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Outline

System of interest and SMM

Quantum spin tunneling and phase interference in Single-
Molecule Magnet(SMM)

Electronic transport in SMM

— Previous experimental work

— Electric Current: Fermi Golden Rule

— Electric conductance

— Tunneling probability of the SMM: two-level model
— Example: Fe8

Summary



Systems of Interest

Single
Molecule

Ferritin

Nano-particle
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Single Molecules

[Mn4],
Fe10 (S=0) Mn6 V6 (S=9/2+9/2)
(S=4+4) (S=1/2,3/2)



Quantum spin tunneling and phase interference(Mn12 and Fe8)

easy axis
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Electronic Transport in SMM

To study the electronic and magnetic properties of a SMM and eventually to

develop clectronic devices

STM-SMM-Metal bridge junction geometry
SNlIM
STM Tip (R) Metal(L) Q Metal(R)
(W)
SMM—>Q Q Q Q Q Q m
Metallic substrate (L) B/




Previous Work
[A. Cornia et al, Angew. Chem. (2003)]

Mn,,0,,(16-sulfanylhexadecanoate),,(H,0), : long hydrocarbon chain

O

Figure 3. Constant-current| STM image of Au-bound Mn,; clusters |(set-
point=>5 pA, bias= 1.3V, scan size — 100U nrm, scan rate — 3 HZ]. The
inset shows three isolated molecules (setpoint =10 pA, bias=0.28YV,
scan size = 30 nrm, scan rate = 3 Hz).
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— MATERTALS -
ATERIALS
Isolated Single-Molecule Magnets on the Surface
of a Polymeric Thin Film®**

By Daniel Ruiz-Molina, Marita Mas-Torreni, fordi Gomez,
Ana 1. Balana, Neus Domingo., Javier Tejada.,
Maria T. Marntinez, Concepcio Rovira, and Jaume Veciana®
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Fig. 2. AFM images of a thin nanccomposite filn, made from o polyearbonae
polvmeric matrix and the Mo complex, which has been treated with pure
CH-Cl o) Topographical wop-view image. by The corresponding 30F image of
the same area. ¢) Height profile at location marked L in (a) dp Height profile at
location nuirked 2 in (o)

Fig. 3) MEFM images of nmmocomposite thin flms treated with CH.Clyhexane
(L:1) (o T e - et i
magnetic tip, b ) Magnetic images of the same area after retracting the Llip by
30 .




What do we expect in the electronic devices?

H=H, +H, +H,,, +H, l

Metal(L) Q Metal(R)

Hp :kzspkcgkacpka (p:L,R)
o

H s :Hamiltonian of SMM

. - [J.A. Appelbaum, PRL,
H, = Z (TLRCKkaCRk'a + H-C')+ Z Z (JLRczkaGaBCRk’B S+ H'C') 1966; P.W. Anderson,
kk'or T ko k'B T PRL 1966 ]

Direct tunneling
between two
electrodes

Tunneling of electrons
scattered by the spin of

?

=) Electric current ILR :



Electric current from L. to R?

e The electric current can be computed using the Fermi golden rule.

e Study the very weak coupling limit so that the higher order process such as the

Kondo effect may be safely neglected.

« In this case, it 1s enough to compute the electric current up to the leading order.

[J.A. Appelbaum,

ILR — ez Pm Z Z WLkocm—)Rk'ﬁm'f(ng )[1 B f(ng' )] B (Lka‘m g Rk’Bm’) PRB 1967 ]

ka kP
W,,; :Transition rate from the state i to j

f(g) :Fermi-Dirac distribution function
P :Probability for the SMM to be in the state S, =m

m

Leading contribution to the transition rate:

W, = 2Z|GiH i) 8(E, - E,) [i,j={Lkam}, {Rk'Bm’}]

i—j B
Epkam = gpk + up + Em
K, : Chemical potential shift in the electrode p
E . :Energy of the state S, =m in the SMM

eV = U, — Uy :Source-drain bias voltage



Electric current from L to R?(cont’d)

Up to the second order in T, (7,5 )

ILRzzhi[yT+<S> ]V+ yJZP[ S+1 (mil)]
<[S(E, —E,. + eV)—§ (B, ~Epy V)

Yt (YJ ) = 47T2NLNR ‘TLR ‘2 QJ LR 2) :direct (spin-scattered) tunneling rate
<S§> = mesz c(e)=e/[l—exp(- Be)] L =1/k;T

Linear response conductance (GV <<[E, - Emil‘) [G-H Kim and TS Kim, PRL, 2004 ]

71 +7:8.(T)] n(e)=ds(e e

- Rt + 56+ )-m(m £ Dp(E, - E,)

Spin exchange tunneling reflects the dynamics of the QTM 1nside the SMM



Probability for the SMM to be in the state S =m?

The effective Hamiltonian for the SMM such as Fe&

Hyyy = -DS2 —gu,S,H, + E(S: -S2)+ C(S? +5* )-gu,S,H,

In the absence of transverse terms, the energy level of the state S, = m

E, =-Dm’-gu,H m

~N ~\
Resonant fields: H, = Hgﬁ) =MD /gu, ?
=  P_?
ol (t
n L2 )

The coupled 2S+1 differential eq. for a,(¢)




Probability for the SMM to be in the state S, =m? (cont’d)

. d 1
1Y v Z’CM = _[DOM2 + (hgo) + T)M]aM + EEO(qM—qu—laM—z + qM+1qMaM+2)
1

+ ECO(qM_lqM_qu_3qM_4aM_4 + qM+3qM+2qM+1qMaM+4)

1

+ EhXO(qM—laM—l + qMaM+1)

where — 10 £ M <10 for S =10

YM:hguBC/AzM 4 :gluBCt/AM
Qy =/(S-M)S+M +1)

D,=D/A,, E,=E/A, C,=C/A,

W =gu,H, /A, h® =guH /A, ~\ ~

Ay :Level splitting between —S and S-M




(GX) Fesd [F68 (tacn)6 O, (OH)12 ]8+

D=0294K E=0.047K H, =0.429 +ct

— 140 mT/s

C = —3.2X10_5K 0.5 —14 mTis

—2.8 mT/s

sample

c=0.14T /s

array of SQUIDs

I | T J ] 1
0 025 05 075 1 125
HoH(T)

i) —107<t<3x107 (@) 0.429 -1.4x10"° <H,(T)<0.429 +4.2x10"°

33 h ( DEC AXP6000 5/266)

(i) —10sec <t <10 sec ” -1.4T<H, <14T

33 x (SXIOS)z 1884 years !!



Two level approximation ?

We introduce two-level model between —S and S-M

- (10 - M
H _( (O )guBCt

Ay, /2
- A, /2

10gp et

A\ :Level splitting between —S and S-M

W ()= a_yy () —10)+ ay_,, ()10 - M)

lh a‘LIJe:ff (t)> — Heff
ot

Yo (t )>

. oa,, 1
1Y m 0-M - —(10 — M)TaIO—M +—a
0T 2
0
1Y A 10 =10ta_,, + —a,,_y
o1

SR
X))
0

(ex) tunneling between —10 and 8
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Two level approximation(cont’d)

When we start with a ground state S, = =S, the coefficient can be found analytically in the range of

field H,, < H, < H,,, by solving the differential equation.

M +1

™ Y /
\‘ ;f \‘ f-f
aS_M('c): MHF exp{—l(lit + A ﬂ —lxM—l[_ (1+i)w/ocM1:] “\ ff
A\ Yu X -8 <> — 5-M
D: parabolic
(2 S M ) cylinder function
o, =—+
2y
A2
Ay = M F. =exp|-2m\ . o= -2 |m
M4(2S-Mhgp e = oxpl ) O v
(S, = =10{a_y|* + (10 = M Yay_y, [
Then, the corresponding probabilities are represented as
M
. 2
Pg= hmt—m‘a—s (t)‘ = H F,
M-1
P, = hmt_m‘aS y t){ (1-F,) F,
j=0
Note that F,,and 1 - F,,denote the probabilities for an SMM not to and to transfer fromS, = -S to S-M

at the M-th resonant field.
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FIG. 2. Comparison between the average longitudinal spin value

of the two-level model (continuous curve) and the exact 21-level [RaSteHl and T38819 PRB: 64:
Hamiltonian (open cireles) around the antierossmg feld H.  (06441() (2001)]

=0.429 T. Crystal-held parameters are the same as n Fig. | except
C=—0.000058 K.

The two level approximation can reproduce quite well the results of the full diff. eq.



Electric conductance?

In the range of field H,, <H, <H,,,,, we can find

- Electric conductance at zero temp.

g,(M)= 2P, {m +[<s+1> m(m+)(E, ~E,.)}
+Z:nPS . :_.

Es

1 «—  two-level model

the probability for an SMM not to
transfer from S, =-S tos— M at
the M-th resonant field.

= X — et
SR R TCTSI Vi TS



Example: Fe8

Hoy =-DS2 —gu,S,H, + B(S2 -S2)+ C(S? +8*)-gu,S, H,

D =0.294 K E=0.047K C=-32x10"K H,=-H_ +ct

The tunnel splitting a,, is calculated for H, =0.1H, at the resonant field by
employing the numerical diagonalization.

MIH#T) Ak

il Ll (LGS

1 | (0.215 | (LOSG2

2 | 0.429 4.0
J | (LG43 8.5

4 | (L8855 515




Example: Fe8(cont’d)

2 2 grossessees :
G ="l +7,8,M)
- ) - M
aM)=s+gm) —  gM)=2[[F-M]]F
1=l j=0 =0

' " M=4
rraa] 1
31 c=0.014 =3 | -
c=0.08 h=2 ] 0.5 F
c=0.26 | i
E“ 2 @rrnnnnnns z,
*\_fm =
Tod
0.5 F
04, 03
1+ and 0.04K
M=1 1 . . . .
-1.2 -0.6 0 0.6 1.2
; ' HoH(T)
o0 02 04 06 08 10
Hz(T]

- Similar to the magnetization curve, the conductance 1s featured with the stepwise increase as a
function of magnetic field.



Example: Fe8(cont’d)

Conductance vs. the field sweeping speed

M

gS(M) — ZnPS—n
n=0
P, =lim,_|ag (t) =(-F, )ﬁ F. F, = exp| nAY
0 M 2(2S - M Ygp ¢

- The conductance g has the contribution &g g =MP, ,, from the Mth resonance and 1s
expected to have the maximum value at some value of c.

(a3
M 2hgu, \ 2S—M 1+Z Zizoi

g.(M)

1E5 1E4 1E3 001 01 1
c (T/sec)



Example: Molecular magnet Fe8(cont’d)

easy axis

- Conductance at the resonant field vs. transverse field

3
c=0.014 T|/sec
7 €10k
P C
= e |
I;m b=
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=
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® r
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0.oo .25 0.50 0.75 1.00 1.25 1.50 5
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Magnetic transverse field (T)

- Similar to the magnetization curve, the conductance at each resonant field oscillates with
almost the same period of ~0.4 T.

- Such oscillatory conductance faithfully reflects the structure of Ay as a function of H,

- The amplitude of oscillations depends sensitively on ¢



Summary

Transport in SMM on metallic surface

Two-level model and Fermi Golden Rule

Conductance: stepwise behavior as a function of longitudinal field
Oscillation in conductance as a function of transverse field

The effect of relaxation process

« Since all the transferred state S. =S-M (M =1,2,..) Jose the weight to the ground state, the value
of g, will rise stepwise with increasing field and might vanish in the end due to the relaxation
process

« Elapsed time between steps (< 0(10)) << relaxation time of magnetization (~ 0(10* )
Possible exchange anisotropy in spin-scattered tunneling
M
g™ =g +(a—1)z 11(2S+1—11)PS_n a = (JL /], )2
n=0
 When a>1, the conductance steps are more enhanced.
» For the case of a<l1, the steps are reduced.

Conductance at finite temperature





