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1 LC circuit example

Consider the LC circuit in Fig. 1, consisting of two inductors L; and Lo and two
capacitors Cy and Cs. The graph of the circuit is given in Fig. 2. A maximal
tree T’ of the graph is given by, for instance, I' = {C;}. The corresponding
co-tree (i.e., the branches which, when added to the tree, produce a loop) are
then given by Y= {Cg,Ll,LQ}.

Denote the currents and voltages corresponding to the elements by: i¢, and
ve, for C1;ic, and ve, for Cy; i, and vr, for Lq; i1, and v, for Ls. According
to standard network theory we can write

ir = Pis, wvs =—PTor, (1)

for some matrix P. That is, the currents in the tree can be expressed as linear
fuctions of the currents in the co-tree and, dually, the voltages in the co-tree can
be expressed as linear functions of the voltages in the tree. Kirchhoff’s current
law for the network in Fig. 1 yields

iy, +icy, —ir, +ir, =0. (2)

Alternatively, the incoming currents (note the orientation!) at each node of the
graph in Fig. 2 should sum to zero. Kirchhoff’s voltage laws yield

ve, —ve, =0, wvoy, +vp, =0, wve, —vg, =0. (3)

Alternatively, the voltages over every loop in the graph should sum to zero
(again, note the orientation). Now the currents and voltages can be written as
in Eq. (1):
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Figure 1: LC circuit.
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Figure 2: Graph of the circuit.
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and
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is the total electromagnetic energy in the circuit (the energy variables g¢, denote
the charge of the capacitor C; and ¢y, the flux of the inductor L;, i = 1,2).
The (general) circuit’s dynamics can be written as (cf. lecture 1)

0H/dgx 0 —-pPL -PL o0 gs
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In this example there are no inductors in the tree, hence ¢r is absent. Therefore,
we can eliminate the second row and the second column of the skew-symmetric
matrix in (8). The matrices Py; and Pjo are given by

P11 = —]., P12 = (]. —1) . (9)
The dynamics of the circuit can thus be written as
oH ;
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Hence,
Jii=0, Ji2=(1 0 0) (11)
and
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Eq. (10) can be written out to obtain
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This is a set of differential and algebraic equations. Eq. (13) is an algebraic
constraint, corresponding to the capacitor loop C;—Cs in the circuit, i.e., ve, —
ve, = 0. Egs. (15) and (16) imply that ¢r, + ¢, is a conserved quantity of the
system. This corresponds to the inductor loop Li—Ls, i.e., vy, +vg, = 0.
In order to find the canonical coordinates of the system, first define the
variables
y=22—Jnz; and z=uz, (17)

where 1 = (¢, ¢r) and z2 = (gr, ¢x). For this example this yields

Y1 =qc, + 4oy, Y2 =9L,, Y3 =PL,, 2 =qC,- (18)

In these coordinates the Hamiltonian becomes
: p—-2?7 22 ¥ 4
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and the system can be written as
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Canonical coordinates for the skew-symmetric matrix in (20) are
1 1
&=y, &= 5(?/2 -y3), &= §(y2 +y3), (21)
in which the Hamiltonian becomes
5 (L—2)?° 22 (&+&)? | (G—&)°
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In the canonical coordinates (&, z) the implicit Hamiltonian system takes the
canonical form

OH
&1 6—62, (23)
: OH
o = ~o6 (24)
£3 = 07 (25)
OH

Note that the canonical coordinates are related to the original energy variables
of the circuit by

51 =4gc; + 40, 52 = %(¢L1 - ¢L2)a €3 = %(¢L1 + ¢L2)a £ =dqc,- (27)



The system (23)—(26) is an implicit Hamiltonian system in canonical form.
The underlying geometric structure is that of a Dirac structure. One observes
that the system has conserved quantities (25) as well as algebraic constraints
(26). As such it combines properties of Poisson systems (i.e., (23)—(25)) and
pre-symplectic systems (i.e., (23),(24),(26)). The conserved quantity (25) corre-
sponds to the inductor loop L;—Ls in the circuit. The algebraic constraint (26)
corresponds to the capacitor loop C;—C5 in the circuit.

2 References

e Some interesting papers on the modeling of physical systems can be found
in the lecture notes by Peter Breedveld on

http://www-lar.deis.unibo.it/euron-geoplex-sumsch/lectures_1.html.

e Notes on Port-Hamiltonian systems modeling (including LC circuits) can
be found in the lecture notes by Arjan van der Schaft and Bernhard
Maschke on the website mentioned above.

e The modeling of LC circuits using Dirac structures, and its construction
such as used in this example, was first described in:

A M. Bloch and P.E. Crouch, Representations of Dirac structures on vec-
tor spaces and nonlinear LC circuits, In: H. Hermes, G. Ferraya, R. Gard-
ner and H. Sussmann, editors, Proc. of Symposia in Pure Mathematics,
Differential Geometry and Control Theory, vol. 64, pp. 103117, 1999.



