings of the

Higgs to heavy particles

still give a problem:
(b)

H

F

(a)

H

F

Here F is any heavy fermion that shares gauge quantum numbers with the Higgs

boson. Its mass, mF does not come from the Higgs boson and can be arbitrarily

large. From these diagrams one finds (x is a group-theory factor):

∆m2
H = x

(
g2

16π2

)2 [
kM2

UV + 48m2
F ln(MUV/mF ) + . . .

]
Here k depends on the choice of cutoff procedure (and is 0 in dimensional

regularization). However, the contribution proportional to m2
F is always present.

More generally, any indirect communication between the Higgs boson and

very heavy particles, or very high-mass phenomena in general, can give an

unreasonably large contribution to m2
H .
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The systematic cancellation of loop corrections to the Higgs mass squared

requires the type of conspiracy that is better known to physicists as a symmetry.

Fermion loops and boson loops gave contributions with opposite signs:

∆m2
H = − λ2

f

16π2
(2M2

UV) + . . . (Dirac fermion)

∆m2
H = +

λS

16π2
M2

UV + . . . (complex scalar)

So we need a SUPERSYMMETRY = a symmetry between fermions and bosons.

It turns out that this makes the cancellation not only possible, but automatic.

More on this later, but first, an historical analogy. . .
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An analogy: Coulomb self-energy correction to the electron’s mass

H. Murayama, hep-ph/0002232

If the electron is really pointlike, the classical electrostatic contribution to its

energy is infinite.

Model the electron as a solid sphere of uniform charge density and radius R:

∆ECoulomb =
3e2

20πε0R

Interpreting this as a correction ∆me = ∆ECoulomb/c2 to the electron mass:

me,physical = me,bare + (1 MeV/c2)

(
0.9× 10−17 meters

R

)
.

A divergence arises if we try to take R→ 0. Naively, we might expect

R >∼ 10−17 meters, to avoid having to tune the bare electron mass to better

than 1%, for example:

0.511 MeV/c2 = −100.000 MeV/c2 + 100.511 MeV/c2.
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However, there is another important quantum mechanical contribution:

e− e− e−
+

e−

e+

e−

The virtual positron effect cancels most of the Coulomb contribution, leaving:

me,physical = me,bare

[
1 +

3α

4π
ln

(
h̄/mec

R

)
+ . . .

]
with h̄/mec = 3.9× 10−13 meters. Even if R is as small as the Planck length

1.6× 10−35 meters, where quantum gravity effects become dominant, this is

only a 9% correction.

The existence of a “partner” particle for the electron, the positron, is

responsible for eliminating the dangerously huge contribution to its mass.
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If we did not yet know about the positron, we would have had three options:

• Assume that the electron is not point-like, and has structure at a

measurable size R.

• Assume that the electron is (nearly?) pointlike, and there is a

mysterious fine-tuning between the bare mass and the Coulomb

correction to it.

• Predict that the electron’s “partner”, the positron, must exist.

Today we know that the last option is the correct one.

The “reason” for the positron’s existence can be understood from a symmetry,

namely the Poincaré invariance of Einstein’s relativity when applied to the

quantum theory of electrons and photons, QED.

The reason for the cancellation of the Coulomb contribution is the approximate

chiral symmetry of the QED Lagrangian.
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Supersymmetry

A SUSY transformation turns a boson state into a fermion state, and vice versa.

So the operator Q that generates such transformations acts, schematically, like:

Q|Boson〉 = |Fermion〉; Q|Fermion〉 = |Boson〉

This means that Q must be an anticommuting spinor. This is an intrinsically

complex object, so Q† is also a distinct symmetry generator:

Q†|Boson〉 = |Fermion〉; Q†|Fermion〉 = |Boson〉

The possible forms for such theories are highly restricted by the

Haag-Lopuszanski-Sohnius extension of the Coleman-Mandula Theorem.

In a 4-dimensional theory with chiral fermions (like the Standard Model) and

non-trivial scattering, then Q carries spin-1/2 with L helicity, and Q† has

spin-1/2 with R helicity, and they must satisfy. . .
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The Supersymmetry Algebra

{Q, Q†} = Pµ

{Q, Q} = {Q†, Q†} = 0

[Pµ, Q] = [Pµ, Q†] = 0

[T a, Q] = [T a, Q†] = 0

Here Pµ = (H, �p) is the generator of spacetime translations, and T a are the

gauge generators. (This is schematic, with spinor indices suppressed for now. We

will restore them later.)

The single-particle states of the theory fall into irreducible representations of this

algebra, called supermultiplets. Fermion and boson members of a given

supermultiplet are superpartners of each other. By definition, if |Ω〉 and |Ω′〉 are

superpartners, then |Ω′〉 is equal to some combination of Q, Q† acting on |Ω〉.
Therefore, since P 2 and T a commute with Q, Q†, all members of a given

supermultiplet must have the same (mass)2 and gauge quantum numbers.
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Each supermultiplet contains equal numbers of fermions and bosons

Proof: Consider the operator (−1)2S where S is spin angular momentum. Then

(−1)2S =

j −1 acting on fermions

+1 acting on bosons

So, (−1)2S must anticommute with Q and Q†. Now consider all states |i〉 in a given
supermultiplet with the same momentum eigenvalue pµ �= 0. These form a complete set
of states, so

P
j |j〉〈j| = 1. Now do a little calculation:

p
µ
Tr[(−1)

2S
] =

X
i

〈i|(−1)
2S

P
µ|i〉 =

X
i

〈i|(−1)
2S

QQ
†|i〉 +

X
i

〈i|(−1)
2S

Q
†
Q|i〉

=
X

i

〈i|(−1)
2S

QQ
†|i〉 +

X
i

X
j

〈i|(−1)
2s

Q
†|j〉〈j|Q|i〉

=
X

i

〈i|(−1)
2S

QQ
†|i〉 +

X
j

〈j|Q(−1)
2S

Q
†|j〉

=
X

i

〈i|(−1)
2S

QQ
†|i〉 −

X
j

〈j|(−1)
2S

QQ
†|j〉

= 0.

The trace just counts the number of boson minus the number of fermion degrees

of freedom in the supermultiplet. Therefore, pµ(nB − nF ) = 0.
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Types of supermultiplets

Chiral (or “Scalar” or “Matter” or “Wess-Zumino”) supermultiplet:

1 two-component Weyl fermion, helicity ±1
2

. (nF = 2)

2 real spin-0 scalars = 1 complex scalar. (nB = 2)

The Standard Model quarks, leptons and Higgs bosons must fit into these.

Gauge (or “Vector”) supermultiplet:

1 two-component Weyl fermion gaugino, helicity ±1
2 . (nF = 2)

1 real spin-1 massless gauge vector boson. (nB = 2)

The Standard Model γ, Z, W±, g must fit into these.

Gravitational supermultiplet:

1 two-component Weyl fermion gravitino, helicity ±3
2

. (nF = 2)

1 real spin-2 massless graviton. (nB = 2)

18



How do the Standard Model quarks and leptons fit in?

Each quark or charged lepton is 1 Dirac = 2 Weyl fermions

Electron: Ψe =

(
eL

eR

) ← two-component Weyl LH fermion

← two-component Weyl RH fermion

Each of eL and eR is part of a chiral supermultiplet, so each has a complex,

spin-0 superpartner, called ẽL and ẽR respectively. They are called the

“left-handed selectron” and “right-handed selectron”, although they carry no spin.

The conjugate of a right-handed Weyl spinor is a left-handed Weyl spinor. Define

two-component left-handed Weyl fields: e ≡ eL and ē ≡ e†R. So, there are two

left-handed chiral supermultiplets for the electron:

(e, ẽL) and (ē, ẽ∗R).

The other charged leptons and quarks are similar. We do not need νR in the

Standard Model, so there is only one neutrino chiral supermultiplet for each family:

(νe, ν̃e).
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Chiral supermultiplets of the Minimal Supersymmetric Standard Model (MSSM):

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (euL
edL) (uL dL) ( 3, 2 , 1

6
)

(×3 families) ū eu∗
R u†

R ( 3, 1, − 2

3
)

d̄ ed∗
R d†

R ( 3, 1, 1

3
)

sleptons, leptons L (eν eeL) (ν eL) ( 1, 2 , − 1

2
)

(×3 families) ē ee∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) ( eH+
u

eH0
u) ( 1, 2 , + 1

2
)

Hd (H0
d H−

d ) ( eH0
d
eH−

d ) ( 1, 2 , − 1

2
)

The superpartners of the Standard Model particles are written with a .̃ The

scalar names are obtained by putting an “s” in front, so they are generically called

squarks and sleptons, short for “scalar quark” and “scalar lepton”.

The Standard Model Higgs boson requires two different chiral supermultiplets, Hu and

Hd. The fermionic partners of the Higgs scalar fields are called higgsinos. There

are two charged and two neutral Weyl fermion higgsino degrees of freedom.
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Why do we need two Higgs supermultiplets? Two reasons:

1) Anomaly Cancellation

f eHu
eHd

X
SM fermions

Y 3
f = 0 + 2

„
1

2

«3

+ 2

„
−1

2

«3

= 0

This anomaly cancellation occurs if and only if both H̃u and H̃d higgsinos are

present. Otherwise, the electroweak gauge symmetry would not be allowed!

2) Quark and Lepton masses

Only the Hu Higgs scalar can give masses to charge +2/3 quarks (top).

Only the Hd Higgs scalar can give masses to charge −1/3 quarks (bottom) and

the charged leptons. We will show this later.
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The vector bosons of the Standard Model live in gauge supermultiplets:

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon eg g ( 8, 1 , 0)

winos, W bosons fW± fW 0 W± W 0 ( 1, 3 , 0)

bino, B boson eB0 B0 ( 1, 1 , 0)

The spin-1/2 gauginos transform as the adjoint representation of the gauge

group. Each gaugino carries a .̃ The color-octet superpartner of the gluon is

called the gluino. The SU(2)L gauginos are called winos, and the U(1)Y

gaugino is called the bino.

However, the winos and the bino are not mass eigenstate particles; they mix with

each other and with the higgsinos of the same charge.
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Recall that if supersymmetry were an exact symmetry, then superpartners would

have to be exactly degenerate with each other. For example,

mẽL
= mẽR

= me = 0.511 GeV

mũL
= mũR

= mu

mg̃ = mgluon = 0 + QCD-scale effects

etc.

But new particles with these properties have been ruled out long ago, so:

Supersymmetry must be broken in the vacuum state chosen by Nature.

Supersymmetry is thought to be spontaneously broken and therefore hidden, the

same way that the electroweak symmetry is hidden from very low-energy

experiments.
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For a clue as to the nature of SUSY breaking, return to our motivation in the

Hierarchy Problem. The Higgs mass parameter gets corrections from each chiral

supermultiplet:

∆m2
H =

1

16π2
(λS − λ2

F )M2
UV + . . .

The corresponding formula for Higgsinos has no term proportional to M2
UV;

fermion masses always diverge at worst like ln(MUV). Therefore, if

supersymmetry were exact and unbroken, it must be that:

λS = λ2
F ,

in other words, the dimensionless (scalar)4 couplings are the squares of the

(scalar)-(fermion)-(antifermion) couplings.

If we want SUSY to be a solution to the hierarchy problem, we must demand that

this is still true even after SUSY is broken:

The breaking of supersymmetry must be “soft”. This means that it does not

change the dimensionless terms in the Lagrangian.
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The effective Lagrangian of the MSSM can therefore be written in the form:

L = LSUSY + Lsoft

• LSUSY contains all of the gauge interactions and Yukawa interactions

dimensionless scalar couplings, and preserves exact supersymmetry

• Lsoft violates supersymmetry, and contains only mass terms and couplings

with positive mass dimension.

If msoft is the largest mass scale in Lsoft, then by dimensional analysis,

∆m2
H = m2

soft

»
λ

16π2
ln(MUV/msoft) + . . .

–
,

where λ stands for dimensionless couplings. This is because ∆m2
H must vanish

in the limit msoft → 0, in which SUSY is restored. Therefore, we expect that

msoft should not be much larger than roughly 1000 GeV.

This is the best reason to be optimistic that SUSY will be discovered at the

Fermilab Tevatron or the CERN Large Hadron Collider in this decade.
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Without further justification, soft SUSY breaking might seem like a rather arbitrary

requirement. Fortunately, we will see later that it arises naturally from the

spontaneous breaking of theories with exact SUSY.

One might also ask if there is any good reason why the superpartners of the

Standard Model particles should be heavy enough to have avoided discovery so

far. There is!

• All of the particles in the MSSM that have been discovered as of 1995

(quarks, leptons, gauge bosons) would be exactly massless if the electroweak

symmetry were not broken. So their masses are expected to be at most of

order v = 175 GeV, the electroweak breaking scale. In other words, they

are required to be light.

• All of the particles in the MSSM that have not yet been discovered as of 2005

(squarks, sleptons, gauginos, Higgsinos, Higgs scalars) can get a mass even

without electroweak symmetry breaking. They are not required to be light.
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Notations for two-component (Weyl) fermions

Metric tensor: ηµν = diag(−1, +1, +1, +1)

Position, momentum four-vectors: xµ = (t, �x); pµ = (E, �p)

Left-handed (LH) two-component Weyl spinor: ψα α = 1, 2

Right-handed (RH) two-component Weyl spinor: ψ†
α̇ α̇ = 1, 2

The Hermitian conjugate of a left-handed Weyl spinor is a right-handed Weyl

spinor, and vice versa:

(ψα)† = (ψ†)α̇ ≡ ψ†
α̇

(Some other people call this ψα̇)

Therefore, all spin-1/2 fermionic degrees of freedom in any theory can be defined

in terms of a list of left-handed Weyl spinors, ψiα where i is a flavor index. With

this convention, right-handed Weyl spinors always carry a dagger: ψ†i
α̇ .
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Products of spinors are defined as:

ψξ ≡ ψαξβεβα and ψ†ξ† ≡ ψ†
α̇ξ†

β̇
εα̇β̇

Since ψ and ξ are anti-commuting fields, the antisymmetry of εαβ implies:

ψξ = ξψ = (ψ†ξ†)∗ = (ξ†ψ†)∗.

To make Lorentz-covariant quantities, define matrices (σµ)α̇β and (σµ)αβ̇ with:

σ0 = σ0 =

„
1 0

0 1

«
; σn = −σn = (�σ)n (for n = 1, 2, 3).

Then the Lagrangian for an arbitrary collection of LH Weyl fermions ψi is:

L = −iψ†iσµDµψi − 1
2M ijψiψj − 1

2Mijψ
†iψ†j

where Dµ = covariant derivative, and the mass matrix M ij is symmetric, with

Mij ≡ (M ij)∗.
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Two LH Weyl spinors ξ, χ can form a 4-component Dirac or Majorana spinor:

Ψ =

„
ξα

χ†α̇

«
In the 4-component formalism, the Dirac Lagrangian is:

L = −iΨγµ∂µΨ − mΨΨ, where γµ =

„
0 σµ

σµ 0

«
,

In the two-component fermion language, with spinor indices suppressed:

L = −iξ†σµ∂µξ − iχ†σµ∂µχ−m(ξχ + ξ†χ†),

up to a total derivative. This follows from using the identity:

−iχσµ∂µχ† = −i∂µχ†σµχ.

A Majorana fermion can be described in 4-component language in the same way

by identifying χ = ξ, and multiplying the Lagrangian by a factor of 1
2 to

compensate for the redundancy.
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For example, to describe the Standard Model fermions in 2-component notation:

L = −iQ†iσµDµQi − iū†iσµDµūi − id̄†iσµDµd̄i

−iL†iσµDµLi − iē†iσµDµēi

with the family index i = 1, 2, 3 summed over, color and weak isospin and spinor

indices suppressed, and Dµ the appropriate Standard Model covariant derivative,

for example,

DµL =

»
∂µ + i

g

2
W a

µ τa − i
g′

2
Bµ

–„
νe

e

«
Dµe =

ˆ
∂µ + ig′Bµ

˜
ē

with τa (a = 1, 2, 3) equal to the Pauli matrices, and the gauge eigenstate weak

bosons are related to the mass eigenstates by

W±
µ = (W 1

µ ∓ W 2
µ)/

√
2,„

Zµ

Aµ

«
=

„
cos θW − sin θW

sin θW cos θW

«„
W 3

µ

Bµ

«
.
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Two-component spinor language is much more natural and

convenient for SUSY, because the supermultiplets are in

one-to-one correspondence with the LH Weyl fermions.

More generally, two-component spinor language is more natural for
any theory of physics beyond the Standard Model, because it is an
Essential Truth that parity is violated. Nature does not treat
left-handed and right-handed fermions the same, and the higher we
go in energy, the more essential this becomes.

31

The simplest SUSY model: a free chiral supermultiplet

The minimum particle content for a SUSY theory is a complex scalar φ and its

superpartner fermion ψ. We must at least have kinetic terms for each, so:

S =

∫
d4x (Lscalar + Lfermion)

Lscalar = −∂µφ∗∂µφ Lfermion = −iψ†σµ∂µψ

A SUSY transformation should turn φ into ψ, so try:

δφ = εψ; δφ∗ = ε†ψ†

where ε = infinitesimal, anticommuting, constant spinor, with dimension

[mass]−1/2, that parameterizes the SUSY transformation. Then we find:

δLscalar = −ε∂µψ∂µφ∗ − ε†∂µψ†∂µφ.

We would like for this to be canceled by an appropriate SUSY transformation of

the fermion field. . .

32



To have any chance, δψ should be linear in ε† and in φ, and must contain one

spacetime derivative. There is only one possibility, up to a multiplicative constant:

δψα = i(σµε†)α∂µφ; δψ†
α̇ = −i(εσµ)α̇∂µφ∗

With this guess, one obtains:

δLfermion = −δLscalar + (total derivative)

so the action S is indeed invariant under the SUSY transformation, justifying the

guess of the multiplicative factor. This is called the free Wess-Zumino model.

Furthermore, if we take the commutator of two SUSY transformations:

δε2(δε1φ)− δε1(δε2φ) = i(ε1σ
µε2 − ε2σ

µε1)∂µφ

Since ∂µ corresponds to the spacetime 4-momentum Pµ, this has exactly the

form demanded by the SUSY algebra discussed earlier. (More on this soon.)
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The fact that two SUSY transformations give back another symmetry (namely a

spacetime translation) means that the SUSY algebra “closes”.

If we do the same check for the fermion ψ:

δε2(δε1ψα)− δε1(δε2ψα) = i(ε1σ
µε2 − ε2σ

µε1)∂µψα

−iε1α(ε†2σ
µ∂µψ) + iε2α(ε†1σ

µ∂µψ)

The first line is expected, but the second line only vanishes on-shell (when the

classical equations of motion are satisfied). This seems like a problem, since we

want SUSY to be a valid symmetry of the quantum theory (off-shell)!

To show that there is no problem, we introduce another bosonic spin-0 field, F ,

called an auxiliary field. Its Lagrangian density is:

Laux = F ∗F

Note that F has no kinetic term, and has dimensions [mass]2, unlike an ordinary

scalar field. It has the not-very-exciting equations of motion F = F ∗ = 0.
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The auxiliary field F does not affect the dynamics, classically or in the quantum

theory. But it does appear in modified SUSY transformation laws:

δφ = εψ

δψα = i(σµε†)α∂µφ + εαF

δF = iε†σµ∂µψ

Now the total Lagrangian

L = −∂µφ∗∂µφ− iψ†σµ∂µψ + F ∗F

is still invariant, and also one can now check:

δε2(δε1X)− δε1(δε2X) = i(ε1σ
µε2 − ε2σ

µε1)∂µX

for each of X = φ, φ∗, ψ, ψ†, F, F ∗, without using equations of motion.

So in the “modified” theory, SUSY does close off-shell as well as on-shell.
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The auxiliary field F is really just a book-keeping device to make this simple.

In retrospect, we can see why we needed it by considering the number of degrees

of freedom on-shell (classically) and off-shell (quantum mechanically):

φ ψ F

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 2 4 2

(Going on-shell eliminates half of the propagating degrees of freedom of the

fermion, because the Lagrangian density is linear in time derivatives, so that the

fermionic canonical momenta are not independent phase-space variables.)

The auxiliary field will also plays an important role when we add interactions to

the theory, and in gaining a simple understanding of SUSY breaking.
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Noether’s Theorem tells us that for every symmetry, there is a conserved current,

and SUSY is not an exception. The supercurrent Jµ
α is an anti-commuting

4-vector that also carries a spinor index.

By the usual Noether procedure, one finds for the supercurrent (and its conjugate

J†), in terms of the variations of the fields δX for X = (φ, φ∗, ψ, ψ†, F, F ∗):

εJµ + ε†J†µ ≡
∑
X

δX
δL

δ(∂µX)
−Kµ,

where Kµ satisfies δL = ∂µKµ. One finds:

Jµ
α = (σνσµψ)α ∂νφ∗; J†µ

α̇ = (ψ†σµσν)α̇ ∂νφ.

The supercurrent and its hermitian conjugate are separately conserved:

∂µJµ
α = 0; ∂µJ†µ

α̇ = 0,

as can be verified by use of the equations of motion.
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From the conserved supercurrents one can construct the conserved charges:

Qα =
√

2

∫
d3x J0

α; Q†
α̇ =
√

2

∫
d3x J†0

α̇ ,

As quantum mechanical operators, they satisfy:[
εQ + ε†Q†, X

]
= −i

√
2 δX

for any field X . Let us also introduce the 4-momentum operator P µ = (H, �P ),

which satisfies:

[Pµ, X ] = i∂µX.

Now by using the canonical commutation relations of the fields, one finds:[
ε2Q + ε†2Q

†, ε1Q + ε†1Q
†] = 2(ε2σµε†1 − ε1σµε†2) Pµ[

εQ + ε†Q†, P
]

= 0

This implies. . .
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The SUSY Algebra

{Qα, Q†
α̇} = 2σµ

αα̇Pµ,

{Qα, Qβ} = {Q†
α̇, Q†

β̇
} = 0

[Qα, Pµ] = [Q†
α̇, Pµ] = 0

This time in non-schematic form, with the spinor indices and the factors of 2 in

their proper places.

(Note that the commutators turned into anti-commutators in the first two, when we

extracted the anti-commutating spinors ε1, ε2.)
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Covered in Lecture 1:

• The Hierarchy Problem, mZ 	 mPlanck, is a strong motivation for

supersymmetry (SUSY)

• In SUSY, all particles fall into:

– Chiral supermultiplet = complex scalar boson and fermion partner

– Gauge supermultiplet = vector boson and gaugino fermion partner

– Gravitational supermultiplet = graviton and gravitino fermion partner

• The Minimal Supersymmetric Standard Model (MSSM) introduces squarks,

sleptons, Higgsinos, gauginos as the superpartners of Standard Model states

• Two-component fermion notation: ψα = LH fermion, ψ†
α̇ = RH fermion

• The Wess-Zumino Model Lagrangian describes a single chiral supermultiplet

• The Supersymmetry Algebra
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Lecture 2: Supersymmetric interactions

and the Minimal Supersymmetric

Standard Model

41

Masses and Interactions for Chiral Supermultiplets

In Lecture 1, we found the Lagrangian describing a collection of free, massless

chiral supermultiplets

L = −∂µφ∗i∂µφi − iψ†iσµ∂µψi + F ∗iFi

is invariant under the transformations parameterized by a constant spinor εα:

δφi = εψi,

δ(ψi)α = −i(σµε†)α∂µφi + εαFi

δFi = −iε†σµ∂µψi

Now we try to add to this a Lagrangian describing interactions:

Lint =
(−1

2W ijψiψj + W iFi + xijFiFj

)
+ c.c. + U

where, to be renormalizable, W ij , W i, xij , and U are polynomials in φi, φ
∗i

with degrees 1, 2, 0, and 4, respectively.
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Now one can compute δL under the SUSY transformation, and require that it be

a total derivative, so that the action S =
∫

d4xL is invariant.

This turns out to work if and only if xij = 0 and U = 0, and:

W ij =
∂2W

∂φi∂φj
= M ij + yijkφk

W i =
∂W

∂φi
= M ijφj + 1

2
yijkφjφk

where we have defined a useful function:

W = 1
2M ijφiφj + 1

6yijkφiφjφk

called the superpotential. Note that it does not depend on φ∗i, only the φi. It is

an analytic function of the scalar fields treated as complex variables.

The superpotential W contains masses M ij and couplings yijk, which are each

automatically symmetric under interchange of i, j, k.

Supersymmetry is very restrictive; you cannot just do anything you want!
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The Lagrangian terms involving auxiliary fields Fi, F
∗i are:

L = F ∗iFi + W iFi + W ∗
i F ∗i

So the equations of motion are now:

F ∗i = −W i = M ijφj + 1
2yijkφjφk,

This is still algebraic; no spacetime derivatives. By eliminating the auxiliary fields,

we get the complete Lagrangian:

L = −∂µφ∗i∂µφi − V (φi, φ
∗i)

−iψ†iσµ∂µψi − 1
2

(
M ijψiψj + yijkφiψjψk + c.c.

)
where the scalar potential is:

V (φi, φ
∗i) = FiF

∗i = W iW ∗
i = MikMkjφ∗iφj +

1

2
M inyjknφiφ

∗jφ∗k

+
1

2
Minyjknφ∗iφjφk +

1

4
yijnyklnφiφjφ

∗kφ∗l
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The Feynman rules for our interacting chiral supermultiplets are:

Propagators:

−i
p2+M2

−ip·σ
p2+M2

−iMij

p2+M2

−iMij

p2+M2

Both scalars and fermions have squared mass matrix MikMkj .
√

Yukawa interactions:
j k

i

−iyijk

j k

i

−iyijk

Scalar interactions:
j k

i

−iM inynjk

j k

i

−iMinynjk

i j

k �

−iyijnyk�n

The superpotential parameters M ij , yijk determine all non-gauge interactions.
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Supersymmetric Gauge Theories

A gauge or vector supermultiplet contains a gauge boson Aa
µ and a gaugino λa

α.

The index a runs over the gauge group generators [1, 2, . . . , 8 for SU(3)C ;

1, 2, 3 for SU(2)L; 1 for U(1)Y ].

Suppose the gauge coupling constant is g and the structure constants of the

group are fabc. The Lagrangian for the gauge supermultiplet is:

L = − 1

4
F µν

a F a
µν − iλ†aσµ∇µλa + 1

2
DaDa

where Da is a real spin-0 auxiliary field with no kinetic term, and

∇µλa = (∂µλa − gfabcAb
µλc)

The action is invariant under the SUSY transformation:

δAa
µ = − 1√

2

`
ε†σµλa + λ†aσµε

´
,

δλa
α = − i

2
√

2
(σµσνε)α F a

µν + 1√
2
εα Da,

δDa = i√
2

`
ε†σµ∇µλa −∇µλ†aσµε

´
.
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The auxiliary field Da is again needed so that the SUSY algebra closes on-shell.

Counting fermion and boson degrees of freedom on-shell and off-shell:

Aµ λ D

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 3 4 1

To make a gauge-invariant supersymmetric Lagrangian involving both gauge and

chiral supermultiplets, one must turn the ordinary derivatives into covariant ones:

∂µφi → ∇µφi = ∂µφi + igAa
µ(T aφ)i

∂µψi → ∇µψi = ∂µψi + igAa
µ(T aψ)i

One must also add three new terms to the Lagrangian:

L = Lgauge + Lchiral −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ)

+g(φ∗T aφ)Da.

You can check (after some algebra) that this full Lagrangian is now invariant under

both SUSY transformations and gauge transformations.
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The part of the Lagrangian involving the auxiliary fields Da is:

L = 1
2DaDa + g(φ∗T aφ)

So the Da obey purely algebraic equations of motion Da = −g(φ∗T aφ), and

so can be eliminated from the theory. The resulting scalar potential is:

V (φi, φ
∗i) = F ∗iFi + 1

2DaDa

= W ∗
i W i + 1

2

∑
a

g2
a(φ

∗T aφ)2

The two types of contributions to the scalar potential are called “F-term” and

“D-term”. Note:

• Since V is a sum of squares, it is automatically ≥ 0.

• The scalar potential in SUSY theories is completely determined by the

fermion masses, Yukawa couplings, and gauge couplings.

But both of these statements will be modified when we break SUSY.
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Supersymmetric gauge interactions

The following interactions are dictated by ordinary gauge invariance alone:

φ φ∗ φ φ∗ ψ ψ† λ λ†

There are also interactions that have gauge coupling strength, but are not gauge

interactions in the usual sense:

ψi

λa

φ∗j

−i
√

2ga(T a)i
j

λ†a

φi ψ†j

−i
√

2ga(T a)i
j

φi φj

φ∗k φ∗�

−ig2
a(T ak

i T a�
j +T a�

i T ak
j )

These interactions have the greatest impact in producing SUSY events at

colliders. Experimental measurements of the magnitudes of these

couplings will provide an important test that we really have SUSY.
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Soft SUSY-breaking Lagrangians

It has been shown rigorously that the quadratic sensitivity to MUV does not arise

in SUSY theories with these terms added in:

Lsoft = −1
2

(Ma λaλa + c.c.)− (m2)i
jφ

∗jφi

−(
1
2
bijφiφj + 1

6
aijkφiφjφk + c.c.

)
,

They consist of:

• gaugino masses Ma,

• scalar (mass)2 terms (m2)j
i and bij ,

• (scalar)3 couplings aijk
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As long as the theory does not have gauge-singlet chiral supermultiplets, one can

also include:

Lmaybe soft = −1
2cjk

i φ∗iφjφk + c.c.

Technically, the MSSM allows such terms as soft; however, they turn out to be

completely negligible in known models of spontaneous SUSY breaking.

One might also wonder why we have not included possible soft mass terms for

the chiral supermultiplet fermions, like L = 1
2
mijψiψj + c.c. They would be

redundant; they can always be absorbed into a redefinition of the superpotential

and the terms (m2)j
i and cjk

i .
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How to make a realistic SUSY Model:

• Choose a gauge symmetry group.

(In the MSSM, this is already done: SU(3)C × SU(2)L × U(1)Y .)

• Choose a superpotential W ; must be invariant under the gauge symmetry.

(In the MSSM, this is almost already done: Yukawa couplings are dictated by

the observed fermion masses.)

• Choose a soft SUSY-breaking Lagrangian, or else choose a method for

spontaneous SUSY breakdown.

(This is where almost all of the arbitrariness in the MSSM is.)

Let’s do this for the MSSM now, and then explore the consequences.

52



The Superpotential for the Minimal SUSY Standard Model:

WMSSM = ˜̄uyuQ̃Hu − ˜̄dydQ̃Hd − ˜̄eyeL̃Hd + µHuHd

The objects Hu, Hd, Q̃, L̃, ˜̄u, ˜̄d, ˜̄e appearing here are the scalar fields

appearing in the left-handed chiral supermultiplets. Recall that ū, d̄, ē are the

conjugates of the right-handed parts of the quark and lepton fields.

The dimensionless Yukawa couplings yu, yd and ye are 3× 3 matrices in family

space. Up to a normalization, and higher-order quantum corrections, they are the

same as in the Standard Model. (All gauge and family indices are suppressed.)

Note that, as promised earlier, we need both Hu and Hd, because terms like

˜̄uyuQ̃H∗
d and ˜̄dydQ̃H∗

u are not allowed in the superpotential, since they are

not analytic.

53

In the approximation that only the t, b, τ Yukawa couplings are included:

yu ≈

0BB@
0 0 0

0 0 0

0 0 yt

1CCA ; yd ≈

0BB@
0 0 0

0 0 0

0 0 yb

1CCA ; ye ≈

0BB@
0 0 0

0 0 0

0 0 yτ

1CCA
the superpotential becomes

WMSSM ≈ yt(t̄tH
0
u − t̄bH+

u )− yb(b̄tH
−
d − b̄bH0

d)

−yτ (τ̄ ντH−
d − τ̄ τH0

d) + µ(H+
u H−

d −H0
uH0

d)

Here the ˜ are omitted to reduce clutter, and Q3 = (t b); L3 = (ντ τ);

Hu = (H+
u H0

u); Hd = (H0
d H−

d ) ū3 = t̄; d̄3 = b̄; ē3 = τ̄ .

Note that the minus signs are arranged so that if the neutral Higgs scalars get

positive VEVs 〈H0
u〉 = vu and 〈H0

d〉 = vd, and the Yukawa couplings are

defined positive, then the fermion masses are also positive:

mt = ytvu; mb = ybvd; mτ = yτvd.
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The Soft SUSY-breaking Lagrangian for the MSSM

LMSSM
soft = −1

2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃

)
+ c.c.

−(˜̄uau Q̃Hu − ˜̄dad Q̃Hd − ˜̄eae L̃Hd

)
+ c.c.

−Q̃† m2

Q̃
Q̃− L̃† m2

L̃
L̃− ˜̄um2

˜̄u
˜̄u† − ˜̄dm2

˜̄d

˜̄d†
− ˜̄em2

˜̄e
˜̄e†

−m2
Hu

H∗
uHu −m2

Hd
H∗

dHd − (bHuHd + c.c.) .

The first line gives masses to the MSSM gauginos (gluino g̃, winos W̃ , bino B̃).

The second line consists of (scalar)3 interactions.

The third line is (mass)2 terms for the squarks and sleptons.

The last line is Higgs (mass)2 terms.

If SUSY is to solve the Hierarchy Problem, we expect:

M1, M2, M3, au, ad, ae ∼ msoft;

m2

Q̃
, m2

L̃
, m2

˜̄u
, m2

˜̄d
, m2

˜̄e
, m2

Hu
, m2

Hd
, b ∼ m2

soft

where msoft <∼ 1 TeV.
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The squark and slepton squared masses and (scalar)3 couplings are 3× 3

matrices in family space. The soft SUSY-breaking Lagrangian of the MSSM

contains 105 new parameters not found in the Standard Model.

Most of what we do not already know about SUSY is expressed

by the question: “How is supersymmetry broken?”

Many proposals exist. None are completely convincing.

The question can be answered experimentally by discovering the pattern of Higgs

and squark and slepton and gaugino masses, because they are the main terms in

the SUSY-breaking Lagrangian.
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Actually, the most general possible superpotential would also include:

W∆L=1 = 1
2
λijkLiLj ēk + λ′

ijkLiQj d̄k + µ′
iLiHu

W∆B=1 = 1
2
λ′′

ijkūid̄j d̄k

These violate lepton number (∆L = 1) or baryon number (∆B = 1).

If both types of couplings were present,

and of order 1, then the proton would

decay in a tiny fraction of a second

through diagrams like this: uR

uR

dR s̃∗
R

p+

{
}

π+

νe

uR

d∗
L

ν∗
e

λ′′∗
112 λ′

112

Many other proton decay modes, and other experimental limits on B and L

violation, give strong constraints on these terms in the superpotential.

One cannot simply require B and L conservation, since they are already known

to be violated by non-perturbative electroweak effects. Instead, in the MSSM, one

postulates a new discrete symmetry called Matter Parity, also known as R-parity.
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Matter parity is a multiplicatively conserved quantum number defined as:

PM = (−1)3(B−L)

for each particle in the theory. All quark and lepton supermultiplets carry

PM = −1, and the Higgs and gauge supermultiplets carry PM = +1. This

eliminates all of the dangerous ∆L = 1 and ∆B = 1 terms from the

superpotential, saving the proton.

R-parity is defined for each particle with spin S by:

PR = (−1)3(B−L)+2S

This is exactly equivalent to matter parity, because the product of (−1)2S is

always +1 for any interaction vertex that conserves angular momentum.

However, particle within the same supermultiplet do not carry the same R-parity.

You can check that all of the known Standard Model particles and the Higgs

scalar bosons carry PR = +1, while all of the squarks and sleptons and

higgsinos and gauginos carry PR = −1.
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Consequences of R-parity

The particles with odd R-parity (PR = −1) are the “supersymmetric particles” or

“sparticles”.

Every interaction vertex in the theory must contain an even number of PR = −1

sparticles. Three extremely important consequences:

• The lightest sparticle with PR = −1, called the “Lightest Supersymmetric

Particle” or LSP, must be absolutely stable. If the LSP is electrically neutral, it

interacts only weakly with ordinary matter, and so can make an attractive

candidate for the non-baryonic dark matter required by cosmology.

• In collider experiments, sparticles can only be produced in even numbers

(usually two-at-a-time).

• Each sparticle other than the LSP must eventually decay into a state that

contains an odd number of LSPs (usually just one). The LSP escapes the

detector, with a missing momentum signature.
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Where does R-parity come from?

One way that matter parity could arise is as a surviving subgroup of a continuous

gauge symmetry. For example, if U(1)B−L symmetry is gauged, and then

broken at very high energy by a VEV of some field that carried an even integer

value of 3(B − L), then matter parity will automatically be an exact symmetry of

the MSSM.

For our purposes, the MSSM is defined to conserve R-parity.

(However, there are alternatives to R-parity, for example baryon triality, a Z3

discrete symmetry:

ZB
3 = e2πi(B−2Y )/3

If ZB
3 is multiplicatively conserved, then the proton is absolutely stable, but the

LSP is not.)
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Electroweak symmetry breaking and the Higgs bosons

There are two complex Higgs scalar doublets, (H+
u , H0

u) and (H0
d , H−

d ), rather

than one in the Standard Model. The classical scalar potential is:

V = (|µ|2 + m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 + m2
Hd

)(|H0
d |2 + |H−

d |2)
+ b (H+

u H−
d − H0

uH0
d) + c.c.

+ 1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2

+ 1

2
g2|H+

u H0∗
d + H0

uH−∗
d |2.

The |µ|2 parts come from the F -terms. The g2 and g′2 parts come from the

D-terms. The other terms come from the soft SUSY-breaking Lagrangian.

We must now minimize this potential, and show that it is compatible with the

known electroweak symmetry breaking.

First, the freedom to do SU(2)L gauge transformations allows us to take

H+
u = 0 at the minimum without loss of generality. Then one can show that

∂V/∂H+
u = 0 also requires H−

d = 0. So, at the minimum of the potential,

U(1)EM will be unbroken, as required. We are left with. . .
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V = (|µ|2 + m2
Hu

)|H0
u|2 + (|µ|2 + m2

Hd
)|H0

d |2 − (bH0
uH0

d + c.c.)

+ 1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2.

A redefinition of the phase of H0
u can absorb any phase in b, so take it real and

positive. This implies that at the minimum, H0
uH0

d is also real and positive, so

H0
u and H0

d have opposite phases. Since they have opposite weak hypercharges

(±1
2

), a U(1)Y gauge rotation can make them both real and positive at the

minimum, without loss of generality.

Must require that H0
u = H0

d = 0 is not the minimum. Then:

b2 > (|µ|2 + m2
Hu

)(|µ|2 + m2
Hd

).

Also, we need the potential to be bounded from below. This requires:

2b < 2|µ|2 + m2
Hu

+ m2
Hd

.

If these conditions are met, typically with m2
Hu

< 0 in realistic models, then

spontaneous electroweak breaking SU(2)L × U(1)Y → U(1)EM occurs.
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The resulting Higgs VEVs can be parameterized:

vu = 〈H0
u〉, vd = 〈H0

d〉, where

v2
u + v2

d = v2 = 2m2
Z/(g2 + g′2) ≈ (174 GeV)2

tan β ≡ vu/vd.

The conditions for a minimum, from ∂V/∂H0
u = ∂V/∂H0

d = 0, are:

|µ|2 + m2
Hu

= b cotβ + (m2
Z/2) cos 2β

|µ|2 + m2
Hd

= b tan β − (m2
Z/2) cos 2β

These allow us to eliminate two parameters in favor of m2
Z and tanβ.

The quark and lepton masses are related to these VEVs by:

yt =
mt

v sin β
, yb =

mb

v cos β
, yτ =

mτ

v cos β
, etc.

If we want the Yukawa couplings to avoid getting non-perturbatively large up to

very high scales, we must have:

1.5 <∼ tan β <∼ 55
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“The µ Problem”

Solve for outputs mZ and tan β, using Lagrangian parameters as inputs:

tanβ = r +
√

r2 − 1

m2
Z =

m2
Hd
−m2

Hu√
1− 1/r2

− 2|µ|2 −m2
Hd
−m2

Hu

where

r = (2|µ|2 + m2
Hd

+ m2
Hu

)/2b.

Without miraculous cancellations, we expect that all of the (mass)2 parameters

appearing in these equations should be within an order of magnitude of m2
Z .

However, µ is a SUSY-respecting parameter appearing in the superpotential,

while m2
Hu

, m2
Hd

and b are SUSY-breaking parameters. Why should they be

comparable in size?
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Define mass-eigenstate Higgs bosons: h0, H0, A0, G0, H+, G+ by:„
H0

u

H0
d

«
=

„
vu

vd

«
+

1√
2

„
cos α sin α

− sinα cos α

«„
h0

H0

«
+

i√
2

„
sin β cosβ

− cosβ sinβ

«„
G0

A0

«
„

H+
u

H−∗
d

«
=

„
sinβ cos β

− cos β sin β

«„
G+

H+

«
Now, expand the potential to second order in these fields to obtain the masses:

m2
A0 = 2b/ sin 2β

m2
h0,H0 = 1

2

(
m2

A0 + m2
Z ∓

√
(m2

A0 + m2
Z)2 − 4m2

Zm2
A0 cos2 2β

)
,

m2
H± = m2

A0 + m2
W

The mixing angle α obeys tan 2α =
(

m2

A0+m2
Z

m2

A0−m2
Z

)
tan 2β, and is traditionally

chosen to be negative. The Goldstone bosons have mG0 = mG± = 0; they are

absorbed by the Z , W± bosons to give them masses, as in the Standard Model.
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Typical contour map of the Higgs potential in SUSY:
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The Standard Model-like Higgs boson h0 corresponds to oscillations along the

shallow direction with (H0
u − vu, H0

d − vd) ∝ (cos α,− sinα). At tree-level, it

is easy to show from above that the lightest Higgs scalar obeys:

mh0 < mZ .

This has been ruled out by LEP2. However, taking into account loop effects, mh0

can be considerably larger. Assuming that all superpartners are lighter than 1000

GeV, and that perturbation theory is valid up to MGUT, one finds:

mh0 <∼ 130 GeV

in the MSSM. By adding more supermultiplets, the bound increases to 150 GeV.

By not requiring that the theory stays perturbative, one can get up to 200 GeV.
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The decoupling limit for the Higgs bosons

If mA0 � mZ , then:

• h0 has the same couplings as would a Standard Model Higgs boson of the

same mass

• α ≈ β − π/2

• A0, H0, H± form an isospin doublet, and are much heavier than h0

Mass

h0

A0, H0

H±
Isospin doublet Higgs bosons

SM-like Higgs boson

Many models of SUSY breaking approximate this decoupling limit.
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Radiative corrections to the Higgs mass in SUSY:

m2
h0 = m2

Z cos2(2β) +
3

4π2
y2

t m2
t ln

(mt̃1
mt̃2

m2
t

)
+ . . .

h0
+

t

t

h0
+

t̃
h0

+
t̃

t̃

t

t

h0
g̃ + . . .

At tree-level: m2
Z pure electroweak

At one-loop: y2
t m2

t top Yukawa comes in

At two-loop: αSy2
t m2

t SUSYQCD comes in

At three-loop: α2
Sy2

t m2
t

At a future International Linear Collider, one might be able to measure mh0 to

within 50 MeV or better. This will require three-loop calculations to match theory

to experiment!
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Precision electroweak fits (slightly) favor a heavier top quark and a light Standard

Model Higgs boson

From global fit to LEP1, SLAC,

Tevatron measurements of

mW , mZ , GF , s2
eff , Γleptons,

∆αhadrons, αS

(K. Tobe, J. Wells, SPM 2005)

20 100 200 300 40050
Higgs mass [GeV]

0

5

10

χ2

mtop = 178.0 +- 4.3 GeV

mtop = 174.3 +- 5.1 GeV

α
S
=0.1172(20),   m

W
=80.426(34), Γ

l
=83.984(86), ∆α

had
=.02769(35),   s

2

eff
=.23150(16)

Theoretical uncertainties, and LEP2 measurements above
√

s = mZ , and

SUSY loops can affect this weakly, but don’t change the trend.
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Neutralinos

The neutral higgsinos (H̃0
u, H̃0

d ) and the neutral gauginos (B̃, W̃ 0) mix with

each other after electroweak symmetry breaking to form four neutralino fermion

states. In the gauge eigenstate basis ψ0
i = (B̃, W̃ 0, H̃0

d , H̃0
u) for

i = 1, 2, 3, 4, the neutralino mass terms in the Lagrangian are

Lneutralino mass = − 1

2
(ψ0)T

MÑψ0

MÑ =

0BBBBB@
M1 0 −g′vd/

√
2 g′vu/

√
2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ

g′vu/
√

2 −gvu/
√

2 −µ 0

1CCCCCA
The diagonal terms are just the gaugino masses in the soft SUSY-breaking

Lagrangian. The−µ entries can be traced back to the superpotential. The

off-diagonal terms come from the gaugino-Higgs-Higgsino interactions, and are

always less than mZ .
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The physical neutralino mass eigenstates Ñi (another popular notation is χ̃0
i ) are

obtained by diagonalizing the mass matrix with a unitary matrix.

Ñi = Nijψ
0
j ,

where

diag(mÑ1
, mÑ2

, mÑ3
, mÑ4

) = N∗MN−1,

with mÑ1
< mÑ2

< mÑ3
< mÑ4

.

In many models of SUSY breaking, one finds:

M1 ≈ 0.5M2 < |µ| and mZ 	 |µ|

where the “0.5” is really 5
3 tan2 θW . In that case, the lightest neutralino state Ñ1

is mostly bino, with mass nearly equal to M1.

The lightest neutralino fermion, Ñ1, is a likely candidate for the cold dark

matter that seems to be required by cosmology.
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Charginos

Similarly, the charged higgsinos H+
u , H−

d and the charged winos W+, W− mix

to form chargino fermion mass eigenstates.

Lchargino mass = −1
2 (ψ±)T M eCψ± + c.c.

where, in 2× 2 block form,

M eC =

(
0 XT

X 0

)
with X =

(
M2 gvu

gvd µ

)
The mass eigenstates C̃±

1,2 (many other sources use χ̃±
1,2) are related to the

gauge eigenstates by two unitary 2×2 matrices U and V according to(
C̃+

1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
;

(
C̃−

1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
.

Note that the mixing matrix for the positively charged left-handed fermions is

different from that for the negatively charged left-handed fermions.
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The chargino mixing matrices are chosen so that

U∗XV−1 =

(
m eC1

0

0 m eC2

)
,

with positive real entries m eCi
. In this case, one can solve for the tree-level mass2

eigenvalues in simple closed form:

m2eC1
, m2eC2

=
1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin 2β|2
]
.

In many models of SUSY breaking, one finds that M2 	 |µ|, so the lighter

chargino is mostly wino with mass close to M2, and the heavier is mostly

higgsino with mass close to |µ|.
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A typical mass hierarchy for the neutralinos and charginos, assuming mZ 	 |µ|
and M1 ≈ 0.5M2 < |µ|.

Ñ1

Ñ2 C̃1

C̃2
Ñ4

Ñ3

Mass

bino-like LSP

wino-like

higgsino-like

Although this is a very popular scenario, it is NOT guaranteed.
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The Gluino

The gluino is an SU(3)C color octet fermion, so it does not have the right

quantum numbers to mix with any other state. Therefore, at tree-level, its mass is

the same as the corresponding parameter in the soft SUSY-breaking Lagrangian:

Mg̃ = M3

However, the quantum corrections to this are quite large (again, because this is a

color octet!). If one calculates the one-loop pole mass of the gluino, one finds:

Mg̃ = M3(Q)
(
1 +

αs

4π

[
15 + 6 ln(Q/M3) +

∑
Aq̃

])
where Q is the renormalization scale, the sum is over all 12 squark multiplets, and

Aq̃ =

∫ 1

0

dx x ln
[
xm2eq/M2

3 + (1− x)m2
q/M

2
3 − x(1− x)− iε

]
.

This correction can be of order 5% to 25%, depending on the squark masses!

It tends to increase the gluino mass, compared to the tree-level prediction.
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Squarks and Sleptons

To treat these in complete generality, we would have to take into account arbitrary

mixing. So the mass eigenstates would be obtained by diagonalizing:

• a 6× 6 (mass)2 matrix for up-type squarks (ũL, c̃L, t̃L, ũR, c̃R, t̃R),

• a 6× 6 (mass)2 matrix for down-type squarks (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R),

• a 6× 6 (mass)2 matrix for charged sleptons (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R),

• a 3× 3 matrix for sneutrinos (ν̃e, ν̃µ, ν̃τ )

Fortunately, the general hypothesis of flavor-blind soft parameters predicts that

most of these mixing angles are very small.

The first- and second-family squarks and sleptons have negligible Yukawa

couplings, so they end up in 7 very nearly degenerate, unmixed pairs (ẽR, µ̃R),

(ν̃e, ν̃µ), (ẽL, µ̃L), (ũR, c̃R), (d̃R, s̃R), (ũL, c̃L), (d̃L, s̃L).
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For detailed predictions, one must take into account “D-term” corrections to the

mass2 of each scalar φ:

∆φ = (T3φg2 − Yφg′2)(v2
d − v2

u) = (T3φ − Qφ sin2 θW ) cos 2β m2
Z ,

where T3φ, Yφ, and Qφ are the third component of weak isospin, the weak

hypercharge, and the electric charge of φ.

Diagrammatically, these come from: φ φ

〈H0
u〉 〈H0

u〉

g2,g′2

+ φ φ

〈H0
d〉 〈H0

d〉

g2,g′2

This leads to model-independent sum rules

m2
ẽL
−m2

ν̃e
= m2

d̃L
−m2

ũL
= g2(v2

u − v2
d)/2 = − cos 2β m2

W .

Since cos 2β < 0 in the allowed range tan β > 1, it follows that mẽL
> mν̃e

and md̃L
> mũL

, with the magnitude of the splittings constrained by

electroweak symmetry breaking.
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For the third-family squarks and sleptons, there are additional effects proportional

the large Yukawa (yt, yb, yτ ) and soft (at, ab, aτ ) couplings. For the top quark,

we have corrections with the diagrammatic representations:

t̃L t̃R

〈H0
u〉

at
and

t̃L t̃R

〈H0
d〉

µyt
and

tL tL

〈H0
u〉 〈H0

u〉

y2
t

and
tR tR

〈H0
u〉 〈H0

u〉

y2
t

in addition to the D-term contributions. The first diagram comes directly from the

soft SUSY-breaking Lagrangian, and the others from the F -term contribution to

the scalar potential. So, in the (t̃L, t̃R) basis, the top squark mass2 matrix is:(
m2

Q̃3
+ m2

t + ∆t̃L
a∗

t vu − µytvd

atvu − µ∗ytvd m2
˜̄u3

+ m2
t + ∆t̃R

)
Therefore, the top-squark system has a significant mixing, with the off-diagonal

entries “repelling” the two mass2 eigenvalues.
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Diagonalizing the top squark mass2 matrix, one finds mass eigenstates:(
t̃1

t̃2

)
=

(
ct̃ −s∗

t̃

st̃ ct̃

)(
t̃L

t̃R

)
where m2

t̃1
< m2

t̃2
by convention, and |ct̃|2 + |st̃|2 = 1.

In a completely analogous way, there is a non-trivial mixing for the bottom squark

and tau slepton states:(
b̃1

b̃2

)
=

(
cb̃ −s∗

b̃

sb̃ cb̃

)(
b̃L

b̃R

)
;

(
τ̃1

τ̃2

)
=

(
cτ̃ −s∗τ̃
sτ̃ cτ̃

)(
τ̃L

τ̃R

)
The same sort of mixing occurs for the first- and second-family squarks and

sleptons, but is considered negligible because the Yukawa couplings are small,

and by the assumption of flavor-blindness, the relevant a-terms are also.
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The undiscovered particles in the MSSM:

Names Spin PR Mass Eigenstates Gauge Eigenstates

Higgs bosons 0 +1 h0 H0 A0 H± H0
u H0

d H+
u H−

d

ũL ũR d̃L d̃R “ ”

squarks 0 −1 s̃L s̃R c̃L c̃R “ ”

t̃1 t̃2 b̃1 b̃2 t̃L t̃R b̃L b̃R

ẽL ẽR ν̃e “ ”

sleptons 0 −1 µ̃L µ̃R ν̃µ “ ”

τ̃1 τ̃2 ν̃τ τ̃L τ̃R ν̃τ

neutralinos 1/2 −1 Ñ1 Ñ2 Ñ3 Ñ4 B̃0 W̃ 0 H̃0
u H̃0

d

charginos 1/2 −1 C̃±
1 C̃±

2 W̃± H̃+
u H̃−

d

gluino 1/2 −1 g̃ “ ”
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A sample mass spectrum for the MSSM

N1

N2 C1

N3, N4 C2

g

eR

νe, eL

µR

νµ, µL τ2, ντ

dR, uR

uL, dL

sR, cR

cL, sL

τ1

t1

b1

b2, t2

h0

A0, H0, H+

Mass

This may or may not look anything like the Real World. It incorporates,

qualitatively, some theoretical prejudices that are common to many different

models.

In the next lecture, we will explore various candidate ideas for how SUSY is

broken, and relate them to features of the SUSY spectrum.
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Lecture 3: Models of SUSY Breaking
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Hints of an Organizing Principle

Fortunately, we already know that the MSSM soft terms cannot be arbitrary,

because of experimental constraints on flavor violation.

For example, if there is a smuon-selectron mixing

(mass)2 term L = −m2
µ̃L ẽL

ẽLµ̃∗
L, and M̃ =

Max[mẽL
, mẽR

, M2], then by calculating this

one-loop diagram, one finds the decay width:

γ

e−µ−

eB,fW 0

eµ ee

µ− → e−γ

Γ(µ− → e−γ) = 5× 10−21 MeV
(m2

µ̃LẽL

M̃2

)2(100 GeV

M̃

)4

For comparison, the experimental limit is (from MEGA at LAMPF):

Γ(µ− → e−γ) < 3.6× 10−27 MeV.

So the amount of smuon-selectron mixing in the soft Lagrangian is limited by:(m2
µ̃LẽL

M̃2

)
< 10−3

( M̃

100 GeV

)2
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Another example: K0 ↔ K0 mixing.

Let L = −m2
d̃L s̃L

d̃Ls̃∗L be the flavor-violating

term, and M̃ = Max[md̃L
, ms̃L

, mg̃].

Comparing this diagram with ∆mK0 gives:

eg eg

d̃ s̃

s̃ d̃

d s

s d

K0 ↔ K0

m2
d̃L s̃L

M̃2
< 0.04

( M̃

500 GeV

)
The experimental values of ε and ε′/ε in the effective Hamiltonian for the

K0, K0 system also give strong constraints on the amount of d̃L, s̃L and

d̃R, s̃R mixing and CP violation in the soft terms.

Similarly:

The D0, D0 system constrains ũL, c̃L and ũR, c̃R soft SUSY-breaking mixing.

The B0
d, B0

d system constrains d̃L, b̃L and d̃R, b̃R soft SUSY-breaking mixing.

In general, the soft-SUSY breaking terms must be either very heavy, or

nearly flavor-blind, to avoid flavor-changing violating experimental limits.
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The Flavor-Preserving Minimal Supersymmetric Standard Model

Take an idealized limit in which in which the squark and slepton (mass)2 matrices

are flavor-blind, each proportional to the 3× 3 identity matrix in family space:

m2

Q̃
= m2

Q̃
1; m2

˜̄u
= m2

˜̄u1; m2
˜̄d

= m2
˜̄d
1; m2

L̃
= m2

L̃
1; m2

˜̄e
= m2

˜̄e1.

Then all squark and slepton mixing angles are rendered trivial, because squarks

and sleptons with the same electroweak quantum numbers will be degenerate in

mass and can be rotated into each other at will. Also assume:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye.

Also, assume no new CP-violating phases:

M1, M2, M3, Au0, Ad0, Ae0 = real

The Higgs mass parameters m2
Hu

and m2
Hd

are real, and µ and b can be

chosen real by convention.
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The Flavor-Preserving Minimal Supersymmetric Standard Model (continued)

The new parameters, besides those already found in the Standard Model, are:

• M1, M2, M3 (3 real gaugino masses and 3 signs)

• m2
Q̃

, m2
˜̄u

, m2
˜̄d
, m2

L̃
, m2

˜̄e
(5 squark and slepton mass2 parameters)

• Au0, Ad0, Ae0 (3 real scalar3 couplings and 3 signs)

• m2
Hu

, m2
Hd

, b, µ (4 real parameters)

So there are 15 real parameters and 6 signs in this model.

The parameters µ and b ≡ Bµ are often traded for the known Higgs VEV

v = 175 GeV, tanβ, and sign(µ).

Most viable SUSY breaking models are special cases of this.

However, these are Lagrangian parameters that run with the renormalization

scale, Q. Therefore, one must also choose an “input scale” Q0 where the

flavor-independence holds.
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What is the input scale Q0 ?

Perhaps:

• Q0 = MPlanck, or

• Q0 = Mstring, or

• Q0 = MGUT, or

• Q0 is some other scale associated with the type of SUSY breaking.

In any case, one can pick the SUSY-breaking parameters at Q0 as boundary

conditions, then run them down to the weak scale using their renormalization

group (RG) equations. Flavor violation will remain small, because the Yukawa

couplings of the first two families are small.

At the weak scale, use the renormalized parameters to predict physical masses,

decay rates, cross-sections, dark matter relic density, etc.
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A reason to be optimistic that this

program can succeed: the SUSY

unification of gauge couplings. The

measured α1, α2, α3 are run up to

high scales using the RG equations

of the Standard Model (dashed lines)

and the MSSM (solid lines). 2 4 6 8 10 12 14 16 18
Log10(Q/1 GeV)

0

10

20

30

40

50

60

α−1

α1

−1

α2

−1

α3

−1

At one-loop order, the RG equations are:

d

d(lnQ)
α−1

a = − ba

2π
(a = 1, 2, 3)

with bSM
a =(41/10,−19/6,−7) in the Standard Model, and bMSSM

a =(33/5,1,−3) in the

MSSM because of the extra particles in the loops. The results for the MSSM are

in agreement with unification at MGUT ≈ 2× 1016 GeV.

If this hint is real, we can reasonably hope that a similar extrapolation for

the soft SUSY-breaking parameters can also work.
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Origins of SUSY breaking

Up to now, we have simply put SUSY breaking into the MSSM explicitly.

To gain deeper understanding, let us consider how SUSY could be spontaneously

broken. This means that the Lagrangian is invariant under SUSY transformations,

but the ground state is not:

Qα|0〉 �= 0, Q†
α̇|0〉 �= 0.

The SUSY algebra tells us that the Hamiltonian is related to the SUSY charges by:

H = P 0 = 1

4
(Q1Q

†
1 + Q†

1Q1 + Q2Q
†
2 + Q†

2Q2).

Therefore, if SUSY is unbroken in the ground state, then H|0〉 = 0, so the

ground state energy is 0. Conversely, if SUSY is spontaneously broken, then the

ground state must have positive energy, since

〈0|H|0〉 = 1

4

“
‖Q†

1|0〉‖2 + ‖Q1|0〉‖2 + ‖Q†
2|0〉‖2 + ‖Q2|0〉‖2

”
> 0

To achieve spontaneous SUSY breaking, we need a theory in which the

prospective ground state |0〉 has positive energy.
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Recall that in SUSY, the potential energy

V =
∑

i

F ∗iFi + 1
2

∑
a

DaDa

is a sum of squared of auxiliary fields. So, for spontaneous SUSY breaking, one

must arrange that no state (or field configuration, classically) has all Fi = 0 and

all Da = 0.

Models of SUSY breaking where

• Fi �= 0 are called “O’Raifeartaigh models” or “F-term Breaking models”

• Da �= 0 are called “Fayet-Iliopoulis models” or “D-term breaking models”

Let us do a simple example of each.
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D-term breaking: the Fayet-Iliopoulis model

Suppose a U(1) gauge symmetry is present, with some scalar supermultiplets

carrying its charges. There is a supersymmetric and gauge-invariant term:

L = −κD

where κ is called the Fayet-Iliopoulis constant, and D is the auxiliary field for the

U(1) gauge supermultiplet. The part of the potential involving D is:

V = κD − 1

2
D2 − gD

X
i

qi|φi|2.

The qi are the U(1) charges of scalar fields φi. The equation of motion for D is:

D = κ − g
X

i

qi|φi|2.

Now suppose the φi have superpotential masses Mi. (Gauge invariance

requires that they come in pairs with opposite charges.) Then the potential will be:

V =
X

i

|Mi|2|φi|2 + 1

2
(κ − g

X
i

qi|φi|2)2.

Note that V = 0 is not possible for any φi. So SUSY must break. . .
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D-term breaking (continued)

V =
X

i

|Mi|2|φi|2 + 1

2
(κ − g

X
i

qi|φi|2)2.

If the superpotential masses are large enough (M2
i > gqiκ for each i), then the

minimum of the potential is at:

φi = 0, D = κ, V = 1

2
κ2

The scalar and fermion masses are not degenerate:

m2
φi

= M2
i − gqiκ

m2
ψi

= M2
i

This is a clear sign that SUSY has indeed been broken.

One might hope that the U(1)Y of the MSSM could get a D-term VEV to break

SUSY. Unfortunately, the MSSM squarks and sleptons do not have superpotential

masses, so they will just get VEVs in such a way as to make the DY = 0. This

would be horrible: SU(3)C and U(1)EM would be broken completely, but SUSY

would not be broken!
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More generally, D-term breaking for any U(1) turns out to have
great difficulty in giving acceptably large masses to gauginos. So
F -term breaking is usually considered more promising as the main

source of SUSY breaking. . .
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An important note about F -term breaking in general:

The idea: pick a set of n supermultiplets (φi, ψi, Fi) with i = 1, . . . , n, and a

superpotential W , in such a way that F ∗i = −∂W/∂φi = 0 have no

simultaneous solution. Then V =
∑

i |Fi|2 > 0.

If the superpotential is

W = Liφi + 1
2M ijφiφj + 1

6yijkφiφjφk,

then

F ∗i = −Li −M ijφj − 1
2yijkφjφk.

So at least one of the Li must be non-zero to break SUSY; otherwise we could

easily arrange V = 0 just by choosing all φi = 0. This W can only be

gauge-invariant if the corresponding φi is a gauge singlet.

Therefore, F -term breaking of SUSY requires a gauge-singlet chiral

supermultiplet as a necessary, but not sufficient, condition.

However, the gauge-singlet may consist of composite fields.

94



F -term breaking: the O’Raifeartaigh Model

The simplest example has n = 3 chiral supermultiplets, with φ1 the required

singlet, and:

W = −kφ1 + mφ2φ3 +
y

2
φ1φ

2
3

Then the auxiliary fields are:

F1 = k − y

2
φ∗2

3 , F2 = −mφ∗
3, F3 = −mφ∗

2 − yφ∗
1φ

∗
3.

The reason SUSY must be broken is that F1 = 0 and F2 = 0 are not

compatible. The minimum of this potential is at φ2 = φ3 = 0, with φ1 not

determined (classically). Quantum corrections fix the true minimum to be at

φ1 = 0. At the minimum:

F1 = k, V = k2 > 0.
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F -term breaking (continued)

If you assume m2 > yk and expand the scalar fields around the minimum at

φ1 = φ2 = φ3 = 0, you will find 6 real scalars with tree-level squared masses:

0, 0, m2, m2, m2 − yk, m2 + yk.

Meanwhile, there are 3 Weyl fermions with squared masses

0, m2, m2.

The fact that the fermions and scalars aren’t degenerate is a clear sign that SUSY

has indeed been spontaneously broken.

The 0 mass2 eigenvalues belong to the complex scalar φ1 and its superpartner

ψ1. The masslessness of φ1 corresponds to the flat direction of the classical

potential. It is lifted by quantum corrections at one loop, resulting in:

m2
φ1

=
y4k2

48π2m2
.

However, ψ1 remains exactly massless, even including loop effects. Why?
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The Goldstino (G̃)

In general, the spontaneous breaking of a global symmetry gives rise to a

massless Nambu-Goldstone mode with the same quantum numbers as the

broken symmetry generator. Here, the broken generator is the fermionic charge

Qα, so the Nambu-Goldstone particle must be a massless, neutral, Weyl fermion,

called the Goldstino. It is always the fermion that lives in the same supermultiplet

with the auxiliary field that got a VEV to break SUSY.

After SUSY breaking, you can show using Noether’s Theorem that the Goldstino

has an effective Lagrangian of the form (assuming F -term breaking for simplicity):

LGoldstino = −iG̃†σµ∂µG̃− 1

〈F 〉(G̃∂µJµ + c.c.)

where Jµ is the fermionic supercurrent, and contains products of all of the fields

and their superpartners.
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The Goldstino therefore has derivatively coupled interactions with every

particle-sparticle pair:

ψ

φ

G̃

p′

p

Fermion-Scalar-Goldstino couplings

− i
〈F 〉 (p′ ·σ)(p·σ)

λ

Aµ

G̃

Vector-Gaugino-Goldstino couplings

p′

p

− i
2
√

2〈F 〉 (p′ ·σσµ−σµp′ ·σ)(p·σ)

Note these both grow with 1
〈F 〉 , so they are more important if the mass scale of

SUSY breaking is smaller. (More on this later.)

The interactions are well-defined in the 〈F 〉 → 0 limit, because the derivatives in

the numerator combine to give factors like m2
φ −m2

ψ and m2
A −m2

λ on-shell,

and these also vanish in the limit that there is no SUSY breaking.
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The Goldstino is a consequence of spontaneously breaking global SUSY.

Including gravity, SUSY becomes a local symmetry. The spinor εα used to define

the SUSY transformations is no longer constant.

The resulting locally supersymmetric theory is supergravity. In unbroken

supergravity, the graviton has a massless spin-3
2 partner (with only helicities ±3

2 )

called the gravitino, with odd R-parity (PR = −1).

When local SUSY is spontaneously broken, the gravitino absorbs the would-be

massless Goldstino as its helicity±1
2 components, and acquires a mass:

m3/2 ∼ 〈F 〉
MPlanck

This follows by dimensional analysis, since m3/2 must vanish if SUSY-breaking is

turned off (〈F 〉 → 0) or gravity is turned off (MPlanck →∞). The gravitino

inherits the couplings of the Goldstino it has eaten.
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Spontaneous Breaking of SUSY requires us to extend the MSSM

• D-term breaking using U(1)Y can’t work

• There is no gauge-singlet chiral supermultiplet in the MSSM that could get a

non-zero F -term VEV.

Even if there were such an 〈F 〉, there is another general obstacle. Gaugino

masses cannot arise in a renormalizable SUSY theory at tree-level. This is

because SUSY does not contain any (gaugino)-(gaugino)-(scalar) coupling that

could turn into a gaugino mass term when the scalar gets a VEV.

We also have the clue that SUSY breaking must be essentially flavor-blind in

order to not conflict with experiment.

This leads to the following general schematic picture of SUSY breaking. . .
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The MSSM soft SUSY-breaking terms arise indirectly or radiatively, not from

tree-level renormalizable couplings directly to the SUSY-breaking sector.

(Hidden sector)
(Visible sector)

Supersymmetry
breaking origin

     MSSMFlavor-blind

interactions

Spontaneous SUSY breaking occurs in a “hidden sector” of particles with no

(or tiny) direct couplings to the “visible sector” chiral supermultiplets of the MSSM.

However, the two sectors do share some mediating interactions that transmit

SUSY-breaking effects indirectly. As a bonus, if the mediating interactions are

flavor-blind, then the soft SUSY-breaking terms of the MSSM will be also.

There are two obvious guesses for the flavor-blind interactions: gravitational and

the ordinary gauge interactions.
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Planck-scale Mediated SUSY Breaking (also known as “gravity mediation”)

The idea: SUSY breaking is transmitted from a hidden sector to the MSSM by the

new interactions, including gravity, that enter near the Planck mass scale MP .

If SUSY is broken in the hidden sector by some VEV 〈F 〉, then the MSSM soft

terms should be of order:

msoft ∼ 〈F 〉
MP

This follows from dimensional analysis, since msoft must vanish in the limit that

SUSY breaking is turned off (〈F 〉 → 0) and in the limit that gravity becomes

irrelevant (MP →∞).

Since we know msoft ∼ few hundred GeV, and MP ∼ 2.4× 1018 GeV:√
〈F 〉 ∼ 1011 or 1012 GeV
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Planck-scale Mediated SUSY Breaking (continued)

Write down an effective field theory non-renormalizable Lagrangian that couples

F to the MSSM scalar fields φi and gauginos λa:

LPMSB = −
( fa

2MP
Fλaλa + c.c.

)
− kj

i

M2
P

FF ∗φiφ
∗j

−
( αijk

6MP
Fφiφjφk +

βij

2MP
Fφiφj + c.c.

)
This is (part of) a fully supersymmetric Lagrangian that arises in supergravity, but

it could have other origins too. When we replace F by its VEV 〈F 〉, we get

exactly the soft SUSY-breaking Lagrangian of lecture 2, with:

• Gaugino masses: Ma = fa〈F 〉/MP

• Scalar squared massed: (m2)j
i = kj

i |〈F 〉|2/M2
P and bij = βij〈F 〉/MP

• Scalar3 couplings aijk = αijk〈F 〉/MP

Unfortunately, it is not obvious that these are flavor-blind!

103

A dramatic simplification occurs if one assumes a “minimal” form for the kinetic

terms and gauge interactions in the underlying supergravity theory. (Whether this

assumption is reasonable or not remains controversial.)

This means fa = f for all gauge interactions, kj
i = kδj

i for all scalar fields, and

αijk = αyijk and βij = βM ij . Then all of the MSSM soft terms can be

written in terms of just four parameters:

• A common gaugino mass: m1/2 = f 〈F 〉
MP

• A common scalar squared mass: m2
0 = k |〈F 〉|2

M2
P

• A scalar3 coupling prefactor: A0 = α 〈F 〉
MP

• A scalar mass2 prefactor B0 = β 〈F 〉
MP

This simplified parameter space is often called “Minimal Supergravity” or

“mSUGRA”.
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The “mSUGRA” parameter space

In terms of the four parameters m1/2, m2
0, A0, and B0:

M3 = M2 = M1 = m1/2

m2

Q̃
= m2

˜̄u
= m2

˜̄d
= m2

L̃
= m2

˜̄e
= m2

0 1

m2
Hu

= m2
Hd

= m2
0

au = A0yu, ad = A0yd, ae = A0ye

b = B0µ.

These values of the soft terms should probably be taken at the renormalization

scale Q0 = MP , and then run down to the weak scale. However, it is traditional

to use Q0 = MGUT instead, because nobody has any idea how to extrapolate

above MGUT! Part, but not all, of the error incurred in doing so can be

reabsorbed into the definitions of m1/2, m2
0, A0, and B0.
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Some particular models can be even more predictive, in principle:

• Dilaton-dominated: m2
0 = m2

3/2, m1/2 = −A0 =
√

3m3/2

• Polonyi: m2
0 = m2

3/2, A0 = (3−√3)m3/2

• “No-scale” or “Gaugino mass dominated”: m1/2 � m0, A0

However, there is no clear theoretical reason why things should be so simple.

The modern viewpoint is to take m1/2, m2
0, A0, and B0 as crude, but

convenient, parameterizations of our ignorance of SUSY breaking.
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Renormalization Group Running for mSUGRA with m1/2 = 250 GeV,

m0 = 70 GeV, A0 = −300 GeV, tan β = 10, and sign(µ) = +1

Gaugino masses M1, M2, M3

Slepton masses (dashed=stau)

Squark masses (dashed=stop)

Higgs: (m2
Hu

+ µ2)1/2,

(m2
Hd

+ µ2)1/2

2 4 6 8 10 12 14 16 18
Log10(Q/1 GeV)
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sleptons
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Hd

Electroweak symmetry breaking occurs because m2
Hu

+ µ2 runs negative near

the electroweak scale. This is due directly to the large top quark Yukawa coupling.
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Here is the resulting sparticle mass spectrum:

h0

H0,A0

H±

Ñ1

Ñ2

Ñ3

Ñ4

C̃1

C̃2

g̃ d̃L,ũL

ũR,d̃R

ẽL

ẽR

ν̃e

t̃1

t̃2

b̃1

b̃2

τ̃1

τ̃2

ν̃τ

Mass

This is typical, qualitatively, of mSUGRA models with relatively large m1/2.

Notes: The Higgs sector is in the decoupling limit, with h0 near the LEP2 limit.

A neutralino is the LSP. The gluino is the heaviest sparticle. The lightest squark is

the top squark. The lightest slepton is the tau slepton.
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Gauge-Mediated SUSY Breaking (GMSB) models

The idea: SUSY breaking is transmitted from a hidden sector by the ordinary

SU(3)C × SU(2)L × U(1)Y gauge interactions. This makes them

automatically flavor-blind!

To do this, introduce new, heavy, chiral supermultiplets, called messengers,

which couple to 〈F 〉 and also to the MSSM gauge bosons and gauginos.

If the typical messenger particle masses are Mmess, the MSSM soft terms are:

msoft ∼ αa

4π

〈F 〉
Mmess

The αa/4π is a one-loop factor for diagrams involving gauge interactions. This

follows by dimensional analysis, since msoft must vanish as 〈F 〉 → 0, or as the

messengers become very heavy.

Note that
√〈F 〉 can be as low as 104 GeV, if Mmess is comparable.

This is much lower than in Planck-scale Mediated SUSY Breaking. Therefore,

these are also sometimes called “low-scale SUSY breaking” models.
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GMSB models typically predict that the gravitino (which has absorbed the

Goldstino) is the LSP. This is because, provided that Mmess 	MP ,

m3/2 ∼ 〈F 〉
MP

	 msoft ∼ αa

4π

〈F 〉
Mmess

In fact, m3/2 can be as low as 0.1 eV, for
√〈F 〉 ∼ 104 GeV.

The lightest of the MSSM superpartner states is often called the Next-to-Lightest

Supersymmetric Particle (NLSP).

The NLSP need not be neutral, since it can decay into its Standard Model partner

and the Goldstino/gravitino.
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Minimal Gauge-Mediated SUSY Breaking model

For a minimal model, take a set of new chiral supermultiplets q, q, �, � that

transform under SU(3)C × SU(2)L × U(1)Y as

q ∼ (3,1,−1

3
); q ∼ (3,1,

1

3
); � ∼ (1,2,

1

2
); � ∼ (1,2,−1

2
).

These supermultiplets contain messenger quarks ψq, ψq and scalar quarks q, q

and messenger leptons ψ�, ψ� and scalar leptons �, �. These particles must get

very large masses so as not to have been discovered already. They do so by

coupling to a gauge-singlet chiral supermultiplet S through a superpotential:

Wmess = y2S�� + y3Sqq.

The scalar component of S and its auxiliary field are both assumed to acquire

VEVs, denoted 〈S〉 and 〈FS〉 respectively.

Note that the chiral supermultiplet S might be composite, and 〈FS〉 �= 0 might

come from an O’Raifeartaigh model, or from some more complicated dynamical

mechanism. (We don’t need to know!)
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Minimal Gauge-Mediated SUSY Breaking model (continued)

The effect of SUSY breaking is to split the messenger masses:

�, � : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| ;
q, q : m2

fermions = |y3〈S〉|2 , m2
scalars = |y3〈S〉|2 ± |y3〈FS〉| .

The SUSY-breaking apparent here is transmitted

to the MSSM gauginos through one-loop graphs:

The results are

〈 S 〉

〈 FS 〉

B, W, g

Ma =
αa

4π
Λ, where Λ ≡ 〈FS〉

〈S〉 .

The MSSM gauge bosons do not get such a mass shift, since they are protected

by gauge invariance. So SUSY breaking has been successfully communicated to

the MSSM.

112



Minimal Gauge-Mediated SUSY Breaking model (continued)

The MSSM scalars do not get

any masses at 1-loop order,

but do at 2-loops from these

Feynman diagrams:

The result for each MSSM scalar φ can be written:

m2
φ = 2Λ2

h“α3

4π

”2

Cφ
3 +

“α2

4π

”2

Cφ
2 +

“α1

4π

”2

Cφ
1

i
, where

Cφ
3 =

j
4/3 for φ = eQi, ēui,

ēdi;

0 for φ = eLi, ēei, Hu, Hd

Cφ
2 =

j
3/4 for φ = eQi, eLi, Hu, Hd;

0 for φ = ēui,
ēdi, ēei

Cφ
1 = 3Y 2

φ /5 for each φ with weak hypercharge Yφ.

These squared masses are positive (fortunately!).
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The Minimal GMSB model can be generalized by putting N copies of the

messenger sector. The results then become:

Ma =
αa

4π
NΛ, (gauginos)

m2
φ = 2NΛ2

[(α3

4π

)2

Cφ
3 +

(α2

4π

)2

Cφ
2 +

(α1

4π

)2

Cφ
1

]
, (scalars)

The parameters of this model framework are just:

• N = number of messengers,

• Mmess = typical messenger mass scale,

• Λ = effective SUSY-breaking order parameter

• µ, or equivalently tan β and sign(µ)

These models can be further generalized by including more exotic messengers,

perhaps with widely varying masses.
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GMSB model predictions

The scalar3 terms au, ad, ae, arise first at two-loop order, and are suppressed

by an additional factor of αa/4π compared to gaugino masses. So it is an

excellent approximation to set them = 0.

Because gaugino masses arise at one loop, and scalar squared masses arise at

two loops, they are roughly comparable:

Ma, mφ ∼ α

4π
Λ.

However, note that the gaugino masses scale like N , while the scalar masses

scale like
√

N .

For N = 1, a bino-like neutralino will be the NLSP.

For N ≥ 2, a stau will be the NLSP.

The above predictions for gaugino and scalar masses hold at the renormalization

scale Q0 = Mmess. They must be run down to the electroweak scale. (This

generates non-zero au, ad, ae, and modifies the other predictions.)
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A sample sparticle mass spectrum for Minimal GMSB

with N = 1, Λ = 150 TeV, Mmess = 300 TeV, tanβ = 15, sign(µ) = +1

h0

H0,A0

H±

Ñ1

Ñ2

Ñ3

Ñ4

C̃1

C̃2

g̃

d̃L,ũL

ũR,d̃R

ẽL

ẽR

ν̃e

t̃1

t̃2
b̃1

b̃2

τ̃1

τ̃2

ν̃τ

Mass

The NLSP is a neutralino, which can decay to the nearly massless

Goldstino/gravitino by: Ñ1 → γG̃. This decay can be prompt, or with a

macroscopic decay length.
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A sample sparticle mass spectrum for non-minimal GMSB

with N = 3, Λ = 60 TeV, Mmess = 120 TeV, tanβ = 15, sign(µ) = +1

h0

H0,A0

H±

Ñ1

Ñ2

Ñ3

Ñ4

C̃1

C̃2

g̃ d̃L,ũL

ũR,d̃R

ẽL

ẽR

ν̃e

t̃1

t̃2
b̃1

b̃2

τ̃1

τ̃2

ν̃τ

Mass

The NLSP is a stau (µ̃R and ẽR are not much heavier). It can decay to the

nearly massless Goldstino/gravitino by: τ̃1 → τG̃. The decay could be

prompt, or with a macroscopic length.
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Extra-Dimensional Mediated SUSY Breaking

The Idea: Make the separation between hidden

sector and visible sector a physical distance, for

example along a hidden 5th dimension. The

MSSM field theory is confined to a 4d “brane”,

and SUSY is spontaneously broken on another,

parallel, 4d brane.

“the bulk”

R5

MSSM brane
(we live here)

Hidden brane
〈F 〉 �= 0

Provided that the distance between the branes is large, R5 � 1/MP , then dangerous

flavor-violating effects in the MSSM soft terms can be suppressed by factors of e−R5MP .

There are various sub-ideas to play with here, including:

• Only gravity propagates in the bulk (Anomaly-Mediated SUSY Breaking)

Randall, Sundrum; Giudice, Luty, Murayama, Ratazzi

• Gauge supermultiplets propagate in the bulk (Mirabelli,Peskin; Kaplan, Kribs,

Schmaltz; Chacko, Luty, Nelson, Ponton; . . . )

• SUSY broken by 5d boundary conditions (Scherk-Schwarz SUSY Breaking)
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Perhaps the most predictive scenario is:

Anomaly Mediated SUSY Breaking

The idea: assume that only gravity propagates in the bulk. Then all

SUSY-breaking effects are suppressed, except a contribution from the conformal

anomaly which is always present.

One can show that the resulting soft terms are given in terms of the

renormalization group quantities (beta functions and anomalous dimensions) as:

Ma = (βga
/ga)m3/2 (gaugino masses)

(m2)j
i = −1

2

dγj
i

d(lnQ)
m2

3/2 (scalar masses)

These are flavor-blind, to a good approximation, because they are dominated by

gauge couplings. Unfortunately, the MSSM sleptons are predicted to have

negative squared mass!
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Anomaly Mediated SUSY Breaking (continued)

Many fixes have been suggested to add positive contributions to the slepton

squared masses. Perhaps the simplest is to simply add a common m2
0 to each of

the scalar squared masses.

Then the parameters of the model are just

• m3/2 (AMSB SUSY breaking scale)

• m0 (ad hoc scalar squared mass)

• µ or equivalently, tanβ and sign(µ)

The most striking feature of the model is that the LSP is a wino-like neutralino.

Typically, the charged wino can just barely decay into it:

C̃+
1 → π+Ñ1

where the pion is extremely soft, and therefore difficult to detect.
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A sample sparticle mass spectrum for AMSB

(with m3/2 = 60 TeV, m0 = 450 GeV, tanβ = 10, sign(µ) = +1):

h0

H0,A0

H±

Ñ1

Ñ2

Ñ3

Ñ4

C̃1

C̃2

g̃
d̃L,ũL

ũR,d̃R

ẽL

ẽR

ν̃e

t̃1

t̃2

b̃1

b̃2

τ̃1

τ̃2

ν̃τ

Mass

The LSP is Ñ1, but with C̃1 only 160 MeV heavier. The sleptons are tightly

packed. Other sparticles are much heavier.
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Lecture 4: Signals for Supersymmetry

• Dark Matter

• Sparticle Decays

• LEP2 limits

• Tevatron pp collider

• LHC pp collider

• ILC e−e+ collider

• Special features of Gauge-Mediated SUSY Breaking
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The Lightest SUSY Particle as Cold Dark Matter

Recent results in experimental cosmology suggest the existence of cold dark

matter with a density:

ΩCDMh2 = 0.113± 0.009± 0.018 (WMAP 2003)

where h = Hubble constant in units of 100 km/(sec Mpc).

A stable particle which freezes out of thermal equilibrium will have Ωh2 = 0.113

today if its thermal-averaged annihilation cross-section is, roughly:

〈σv〉 = 1 pb

As a crude estimate, a weakly interacting particle that annihilates in collisions with

a characteristic mass scale M will have

〈σv〉 ∼ α2

M2
∼ 1 pb

(150 GeV

M

)2

So, a stable, weakly interacting particle with mass of order 100 GeV is a likely

candidate. In particular, a neutralino LSP (Ñ1) may do it, if R-parity is conserved.
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Contributions to the annihilation cross section 〈σv〉 for a neutralino LSP

To have a viable SUSY model with a Ñ1 LSP, it must not have too large a relic

density Ωh2, so 〈σv〉 must not be too small. Let us examine the main

contributions to the annihilation:

1) Annihilation through t-channel slepton and

squark exchange. (If sleptons are lighter, they

contribute more.) eN1

eN1

f̃

f

f̄

When Ñ1 is mostly bino, as in many mSUGRA models, the interaction vertices

are both
√

2g′Yf , and this is the dominant process. To be efficient enough, the

slepton masses (mẽR
, mµ̃R

, and mτ̃1
) must not be too large. In fact, for slepton

masses > 100 GeV that are not ruled out by LEP2, the cross-section is too

small, and so Ωh2 comes out much too large in most of parameter space.
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2) Annihilation through t-channel chargino

exchange. This relies on a non-zero higgsino

or wino content in Ñ1. eN1

eN1

C̃i

W+

W−

This diagram can provide sufficient annihilation of dark matter LSPs even if all

squarks and sleptons are heavy, but only if µ is small (called the “focus point”

region) or M2 is not much larger than M1.

3) Resonant annihilation through an

s-channel neutral Higgs boson. This

process is s-wave for the pseudo-scalar

Higgs A0, and is p-wave suppressed

for h0 and H0.

eN1

eN1

A0

f

f̄

This process can be very efficient near resonance, and is mainly important for

large tanβ >∼ 40, because the A0bb̄ coupling is proportional to mb tanβ.
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4) Co-annihilation of neutralinos with sleptons (or top squarks).

If one or more sleptons or squarks is only slightly heavier that Ñ1, then they will

coexist in thermal equilibrium in the early universe. This can increase the

efficiency of annihilation in Standard Model states, for example through

Ñ1f̃ → fγ and f̃ f̃ → ff :

f̃

Ñ1

f̃

f

γ f̃

f̃

Ñ1

f

f

This co-annihilation effect is usually only important if

(mf̃ −mÑ1
)/mÑ1

<∼ 1/20, so that significant numbers of f̃ can be in

thermal equilibrium with Ñ1.
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Direct Detection of Ñ1 Dark Matter LSPs

Neutralinos moving through a detector can recoil from nucleons:

q

Ñ1

h0,H0

Ñ1

q q

Ñ1

q̃
Ñ1

q

The suppression due to small quark Yukawa couplings in the first diagram can be

overcome by the coherent effect of many nucleons.

Typical recoil energies are only E ∼ 100 keV. The predicted event rates are very

low (a few per kilogram of detector per day, or less). This depends on the mixing

matrix of Ñ1, and also on the local density and velocity distribution of dark matter.

Several present and future experiments using germanium detectors and

scintillators will probe much, but not all, of the mSUGRA parameter space.
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Indirect detection of Dark Matter LSPs

Neutralino LSPs in the centers of the Sun and the Galaxy can annihilate to

Standard Model particles with high energies, which can then be seen directly or

indirectly.

Ñ1Ñ1 → e+e−, µ+µ−, τ+τ−, νν, qq̄

Ñ1Ñ1 → ZZ → fff ′f
′

Ñ1Ñ1 → W+W− → �+ν�−ν

For one promising example, νµ produced (either directly or indirectly) in Ñ1Ñ1

annihilation can travel to Earth and then undergo a charged current interaction

leading to detection of upward-going muons.

Present and future neutrino telescopes are indirect dark matter detectors.
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SUSY signatures at colliders

We will concentrate mostly on models with conserved R-parity and a neutralino

LSP dark matter candidate (Ñ1). Recall:

• The most important interactions for producing sparticles are gauge

interactions, and interactions related to gauge interactions by SUSY. Their

strength is known, up to mixing of sparticles.

• Two sparticles produced in each event, with opposite momenta.

• The LSPs are neutral and extremely weakly interacting, so they carry away

energy and momentum.

– At e+e− colliders, the total energy can be accounted for, so one sees

missing energy, /E.

– At hadron colliders, the component of the momentum along the beam is

unknown on an event-by-event basis, so only the energy component in

particles transverse to the beam is observable. So one sees “missing

transverse energy”, /ET .
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Sparticle Decays

1) Neutralino Decays

If R-parity is conserved and Ñ1 is the LSP, then it cannot decay. For the others,

the decays are of weak-interaction strength:

Ñi f̃

f̄ f

Ñ1 Ñi Z

Ñ1 f̄

f Ñi h0

Ñ1

b̄, τ+, ...

b, τ−, ...

In each case, the intermediate boson (squark or slepton f̃ , Z boson, or Higgs

boson h0) might be on-shell, if that two-body decay is kinematically allowed.

In general, the visible decays are either:

Ñi → qq̄Ñ1 (seen in detector as jj + /E)

Ñi → �+�−Ñ1 (seen in detector as �+�− + /E)

Some SUSY signals rely on leptons in the final state. This is more likely if sleptons

are relatively light. If Ñi → Ñ1h
0 is kinematically open, then it often dominates.

This is called the “spoiler mode”, because leptonic final states are rare.
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2) Chargino Decays

Charginos C̃i have decays of weak-interaction strength:

C̃±
i f̃

f̄ ′ f

Ñ1 C̃i W±

Ñ1 f̄ ′

f

In each case, the intermediate boson (squark or slepton f̃ , or W boson) might

be on-shell, if that two-body decay is kinematically allowed.

In general, the decays are either:

C̃±
i → qq̄′Ñ1 (seen in detector as jj + /E)

C̃±
i → �±νÑ1 (seen in detector as �± + /E)

Again, leptons in final state are more likely if sleptons are relatively light.

For both neutralinos and charginos, a relatively light, mixed τ̃1 can lead to

enhanced τ ’s in the final state. This is increasingly important for larger tanβ.

Tau identification may be a crucial limiting factor for experimental SUSY.
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3) Slepton Decays

When Ñ1 is the LSP and has a large bino content, the sleptons ẽR, µ̃R

(and often τ̃1 and τ̃2) prefer the direct two-body decays with strength proportional

to g′2:

�̃R

�

Ñ1

(seen in detector as �± + /E)

However, the left-handed sleptons ẽL, µ̃L, ν̃ have no coupling to the bino

component of Ñ1, so they often decay preferentially through Ñ2 or C̃1, which

have a large wino content, with strength proportional to g2:

�̃L

�

Ñ2 �̃±L

ν

C̃±
1 ν̃

�−

C̃+
1

with Ñ2 and C̃1 decaying as before.
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4) Squark Decays

If the decay q̃ → qg̃ is kinematically allowed, it will always dominate, because the

squark-quark-gluino vertex has QCD strength:

eq

q

g̃

Otherwise, right-handed squarks prefer to decay directly to a bino-like LSP, while

left-handed squarks prefer to decay to a wino-like C̃1 or Ñ2:

eqR

q

Ñ1 eqL

q′

C̃1 eqL

q

Ñ2

If a top squark is light, then the decays t̃1 → tg̃ and t̃1 → tÑ1 may not be

kinematically allowed, and it may decay only into charginos: t̃1 → bC̃1. If even

that is not allowed, it has only a suppressed flavor-changing decay: t̃1 → cÑ1.
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5) Gluino Decays

The gluino can only decay through squarks, either on-shell (if allowed) or virtual.

For example:

g̃ q̃R

q̄ q

Ñ1

jj + /E or tt̄ + /E

g̃ q̃L

q̄ q

Ñ2 f̃

f̄ f

Ñ1

jjjj + /E or tt̄jj + /E or

jj�+�− + /E

g̃ q̃L

q̄ q

C̃1 f̃

f̄ ′ f

Ñ1

jjjj + /E or tt̄jj + /E or

jj�± + /E

Because mt̃1
	 other squark masses, top quarks can appear in these decays.

The possible signatures of gluinos and squarks are typically numerous and

complicated because of these and other cascade decays.
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An important feature of gluino decays with one lepton:

g̃ q̃L

q̄ q

C̃±
1 ν̃

�± ν

Ñ1 g̃ q̃L

q̄ q

C̃±
1 �̃±

ν �±

Ñ1

In each case, g̃ → jj�± + /E, and the lepton has either charge with equal

probability. (The gluino does not “know” about electric charge.)

So, events with at least one gluino, and exactly one charged lepton in the final

state from each sparticle that was produced, will have probability 0.5 to have

same-charge leptons, and probability 0.5 to have opposite-charge leptons.

This is important at hadron collider, where Standard Model backgrounds with

same-charge leptons are much smaller.

(SUSY)→ �+�′+ + jets + /ET
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SUSY Limits from LEP2 e+e− collisions up to
√

s = 208 GeV

The CERN LEP2 collider had the capability of producing all sparticle-antisparticle

pairs, except for the gluino:

e+e− → �̃+�̃−, C̃+
1 C̃−

1 , Ñ1Ñ2, Ñ2Ñ2, γÑ1Ñ1, q̃q̃∗

Exclusions for charged sparticles are typically close to the kinematic limit, except

when mass difference are small. For example, at 95% CL:

mC̃1
> 103 GeV (mC̃1

−mÑ1
> 3 GeV or < 100 MeV)

mC̃1
> 92 GeV (any heavier than Ñ1)

and

mẽR
> 100 GeV (mẽR

−mÑ1
> 5 GeV)

See http://lepsusy.web.cern.ch/lepsusy/

for detailed results.
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LEP2 Searches for Higgs bosons

The most important constraints on SUSY parameter space come from searches

for the MSSM Higgs bosons at LEP2. The relevant processes include:

e−

e+

Z

h0

Z

∝ sin2(β − α)

e−

e+

Z

h0

A0

∝ cos2(β − α)

The first diagram is the same as for the Standard Model Higgs search in the

decoupling limit, where sin2(β − α) ≈ 1. Many SUSY models fall into this

category, and the LEP2 bound (nearly) applies:

mh0 > 114.4 GeV (95% CL)

General bounds in SUSY are much weaker, but “most” of parameter space in the

MSSM yields a Standard-Model-like lightest Higgs boson.
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Impact of the LEP2 bound on mh0

Recall that in the decoupling limit:

m2
h0 = m2

Z cos2(2β) +
3

4π2
y2

t m2
t ln

(mt̃1
mt̃2

m2
t

)
+ . . .

For cos(2β) ≈ 1, we therefore need, roughly:

√
mt̃1

mt̃2
>∼ 600 GeV.

This suggests a pessimistic attitude toward discovering squarks at the Tevatron.

However, there are many ways out. Enlargement of the Higgs sector, for example

by adding a singlet Higgs supermultiplet, can give positive contributions to m0
h.
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Tevatron Signals for SUSY in pp collisions at
√

s = 1.96 TeV
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Trilepton + /ET Signal at the Tevatron

This signal arises if one can produce a pair of wino-like sparticles

pp→ C̃±
1 Ñ2,

which then each decay leptonically with a significant branching fraction,

Ñ2 → �+�−Ñ1, C̃±
1 → �±νÑ1

With no hard jets in the event, and three identified leptons, the Standard Model

backgrounds are small. Here is a typical Feynman diagram for the whole event:

W+

u

d̄

C̃+
1

Ñ2

ν̃e

µ̃

Ñ1

Ñ1

µ−

ν

µ+

e+
pp̄→ �+�−�′± + /ET

Decays of C̃±
1 and Ñ2 through

virtual squarks and/or virtual h0

kill the signal. Decays through

Z , W hurt the signal. Decays

through sleptons, as shown,

help the signal.
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Latest Tevatron trilepton search results (from D∅ hep-ex/0504032;

CDF preliminary similar)
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This is for an mSUGRA-like model scenario. The greatest sensitivity comes when

0 < m�̃ −mÑ2
<∼ 20 GeV, with squarks much heavier. More data, better τ ID

will result in interesting explorations of SUSY parameter space.
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Multi-Jets + /ET at Tevatron

Another strategy: look for events with gluino-gluino, gluino-squark, and

squark-squark pair production:

pp → g̃g̃, g̃q̃, q̃q̃

followed by decays without leptons:

g̃ → qq̄ eN1, q̃ → q eN1

A typical Feynman diagram for the whole event:

g

u

ū

g̃

g̃

q̃R

q̃R

eN1

eN1

q

q

q̄

q̄ By vetoing isolated, energetic

leptons, the Standard Model

backgrounds with /ET from

W → �ν are reduced.

This is most likely to be a viable

signal for models that don’t fall

into the mSUGRA category, with

a relatively lighter gluino.
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Like-Charge Dileptons + /ET at Tevatron

Exploit the fact mentioned earlier that gluinos decay into leptons of either charge

with equal probability:

pp→ g̃g̃ → (jets) + �±�± + /ET .

Multi-b-jets + /ET at Tevatron

Produce gluons that decay into bottom quark and bottom squark:

pp→ g̃g̃ → (bb̃1)(b̄b̃
∗
1)→ (bb̄Ñ1)(bb̄Ñ1)→ (bb̄)(bb̄) + /ET .

Light Top Squarks at Tevatron

Top squarks with mt̃1
< Min[mÑ1

+ mb + mW , mC̃1
+ mb, mb + mν̃ ] have

only suppressed flavor-violating decays to charm:

pp→ t̃1t̃
∗
1 → (cÑ1)(c̄Ñ1)→ jj + /ET

These searches are ongoing. . .
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LHC Signals for SUSY in pp collisions at
√

s = 14 TeV
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The LHC is a gluon-gluon collider, to first approximation

The dominant production

cross-sections are:

pp→ g̃g̃, g̃q̃, q̃q̃

Event rates are very high.

Discovery signals can be

classified by the number

of leptons in the event.

Discovery reach extends

well beyond 1 TeV in both

gluino and squark masses.

Baer, Chen, Drees, Paige, Tata 1999
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A post-discovery measurement at the LHC: kinematic edge in Ñ2 decay

Combinations of sparticle masses can be measured at the LHC from observing

edges in kinematic distributions.

As one of many examples, consider all events leading to Ñ2 → ��̃→ �+�−Ñ1,

from all SUSY production sources. Theoretically, the distribution of the invariant

mass for the lepton pair should have this shape (see e.g. Atlas TDR):

Events/GeV

M��Mmax
��

with

Mmax
�� = mÑ2

„
1 − m2

�̃

m2

Ñ2

«1/2„
1 −

m2

Ñ1

m2

�̃

«1/2

To remove backgrounds, require events to have very large /ET , several hard jets,

and two energetic leptons.
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Also, the signal from Ñ2 decay has only same-flavor leptons. Therefore, one can

enhance the edge shape by subtracting events that pass the cuts, but with

opposite lepton flavors:

[e+e−] + [µ+µ−]− [e+µ−]− [µ+e−]

Also cuts /ET > 150 GeV and E�� > 100 GeV eliminate the tt̄ and Z-peak

backgrounds. CMS study, Chiorboli and Tricomi
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Gluino mass reconstruction at the LHC

The gluino mass can be reconstructed once the Ñ2 mass has been found from

the dilepton mass edge. For a particularly favorable case, consider decays

through b̃1, so that the gluino decay results in

g̃ → b̄b̃1 → bb̄Ñ2 → bb̄�+�−Ñ1

By selecting events close to the (now)

known dilepton edge, the impact of the

unknown Ñ1 momentum can be minimized.

Then one reconstructs the invariant mass

M(bb̄Ñ2),

and fits the resulting peak to a Monte Carlo

generated Gaussian.

(Here mg̃ = 595 GeV.)
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ATLAS study: Gjelsten, Hisano, Kawagoe,

Lytken, Miller, Nojiri, Osland, Polesello
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Here is another study, this time based on the decay (with no b-tagging):

g̃ → q̄q̃ → qq̄Ñ2 → qq̄�+�−Ñ1

Again, a peak is reconstructed

based on the invariant mass

M(jjÑ2), using the known

position of the dilepton edge

to minimize the effects of the

unknown Ñ1 momentum.
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A measurement of the gluino mass is crucial to a quantitative understanding of

SUSY breaking. This can only be obtained at the LHC.

However, kinematic measurements at the LHC are essentially determinations of

mass differences, with the unknown Ñ1 LSP mass used as an input to the fits.

The most accurate determination of absolute masses can be obtained at an

International Linear Collider.
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International Linear Collider Signals for SUSY in e+e− collisions
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Essential features of the e+e− collider environment for SUSY:

• All sparticles, except the gluino, can be produced in pairs up to nearly the

kinematic limits.

• Clean environment allows reconstruction of events, elimination of

backgrounds.

• Polarized beam allow signals and backgrounds to be turned on and off.

• Essentially all events can be recorded; no need for hadron-collider-style

triggers that might throw away unexpected interesting events.

• Possible site conveniently located near Northern Illinois University in beautiful

DeKalb IL, USA
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Slepton pair production in e−e+ collisions

The processes

e−e+ → ẽ−R ẽ+
R, ẽ−R ẽ+

L , ẽ−L ẽ+
R, ẽ−L ẽ+

L , µ̃−
Rµ̃+

R, µ̃−
Rµ̃+

L , µ̃−
L µ̃+

R, µ̃−
L µ̃+

L ,

τ̃−
1 τ̃+

1 , τ̃−
1 τ̃+

2 , τ̃−
2 τ̃+

1 , τ̃−
2 τ̃+

2

e−e+ → ν̃eν̃
∗
e , ν̃µν̃∗

µ, ν̃τ ν̃∗
τ ,

proceed by the following Feynman diagrams:

e+

e−

Ñi

ẽ−

ẽ+ e+

e−

γ,Z

�̃−

�̃+

e+

e−

C̃i

ν̃e

ν̃∗
e e+

e−

Z

ν̃e,µ,τ

ν̃∗
e,µ,τ

Only sleptons of the first family can be produced by the t-channel diagrams.
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Selectron separation using polarized beams

The t-channel neutralino exchange diagrams are dominant near threshold.

Separated into e− and e+ helicities, using the interactions that are dictated by

the SUSY Lagrangian:

e+
L

e−
R

B̃

ẽ−
R

ẽ+
R e+

R

e−
R

B̃

ẽ−
R

ẽ+
L

e+
L

e−
L

B̃

ẽ−
L

ẽ+
R e+

R

e−
L

B̃,W̃ 0

ẽ−
L

ẽ+
L

This allows a clean separation of the selectron masses, by using e− (and e+)

beams with known helicity. In the cases of pure e−Re+
R and e−Le+

L , the s-channel

diagrams do not contribute at all.
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Kinematic endpoints in slepton pair production

Right-handed sleptons can be produced in e−e+ collisions by the following

Feynman diagrams, followed by �̃±R → �±Ñ1:

e+

e−

Ñi

ẽ−
R

ẽ+
R e+

e−

γ,Z

�̃−
R

�̃+
R

Note that the first diagram is possible only for selectrons. Because the e−Ñ1ẽ
−
R

coupling is the “supersymmetrization” of the gauge interaction, it comes entirely

from the R helicity of the initial-state electron.

There is a background from e−e+ →W−W+, which can be reduced by using

polarized electron (and perhaps positron) beams: e−Re+
L → �−R�+

R. (This is not

so nice for ẽLẽL production.) There is also a SUSY background, from

e−e+ → Ñ2Ñ1 → (�+�−Ñ1)Ñ1.

Plotting the lepton energies allows masses to be determined:
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In theory, the lepton energy distribution should look like:

Events/GeV

E�E+E−

with

E± = 1

2

“
1 −

m2

Ñ1

m2

�̃R

”„ s

4
± m2

�̃R

«1/2

After including cuts and beam and detector effects

(H.-U. Martyn, LC note,
√

s = 400 GeV and 200 fb−1)

ẽ−R ẽ+
R µ̃−

Rµ̃+
R
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By measuring the two kinematic endpoints, the masses of the two particles

involved in the decay can be determined with very high accuracy.

One can also do threshold scans by tuning√
s, to observe the turn-on of production:

µ̃−
Rµ̃+

R, 10 fb−1 per point

(Freitas, Manteuffel, Zerwas 2004)

Determination of τ̃ masses is more difficult.
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Chargino and Neutralino Production at an e−e+ collider

The processes e−e+ → C̃+
i C̃−

j and e−e+ → ÑiÑj proceed through these

Feynman diagrams:

e+

e−

ν̃e

C̃−
i

C̃+
j e+

e−

γ,Z

C̃−
i

C̃+
j

e+

e−

ẽL, ẽR

Ñi

Ñj e+

e−

Z

Ñi

Ñj

Again, the relative strengths of these contributions can be dialed by changing the

polarization of the beams, taking advantage of the different couplings of ν̃e, ẽL

and ẽR to e−L , e−R , e+
R , and e+

L and the gaugino components of C̃i, Ñi. This is

dictated by the dimensionless part of the SUSY Lagrangian.
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Measurement of Ñ2 mass

Look for events in which both neutralinos decay leptonically:

e−Le+
R → Ñ2Ñ2 → (�+�−Ñ1)(�

′+�′−Ñ1)→ �+�−�′+�′− + /E

mÑ2
= 130.4 GeV,

mÑ1
= 71.9 GeV,√

s = 320 GeV,

160 fb −1,

TESLA TDR

Fit this to Monte Carlo, using the known Ñ1 mass.

A scan of
√

s near threshold can make the measurement more precise.
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Measurement of C̃1 mass

Look for events in which one chargino decays hadronically, the other leptonically:

e−Le+
R → C̃−

1 C̃+
1 → (qq̄′Ñ1)(�

±νÑ1)→ jj�± + /E

mC̃1
= 127.7 GeV,

mÑ1
= 71.9 GeV,√

s = 320 GeV,

160 fb −1,

TESLA TDR

Fit this to Monte Carlo, using the known Ñ1 mass.

A scan of
√

s near threshold can make the measurement more precise.
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Cross-sections can be very sensitive probes of SUSY parameters

Contours of σ(e−Re+ → C̃−
1 C̃+

1 ), in fb, as a function of M2 and µ, assuming

mSUGRA model with tan β = 4:
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What can we do with the mass precision obtained at LHC and ILC?

Test possible organizing principles of SUSY breaking!

A case study (Snowmass 2001 P3 working group):

See also Allanach, Blair, Kraml, Martyn, Polesello, Porod, Zerwas, hep-ph/0403133, and

earlier references therein, for similar work.
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Optimistic Assumptions:

2% uncertainty in Mgluino

1% uncertainty in Msquarks

0.5% uncertainty in Msleptons

1% uncertainty in αs

0% theoretical uncertainty (!)

Goal: improve this, both on theory side and experiment side
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NLSP decay in Gauge-Mediated SUSY Breaking

Recall that GMSB models have the special property that the LSP is a very light

Goldstino/gravitino (G̃). The Next-Lightest SUSY Particle (NLSP) can decay into

its Standard Model partner and G̃.

This can completely change the SUSY signals at colliders!

In general, the NSLP can have a decay length that is microscopic, comparable to

detector elements, or macroscopic:

Γ(NLSP → SM particle + G̃) = 2 × 10−3 κ

„
MNLSP

100 GeV

«5
 p

〈F〉
100 TeV

!−4

eV

where κ is a mixing matrix factor. If the NLSP has energy E in the lab frame, its

decay length will be:

d = 9.9 × 10−3 1

κ

“ E2

M2
NLSP

− 1
”1/2

„
MNLSP

100 GeV

«−5
 p

〈F 〉
100 TeV

!4

cm

which can be anywhere from sub-micron to kilometers, depending on 〈F 〉.
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Neutralino NLSP in Gauge-Mediated SUSY Breaking

If the NLSP is Ñ1, it can have decays: Ñ1 G̃

γ

There are three general possibilities:

1) If the Ñ1 decays are prompt, then every SUSY event will be tagged by two

additional energetic, isolated photons. There is still missing energy carried

away by the G̃. Standard Model backgrounds are very small, so it is relatively

easy to discover SUSY with the inclusive signal (X means “anything”)

X + γγ + /E.

2) If the Ñ1 decays are delayed, but still occur within the detector, then one can

look for photons that do not point back to the interaction vertex. This can be a

striking signal, depending on the experimental environment.

3) If the Ñ1 decays occur outside of the detector, then the signals are the same

as discussed earlier.
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Stau NLSP in Gauge-Mediated SUSY Breaking

If the NLSP is the lightest stau, τ̃1, then it can

have decays:
τ̃1 G̃

τ

1) If the τ̃1 decays are prompt, then every SUSY event will be tagged by two

energetic, isolated τ ’s.

2) If the τ̃1 decays occur outside of the detector, then one can look for slow, highly

ionizing tracks as they move through the detector. These may appear to be slow

“muons”, or they may be missed if the timing gates do not accommodate them.

They can be identified by their anomalously high ionization rate in the detector, or

by their long time-of-flight.
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Slepton co-NLSP in Gauge-Mediated SUSY Breaking

In GMSB models, τ̃1, ẽR, µ̃R can be nearly degenerate (to within less that

mτ = 1.8 GeV. In that case, SUSY particles will decay to final states involving

one of them, and they each act independently as the NLSP, with decays to G̃:

τ̃1 G̃

τ

ẽR G̃

e

µ̃R G̃

µ

1) If the NLSP decays are prompt, then every SUSY event will be tagged by two

energetic, isolated leptons (e, µ, τ ) with uncorrelated flavors, and often

uncorrelated charges.

2) If the NLSP decays occur outside of the detector, then one can look for slow,

highly ionizing tracks, just as for the stau NLSP case.
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A bold prediction: supersymmetry will be discovered in

this decade.

Perhaps this is not so bold. After all, almost half of the

particles have been found already!

A slightly bolder prediction: some feature of it will be

completely unexpected by (nearly) everyone.

Expect the unexpected!
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