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Reduction is…

• Algebra: a procedure to pass to
the quotient in the Hamiltonian
category

• Geometry: a way to construct
new Poisson and symplectic
manifolds

• Applied dynamics: a systematic
method to eliminate variables
using symmetries and/or
conservation laws

• Theoretical dynamics: a way to
get intuition on the dynamical
behavior of symmetric systems

• Numerics: is it worth it?
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Example: The Weinstein-Moser
Theorem

•Weinstein-Moser: if d2h(m) > 0 then 1/2 dim M
periodic orbits at each neighboring energy level.

•Relative Weinstein-Moser (JPO (2003)): Rel-
ative periodic orbits around stable relative at
neighboring energy-momentum-isotropy levels

1

2

(
dim UK − dim(N(K)/K) − dim (N (K)/K)λ

)
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We will focus on
• Poisson and symplectic category

Leave aside
• Lagrangian side: different philosophy.
• Singular cotangent bundle reduction,

nonholonomic reduction, reduction of
Dirac manifolds and implicitly defined
Hamiltonian systems, Sasakian,
Kähler, hyperkähler, contact
manifolds….

References

• Look at review
• Symplectic: Marsden, Weinstein

(1974), Sjamaar, Lerman (1991)
• Poisson: Marsden, Ratiu (1986), JPO,

Ratiu (1998)
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Structure of the course

• Lecture I: Introduction.
Preliminaries on:

– Symmetries/group actions
– Poisson and symplectic

manifolds
• Lecture II: Poisson reduction.
• Lecture III: Momentum maps.

Normal forms.
• Lecture IV: Symplectic

reduction. Regular and singular.
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Symmetry/Group actions
Definition. M a manifold and G a Lie group.
A left action of G on M is a smooth mapping
Φ : G × M → M such that

(i) Φ(e, z) = z, for all z ∈ M and

(ii) Φ(g, Φ(h, z)) = Φ(gh, z) for all g, h ∈ G
and z ∈ M .

We will often write

g · z := Φ(g, z) := Φg(z) := Φz(g).

and

AG := {Φg | g ∈ G} ⊂ Diff(M ).

The triple (M, G, Φ) is called a G–space or a
G–manifold.

Examples of group actions.

•Translation and conjugation. The left
(right) translation Lg : G → G, (Rg)
h �→ gh, induces a left (right) action of G on
itself.
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•The inner automorphism ADg ≡ Ig :
G → G, given by Ig := Rg−1 ◦ Lg defines a
left action of G on itself called conjugation.

•Adjoint and coadjoint action. The dif-
ferential at the identity of the conjugation map-
ping defines a linear left action of G on g called
the adjoint representation of G on g

Adg := TeIg : g −→ g.

If Ad∗g : g∗ → g∗ is the dual of Adg, then the
map

Φ : G × g∗ −→ g∗

(g, ν) �−→ Ad∗
g−1 ν,

defines also a linear left action of G on g∗

called the coadjoint representation of G
on g∗.
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•Group representation. If the manifold
M is a vector space V and G acts linearly
on V , that is, Φg ∈ GL(V ) for all g ∈ G,
where GL(V ) denotes the group of all linear
automorphisms of V , then the action is said
to be a representation of G on V . For
example, the adjoint and coadjoint actions of
G defined above are representations.

•Tangent lifts of group actions. The map
Φ induces a natural action on the tangent bun-
dle TM of M by

g · vm := TmΦg · vm,

where g ∈ G and vm ∈ TmM .

•Cotangent lifts of group actions. Let
Φ : G×M → M be a smooth Lie group action
on the manifold M . The map Φ induces a
natural action on the cotangent bundle T ∗M
of M by

g · αm := T ∗
g·mΦg−1 · αm

where g ∈ G and αm ∈ T ∗
mM .
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The infinitesimal generator ξM ∈ X(M)
associated to ξ ∈ g is the vector field on Mdefined
by

ξM(m) :=
d

dt

∣∣∣∣
t=0

Φexp tξ(m) = TeΦ
m · ξ.

The infinitesimal generators are complete vector
fields. The flow of ξM equals (t,m) �→ exp tξ ·m.
Moreover, the map ξ ∈ g �→ ξM ∈ X(M) is a
Lie algebra antihomomorphism, that is,

(i) (aξ + bη)M = aξM + bηM ,

(ii) [ξ, η]M = −[ξM, ηM ].

Let g be a Lie algebra and M a smooth man-
ifold. A right (left) Lie algebra action
of g on M is a Lie algebra (anti)homomorphism
ξ ∈ g �−→ ξM ∈ X(M) such that the mapping
(m, ξ) ∈ M × g �−→ ξM (m) ∈ TM is smooth.
Given a Lie group action, we will refer to the Lie
algebra action induced by its infinitesimal gener-
ators as the associated Lie algebra action.
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Stabilizers and orbits. The isotropy sub-
group or stabilizer of an element m in the
manifold M acted upon by the Lie group G is
the closed subgroup

Gm := {g ∈ G |Φg(m) = m} ⊂ G

whose Lie algebra gm equals

gm = {ξ ∈ g | ξM (m) = 0}. (1)

The orbit Om of the element m ∈ M under the
group action Φ is the set

Om ≡ G · m := {Φg(m) | g ∈ G}.
The isotropy subgroups of the elements in a group
orbit are related by the expression

Gg·m = gGmg−1 for all g ∈ G.

The notion of orbit allows the introduction of an
equivalence relation in the manifold M , namely,
two elements x, y ∈ M are equivalent if and only
if they are in the same G–orbit, that is, if there
exists an element g ∈ G such that Φg(x) = y.
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The space of classes with respect to this equiva-
lence relation is usually referred to as the space
of orbits and, depending on the context, it is
denoted by the symbols M/G or M/AG.

The action is

•Transitive if there is only one orbit.

•Free if the isotropy of every element in M
consists only of the identity element.

•Proper whenever the map Θ : G × M →
M × M defined by

Θ(g, z) = (z, Φ(g, z))

is proper. Equivalent to the following condi-
tion: for any two convergent sequences {mn}
and {gn ·mn} in M , there exists a convergent
subsequence {gnk

} in G.

Examples of proper actions: compact group ac-
tions, SE(n) acting on R

n, Lie groups acting on
themselves by translation.
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Proper actions
Φ : G × M → M be a proper action of the Lie
group G on the manifold M . Then:

(i) The isotropy subgroups Gm are compact.

(ii) The orbit space M/G is a Hausdorff topologi-
cal space. (Even when M and G are not Haus-
dorff.)

(iii) If the action is free, M/G is a smooth man-
ifold, and the canonical projection π : M →
M/G defines on M the structure of a smooth
left principal G–bundle.

(iv) If all the isotropy subgroups of the elements
of M under the G–action are conjugate to a
given one H then M/G is a smooth manifold
and π : M → M/G defines the structure
of a smooth locally trivial fiber bundle with
structure group N (H)/H and fiber G/H .

(v) If the manifold M is paracompact then there
exists a G–invariant Riemannian metric on it.

(vi) If the manifold M is paracompact then smooth
G–invariant functions separate the G–orbits.
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Tubes and Slices

Twisted product. Let G be a Lie group and
H ⊂ G a subgroup. Suppose that H acts on the
left on the manifold A. The twisted action of
H on the product G × A is defined by

h · (g, a) = (gh, h−1 · a).

This action is free and proper by the freeness
and properness of the action on the G–factor.
The twisted product G ×H A is defined as
the orbit space (G×A)/H corresponding to the
twisted action.

Tube. Let M be a manifold and G a Lie group
acting properly on M . Let m ∈ M and denote
H := Gm. A tube around the orbit G · m is a
G–equivariant diffeomorphism

ϕ : G ×H A −→ U,

where U is a G–invariant neighborhood of G ·m
and A is some manifold on which H acts.
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Slice Theorem. G a Lie group acting properly
on M at the point m ∈ M , H := Gm. There
exists a tube

ϕ : G ×H B −→ U

about G · m. B is an open H–invariant neigh-
borhood of 0 in a vector space H–equivariantly
isomorphic to TmM/Tm(G ·m) on which H acts
linearly by

h · (v + Tm(G · m)) := TmΦh · v + Tm(G · m).

Dymanical consequences. G-invariant vec-
tor fields X can be locally decomposed as

X = XT + XN

Geometric consequences. Isotropy, fixed
point, and orbit type spaces are submani-
folds:

M(H) = {z ∈ M | Gz ∈ (H)},
MH = {z ∈ M | H ⊂ Gz},
MH = {z ∈ M | H = Gz}.
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Structure Theorems

Principal Orbit Theorem: M connected.
The subset Mreg ∩ M is connected, open, and
dense in M . M/G contains only one principal
orbit type, which is a connected open and dense
subset of it.

The Stratification Theorem: Let M be
a smooth manifold and G a Lie group acting
properly on it. The connected components of
the orbit type manifolds M(H) and their pro-

jections onto orbit space M(H)/G constitute a

Whitney stratification of M and M/G, respec-
tively. This stratification of M/G is minimal
among all Whitney stratifications of M/G.

Theorem. Let G be a Lie group acting prop-
erly on the smooth manifold M and m ∈ M a
point with isotropy subgroup H := Gm. Then

((Tm(G · m))◦)H = {df (m) | f ∈ C∞(M )G}.
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Symmetry Reduction

•M a G–manifold. X ∈ X(M)G. Flow Ft.

•H–isotropy type submanifold MH :

MH := {m ∈ M | Gm = H}
preserved by the flow Ft and N (H)–invariant.

• πH : MH → MH/(N(H)/H)
iH : MH ↪→ M .

•Reduced vector field:

XH ◦ πH = TπH ◦ X ◦ iH,

with flow FH
t given by

FH
t ◦ πH = πH ◦ Ft ◦ iH.

• Linear compact actions and Hilbert’s Theo-
rem.
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Symplectic manifolds
A symplectic manifold is a pair (M, ω),
where M is a manifold and ω ∈ Ω2(M) is a
closed non–degenerate two–form on M , that is,

• dω = 0

• for every m ∈ M , the map

v ∈ TmM �→ ω(m)(v, ·) ∈ T ∗
mM

is a linear isomorphism

If ω is allowed to be degenerate, (M, ω) is called
a presymplectic manifold . A Hamilto-
nian dynamical system is a triple (M, ω, h),
where (M, ω) is a symplectic manifold and h ∈
C∞(M) is the Hamiltonian function of the
system. By non–degeneracy of the symplectic
form ω, to each Hamiltonian system one can as-
sociate a Hamiltonian vector field Xh ∈
X(M ), defined by the equality

iXh
ω = dh.
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Example Let V be a vector space and V ∗

its dual. Let Z = V × V ∗. The canonical
symplectic form Ω on Z is defined by

Ω((v1, α1), (v2, α2)) := 〈α2, v1〉 − 〈α1, v2〉.

Example Let Q be a smooth manifold and
T ∗Q its cotangent bundle. Let πQ : T ∗Q → Q
be the projection and Θ the one–form on T ∗Q
defined by

Θ(β) · vβ := 〈β, TβπQ · vβ〉,
where β ∈ T ∗Q and vβ ∈ Tβ(T ∗Q). The
canonical symplectic form Ω on the cotan-
gent bundle T ∗Q is defined by Ω = −dΘ.

Darboux theorem Locally

ω|U =

n∑
i=1

dqi ∧ dpi.
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In canonical coordinates, Xh is determined by
the well–known Hamilton equations ,

dqi

dt
=

∂h

∂pi
,

dpi

dt
= −∂h

∂qi
.

The Poisson bracket of f, g ∈ C∞(M) is
the function {f, g} ∈ C∞(M) defined by

{f, g}(z) = ω(z)(Xf (z), Xg(z)).

In canonical coordinates, the Poisson bracket takes
the form

{f, g} =

n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
.
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Poisson manifolds
• (M, {·, ·}) Poisson manifold. (C∞(M), {·, ·})

Lie algebra such that

{fg, h} = f{g, h} + g{f, h}
•Casimirs elements in the center of algebra.

•Derivations and vector fields. Hamiltonian vec-
tor fields

Xh[f ] = {f, h}
•Example: The Lie-Poisson bracket The

dual g∗ of a Lie algebra g is a Poisson manifold
with respect to the ±–Lie–Poisson brack-
ets {·, ·}± defined by

{f, g}±(µ) := ±
〈

µ,

[
δf

δµ
,
δg

δµ

]〉

δf
δµ ∈ g is defined by

〈ν, δf
δµ

〉 := Df(µ) · ν,

for any ν ∈ g∗. Given h ∈ C∞(g∗)
Xh(µ) = ∓ad∗δh/δµµ, µ ∈ g

∗.
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The Poisson tensor. The derivation prop-
erty of the Poisson bracket implies that for any
two functions f, g ∈ C∞(M), the value of the
bracket {f, g}(z) on f only through df (z) which
allows us to define a contravariant antisymmetric
two–tensor B ∈ Λ2(T ∗M ) by

B(z)(αz, βz) = {f, g}(z),

with df (z) = αz and dg(z) = βz. This ten-
sor is called the Poisson tensor of M . The
vector bundle map B : T ∗M → TM naturally
associated to B is defined by

B(z)(αz, βz) = 〈αz, B(βz)〉.
Its range D := B(T ∗M ) ⊂ TM is called the
characteristic distribution. For any point
m ∈ M , the dimension of D(m) as a vector sub-
space of TmM is called the rank of the Poisson
manifold (M, {·, ·}) at the point m.
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The Weinstein coordinates of a Poisson
manifold. Let (M, {·, ·}) be a m–dimensional
Poisson manifold and z0 ∈ M a point where
the rank of (M, {·, ·}) equals 2n, 0 ≤ 2n ≤ m.
There exists a chart (U,ϕ) of M whose domain
contains the point z0 and such that the associ-
ated local coordinates, denoted by

(q1, . . . , qn, p1, . . . , pn, z1, . . . , zm−2n),

satisfy

{qi, qj} = {pi, pj} = {qi, zk} = {pi, zk} = 0,

and {qi, pj} = δi
j, for all i, j, k, 1 ≤ i, j ≤ n,

1 ≤ k ≤ m − 2n.
For all k, l, 1 ≤ k, l ≤ m − 2n, the Poisson

bracket {zk, zl} is a function of the local coordi-
nates z1, . . . , zm−2n exclusively, and vanishes at
z0. Hence, the restriction of the bracket {·, ·} to
the coordinates z1, . . . , zm−2n induces a Pois-
son structure that is usually referred to as the
transverse Poisson structure of (M, {·, ·})
at m.
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A smooth mapping ϕ : (M1, {·, ·}1) → (M2, {·, ·}2)
is canonical or Poisson if for all g, h ∈
C∞(M2) we have

ϕ∗{g, h}2 = {ϕ∗g, ϕ∗g}1 .

In the symplectic category, ϕ : (M1, ω1) →
(M2, ω2) canonical or symplectic if

ϕ∗ω2 = ω1.

• Symplectic maps are immersions.

• A diffeomorphism ϕ : M1 → M2 between two
symplectic manifolds (M1, ω1) and (M2, ω2)
is symplectic if and only if it is Poisson.

• If the symplectic map ϕ : M1 → M2 is not a
diffeomorphism it may not be a Poisson map.

Let (S, {·, ·}S) and (M, {·, ·}M) be two Poisson
manifolds such that S ⊂ M and the inclusion
iS : S ↪→ M is an immersion. (S, {·, ·}S) is a
Poisson submanifold of (M, {·, ·}M) if iS
is a canonical map.
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An immersed submanifold Q of M is called a
quasi Poisson submanifold of (M, {·, ·}M)
if for any q ∈ Q, any open neighborhood U of q
in M , and any f ∈ C∞

M (U) we have

Xf (iQ(q)) ∈ TqiQ(TqQ),

where iQ : Q ↪→ M is the inclusion and Xf
is the Hamiltonian vector field of f on U with
respect to the restricted Poisson bracket {·, ·}M

U .
Any Poisson submanifold is quasi Poisson. The
converse is not true.

Given two symplectic manifolds (M, ω) and (S, ωS)
such that S ⊂ M and the inclusion i : S ↪→ M
is an immersion, the manifold (S, ωS) is a sym-
plectic submanifold of (M,ω) when i is a
symplectic map. Symplectic submanifolds of a
symplectic manifold (M,ω) are in general nei-
ther Poisson nor quasi Poisson manifolds of M .
The only quasi Poisson submanifolds of a sym-
plectic manifold are its open sets which are, in
fact, Poisson submanifolds.
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Symplectic Foliation Theorem. Let (M, {·, ·})
be a Poisson manifold and D the associated char-
acteristic distribution. D is a smooth and inte-
grable generalized distribution and its maximal
integral leaves form a generalized foliation de-
composing M into initial submanifolds L, each
of which is symplectic with the unique symplectic
form that makes the inclusion i : L ↪→ M into a
Poisson map, that is, L is a Poisson submanifold
of (M, {·, ·}).

Example Let g∗ with the Lie–Poisson struc-
ture. The symplectic leaves of the Poisson man-
ifolds (g∗, {·, ·}±) coincide with the connected
components of the orbits of the elements in g∗

under the coadjoint action. In this situation, the
symplectic form for the leaves is given by the
Kostant–Kirillov–Souriau (KKS) expres-
sion

ω±
O(ν)(ξg∗(ν), ηg∗(ν)) = ±〈ν, [ξ, η]〉.
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Canonical symmetries

• (M, {·, ·}) Poisson manifold. G acts canoni-
cally on M when

Φ∗
g{f, h} = {Φ∗

gf, Φ∗
gh}

• Easy Poisson reduction: (M, {·, ·}) Poisson
manifold, G Lie group acting canonically, freely,
and properly on M . The orbit space M/G is
a Poisson manifold with bracket

{f, g}M/G(π(m)) = {f ◦ π, g ◦ π}(m),

•Reduction of Hamiltonian dynamics: h ∈ C∞(M)G

reduces to h ∈ C∞(M/G) given by h◦π = h
such that

Xh = Tπ ◦ Xh

•What about the symplectic leaves?
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How do we do it?
•Consider R

6 with bracket

{f, g} =
∑
i=1

∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

• S1–action given by

Φ : S1 × R
6 −→ R

6

(eiφ, (x, y)) �−→ (Rφx, Rφy),

•Hamiltonian of the spherical pendulum

h =
1

2
< y, y > + < x, e3 >

• Impose constraint < x, x >= 1

•Angular momentum: J(x, y) = x1y2 − x2y1.

Hilbert basis of the algebra of S1–invariant poly-
nomials is given by

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x2

1 + x2
2

σ2 = y3 σ4 = x1y1 + x2y2 σ6 = x1y2 − x2y1.

Semialgebraic relations

σ2
4 + σ2

6 = σ5(σ3 − σ2
2), σ3 ≥ 0, σ5 ≥ 0.
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Hilbert map

σ : TR
3 −→ R

6

(x, y) �−→ (σ1(x, y), . . . , σ6(x, y)).

The S1–orbit space TR
3/S1 can be identified

with the semialgebraic variety σ(TR
3) ⊂ R

6,
defined by these relations.

TS2 is a submanifold of R
6 given by

TS2 = {(x, y) ∈ R
6 |< x,x >= 1, < x,y >= 0}.

TS2 is S1–invariant. TS2/S1 can be thought of
the semialgebraic variety σ(TS2) defined by the
previous relations and

σ5 + σ2
1 = 1 σ4 + σ1σ2 = 0,

which allow us to solve for σ4 and σ5, yielding

TS2/S1 = σ(TS2) = {(σ1, σ2, σ3, σ6) ∈ R
4 |

σ2
1σ

2
2 + σ2

6 = (1 − σ2
1)(σ3 − σ2

2),

|σ1| ≤ 1, σ3 ≥ 0}.
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{·, ·}TS2/S1
σ1 σ2 σ3 σ6

σ1 0 1 − σ2
1 2σ2 0

σ2 −(1 − σ2
1) 0 −2σ1σ3 0

σ3 −2σ2 2σ1σ3 0 0
σ6 0 0 0 0

Reduced Hamiltonian

H =
1

2
σ3 + σ1

If µ �= 0 then (TS2)µ appears as the graph of
the smooth function

σ3 =
σ2

2 + µ2

1 − σ2
1

, |σ1| < 1.

The case µ = 0 is singular and (TS2)0 is not a
smooth manifold.
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Poisson reduction by distributions

•Reduction of the 4-tuple (M, {·, ·}, D, S)

• S encodes conservation laws and D invariance
properties

• S submanifold of (M, {·, ·}). DS := D ∩ TS

• (M, {·, ·}) Poisson manifold, D ⊂ TM . D is
Poisson if

df |D = dg|D = 0 ⇒ d{f, g}|D = 0

•When does the bracket on M induce a bracket
on S/DS?
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•The functions C∞
S/DS

are characterized by the

following property: f ∈ C∞
S/DS

(V ) if and only

if for any z ∈ V there exists m ∈ π−1
DS

(V ),

Um open neighborhood of m in M , and F ∈
C∞

M (Um) such that

f ◦ πDS
|
π−1
DS

(V )∩Um
= F |

π−1
DS

(V )∩Um
.

F is a local extension of f ◦ πDS
at the

point m ∈ π−1
DS

(V ).

•C∞
S/DS

has the (D,DS)–local extension

property when the local extensions of f◦πDS
can always be chosen to satisfy

dF (n)|D(n) = 0.

• (M, {·, ·}, D, S) is Poisson reducible when

(S/DS,C∞
S/DS

, {·, ·}S/DS) is a well defined

Poisson manifold with

{f, g}S/DS
V (πDS

(m)) := {F, G}(m),

F,G are local D–invariant extensions of f ◦
πDS

and g ◦ πDS
.
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Theorem (Marsden, Ratiu (1986)/ JPO, Ratiu
(1998) (singular)).
(M, {·, ·}, D, S) is Poisson reducible if and only
if

B(D◦) ⊂ TS + D.

Examples

Coisotropic submanifolds:

B ((TS)◦) ⊂ TS

Dirac’s first class constraints (Bojowald, Strobl
(2002)).
If S be an embedded coisotropic submanifold of
M and D := B((TS)◦) then (M, {·, ·},D, S)
is Poisson reducible.
Appear in the context of integrable systems as
the level sets of integrals in involution.
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Cosymplectic manifolds and
Dirac’s formula

An embedded submanifold S ⊂ M is called
cosymplectic when

(i) B((TS)◦) ∩ TS = {0}.
(ii) TsS + TsLs = TsM ,

for any s ∈ S and Ls the symplectic leaf of
(M, {·, ·}) containing s ∈ S. The cosymplec-
tic submanifolds of a symplectic manifold (M, ω)
are its symplectic submanifolds (a.k.a. second
class constraints). In this case

TM |S = B((TS)◦) ⊕ TS

Theorem(Weinstein (1983)) S cosymplectic. Let
D := B((TS)◦) ⊂ TM |S. Then

(i) (M, {·, ·}, D, S) is Poisson reducible.

(ii) The corresponding quotient manifold equals
S and the reduced bracket {·, ·}S is given by

{f, g}S(s) = {F,G}(s),

F,G ∈ C∞
M (U) are local D–invariant exten-

sions of f and g.
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(iii) The Hamiltonian vector field Xf of an ar-
bitrary function f ∈ C∞

S,M (V ) can be written
as

Ti · Xf = πS ◦ XF ◦ i, (1)

where F ∈ C∞
M (U) is an arbitrary local exten-

sion of f and πS : TM |S → TS is the pro-
jection induced by the Whitney sum decom-
position TM |S = B((TS)◦)⊕TS of TM |S.

(v) The symplectic leaves of (S, {·, ·}S) are the
connected components of the intersections S∩
L, with L a symplectic leaf of (M, {·, ·}). Any
symplectic leaf of (S, {·, ·}S) is a symplectic
submanifold of the symplectic leaf of (M, {·, ·})
that contains it.

(vi) Let Ls and LS
s be the symplectic leaves of

(M, {·, ·}) and (S, {·, ·}S), respectively, that
contain the point s ∈ S. Let ωLs

and ωLS
s

be the corresponding symplectic forms. Then
B(s)((TsS)◦) is a symplectic subspace of TsLs
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and

B(s)((TsS)◦) =
(
TsLS

s

)ωLs(s)
. (2)

(vii) Let BS ∈ Λ2(T ∗S) be the Poisson tensor
associated to (S, {·, ·}S). Then

B

S = πS ◦ B|S ◦ π∗S, (3)

where π∗S : T ∗S → T ∗M |S is the dual of
πS : TM |S → TS.

Formula (3) gives in local coordinates Dirac’s for-
mula:

{f, g}S(s) = {F,G}(s)

−
n−k∑
i,j=1

{F, ψi}(s)Cij(s){ψj, G}(s)
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The momentum map
• (M, ω) symplectic manifold, G acting canoni-

cally

• Momentum map J : M → g∗

Jξ :=< J, ξ >, iξMω = dJξ

with

ξM (m) =
d

dt

∣∣∣∣
t=0

exp tξ · m

• Noether’s Theorem: the fibers of J are pre-
served by the Hamiltonian flows associated to
G-invariant Hamiltonians.

Example: linear momentum. Take the
phase space of the N–particle system, that is,
T ∗

R
3N . The additive group R

3 acts on it by

v · (qi, pi) = (qi + v, pi)

J : T ∗
R

3N −→ Lie(R3) � R
3

(qi, pi) �−→
∑N

i=1 pi.
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Example: angular momentum. Let SO(3)
act on R

3 and then, by lift, on T ∗
R

3, that is,
A · (q, p) = (Aq, Ap).

J : T ∗
R

3 −→ so( )∗ � R
3

(q, p) �−→ q × p.

which is the classical angular momentum .

Example: lifted actions on cotangent
bundles. Let G be a Lie group acting on the
manifold Q and then by lift on its cotangent bun-
dle T ∗Q.

〈J(αq), ξ〉 = 〈αq, ξQ(q)〉,
for any αq ∈ T ∗Q and any ξ ∈ g.

Example: symplectic linear actions. Let
(V, ω) be a symplectic linear space and let G be
a subgroup of the linear symplectic group, acting
naturally on V .

〈J(v), ξ〉 =
1

2
ω(ξV (v), v).
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•Regularity of the action is equivalent to the
regularity of the momentum map

range TmJ = (gm)0

• kerTmJ = (g · m)ω.

• Existence:
ρ : g/[g, g] −→ H1(M, R)

[ξ] �−→ [iξM
ω]

• Equivariance: When (g, [·, ·]) → (C∞(M), {·, ·})
defined by ξ �→ Jξ, ξ ∈ g, is a Lie algebra ho-
momorphism, that is,

J[ξ, η] = {Jξ, Jη}, ξ, η ∈ g.

Answer: iff

TzJ · ξM (z) = − ad∗ξ J(z),

A momentum map that satisfies this relation
in called infinitesimally equivariant .

• J is G–equivariant when

Ad∗
g−1 ◦J = J ◦ Φg,

• If G is compact J can be chosen G-equivariant

Properties of the momentum map
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Define the non equivariance one–cocycle
associated to J as the map

σ : G −→ g∗

g �−→ J(Φg(z)) − Ad∗
g−1(J(z)).

Then:

(i) The definition of σ does not depend on the
choice of z ∈ M ;

(ii) The mapping σ is a g∗–valued one–cocycle
on G with respect to the coadjoint represen-
tation of G on g∗.

We define the affine action of G on g∗ with
cocycle σ by

Θ : G × g∗ −→ g∗

(g, µ) �−→ Ad∗
g−1 µ + σ(g).

Θ determines a left action of G on g∗. The mo-
mentum map J : M → g∗ is equivariant with
respect to the symplectic action Φ on M and the
affine action Ψ on g∗.

Equivariance
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The affine orbits Oµ are also symplectic with
G-invariant symplectic structure given by

ω±
Oµ

(ν)(ξg∗(ν), ηg∗(ν)) = ±〈ν, [ξ, η]〉 ∓ Σ(ξ, η),

where the infinitesimal non equivariance cocycle
Σ ∈ Z2(g, R) is given by

Σ : g × g −→ R

(ξ, η) �−→ Σ(ξ, η) = dσ̂η(e) · ξ,
with σ̂η : G → R defined by σ̂η(g) = 〈σ(g), η〉.
Reduction Lemma:

gµ · m = g · m ∩ ker TmJ = g · m ∩ (g · m)ω.
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Momentum maps and isotropy type man-
ifolds The free, proper, and canonical action of
Lm := N (Gm)m/Gm on Mm

Gm
has a momen-

tum map JLm : Mm
Gm

→ (Lie(Lm))∗ given by

JLm(z) := Λ(J|Mm
Gm

(z) − µ), z ∈ Mm
Gm

.

In this expression Λ : (g◦m)Gm → (Lie(Lm))∗ de-
notes the natural Lm–equivariant isomorphism
given by〈

Λ(β),
d

dt

∣∣∣∣
t=0

exp tξGm

〉
= 〈β, ξ〉,

for any β ∈ (g◦m)Gm, ξ ∈ Lie(N(Gm)m) =
Lie(N (Gm)).
The non equivariance one–cocycle τ : Mm

Gm
→

(Lie(Lm))∗ of the momentum map JLm is given
by the map

τ (l) = Λ(σ(n) + n · µ − µ).
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Convexity
J : M → g∗ coadjoint equivariant. G, M com-
pact. The intersection of the image of J with a
Weyl chamber is a compact and convex poly-
tope. This polytope is referred to as the mo-
mentum polytope.

Delzant’s theorem proves that the symplectic toric
manifolds are classified by their momentum poly-
topes. A Delzant polytope in R

n is a convex
polytope that is also:

(i) Simple: there are n edges meeting at each
vertex.

(ii) Rational: the edges meeting at a vertex p
are of the form p + tui, 0 ≤ t < ∞, ui ∈ Z

n,
i ∈ {1, . . . , n}.

(iii) Smooth: the vectors {u1, . . . , un} can be
chosen to be an integral basis of Z

n.

Delzant’s Theorem can be stated by saying that

{symplectic toric manifolds} −→ {Delzant polytopes
(M,ω, Tn,J : M → R

n) �−→ J(M)

is a bijection.
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The cylinder valued
momentum map

• Condevaux, Dazord, Molino [1988] Géometrie
du moment. UCB, Lyon.

•M × g∗ −→ M , M connected

• α ∈ Ω1(M × g∗; g∗)
〈α(m,µ) · (vm, ν), ξ〉 := (iξM

ω)(m) · vm − 〈ν, ξ〉
• α has zero curvature ⇒ H discrete

• M̃ holonomy bundle ⇔ horizontal leaf

M̃ g∗

g∗/H̃M

� �

�

�

p̃ πC

K̃

K

• Standard momentum map exists ⇔ H = {0}
•K always exists and it is a smooth momentum

• ker(TmK) =
((

Lie(H)
)◦ · m

)ω

• range (TmK) = TµπC ((gm)◦)



44

Equivariance
K : M → g∗/H cylinder valued momentum
map associated to a G–action on (M,ω)

• H is Ad∗-invariant: Ad∗
g−1(H) ⊂ H, g ∈ G.

If G is connected, H is pointwise fixed.

• There exists a unique action

Ad∗ : G × g
∗/H → g

∗/H
such that for any g ∈ G

Ad∗
g−1 ◦ πC = πC ◦ Ad∗

g−1

Define

σ(g,m) := K(g · m) −Ad∗
g−1K(m)

• If M is connected σ : G × M → g∗/H does
not depend on M .

• σ : G → g∗/H is a group-valued one-cocyle,
that is

σ(gh) = σ(g) + Ad∗
g−1σ(h)
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The map

Θ : G × g∗/H −→ g∗/H
(g, µ + H) �−→ Ad∗

g−1(µ + H) + σ(g)

is a group action such that

K(g · m) = Θg(K(m))

Reduction Lemma

gµ+H · m = kerTmK ∩ g · m
Corollary: if H is closed then

gµ+H · m = (g · m)ω ∩ g · m
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Cylinder and Lie group valued
momentum maps

McDuff, Ginzburg, Huebschmann,Jeffrey, Hueb-
schmann, Alekseev, Malkin, and Meinreken (1998)

(·, ·) bilinear symmetric non degenerate form on
g. J : M → G is a G–valued momentum
map for the g–action on M whenever

iξM
ω(m) · vm =

(
Tm(LJ(m)−1 ◦ J)(vm), ξ

)

Any cylinder valued momentum map associated
to an Abelian Lie algebra action whose corre-
sponding holonomy group is closed can be un-
derstood as a Lie group valued momentum map.

Proposition f : g → g∗ isomorphism given
by ξ �−→ (ξ, ·), ξ ∈ g and T := f−1(H). f in-
duces an Abelian group isomorphism f̄ : g/T →
g∗/H by f̄ (ξ+T ) := (ξ, ·)+H. Suppose that H
is closed in g∗ and define J := f̄−1 ◦ K : M →
g/T , where K is a cylinder valued momentum
map for the g–action. Then J : M → g/T is
a g/T –valued momentum map for the action of
the Lie algebra g of (g/T , +) on (M,ω).
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Lie group valued momentum maps
produce closed holonomy groups

Theorem H ⊂ g∗ holonomy group associated
to the g–action. f : g → g∗, f̄ : g/T → g∗/H,
and T := f−1(H) as before. Let G be a con-
nected Abelian Lie group whose Lie algebra is
g and suppose that there exists a G–valued mo-
mentum map A : M → G associated to the
g–action whose definition uses the form (·, ·).
(i) If exp : g → G is the exponential map, then

H ⊂ f (ker exp).

(ii)H is closed in g∗.

Let J := f̄−1 ◦ K : M → g/T , where K :
M → g∗/H is a cylinder valued momentum map
for the g–action on (M,ω). If f (ker exp) ⊂ H
then J : M → g/T = g/ ker exp � G is a G–
valued momentum map that differs from A by a
constant in G.
Conversely, if H = f (ker exp) then J : M →

g/ ker exp � G is a G–valued momentum map.
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The optimal momentum map

Problems with the traditional momentum map:

• Possible non existence of J:

1. S1 acting on T
2 by

eiφ · (eiθ1, eiθ2) := (ei(φ+θ1), eiθ2).

Lie group valued momentum maps. Dirac
[1926], McDuff [1988], Alekseev et al. [1997].

2. (R3, {·, ·}) with Poisson tensor

B =




0 1 0
−1 0 1
0 −1 0


 .

(R, +) acts on R
3 by λ · (x, y, z) := (x +

λ, y, z). NO MOMENTUM MAP!!

• Singular case not optimal (finite groups). Does
not see law of conservation of isotropy.

J−1(µ) versus J−1(µ) ∩ MH
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• JPO, Ratiu [2002]

•G acts on (M, {·, ·}) via Φ : G × M → M .

•AG := {Φg : M → M | g ∈ G} ⊂ P(M).

•A′
G := {Xf (m) | f ∈ C∞(M)G}.

•The canonical projection

J : M → M/A′
G

is the optimal momentum map associ-
ated to the G-action on M .
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• J always defined:

1. S1 on T
2

J : T
2 −→ S1

(eiθ1, eiθ2) �−→ eiθ2.

2. R on R
3

J : R
3 −→ R

(x, y, z) �−→ x + z. �
•Why momentum map?

Noether’s Theorem: J is universal. Let
Ft flow of Xh, h ∈ C∞(M)G then

J ◦ Ft = J

•Why optimal?

Theorem: G acting properly on (M, ω) with
associated momentum map J : M → g∗.
Then:

A′
G(m) = kerTmJ ∩ TmMGm

.

Hence, the level sets of J are

J−1(ρ) = J−1(µ) ∩ MH,
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Symplectic reduction

•Marsden, Weinstein (1974): free proper action
implies J−1(µ)/Gµ “canonically” symplectic

π∗µωµ = i∗µω

where πµ : J−1(µ) → J−1(µ)/Gµ and iµ :

J−1(µ) ↪→ M

•Reduction of dynamics: h ∈ C∞(M)G. The
flow Ft of Xh leaves J−1(µ) invariant and
commutes with the G–action, so it induces a
flow F

µ
t on Mµ defined by

πµ ◦ Ft ◦ iµ = F
µ
t ◦ πµ.

The flow F
µ
t on (Mµ, ωµ) is Hamiltonian with

associated reduced Hamiltonian func-
tion hµ ∈ C∞(Mµ) defined by

hµ ◦ πµ = h ◦ iµ.

The triple (Mµ, ωµ, hµ) is called the reduced
Hamiltonian system .

•Reduces the search of relative equilibria and
relative periodic orbits to equilibria and peri-
odic orbits.
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Reconstruction of dynamics: Assume that
an integral curve cµ(t) of the reduced Hamilto-
nian system Xhµ

on (Mµ, ωµ) is known. Let

m0 ∈ J−1(µ) be given. Can one determine from
this data the integral curve of the Hamiltonian
system Xh with initial condition m0? In other
words, can one reconstruct the solution of the
given system knowing the corresponding reduced
solution?
Pick a smooth curve d(t) in J−1(µ) such that
d(0) = m0 and πµ(d(t)) = cµ(t). Then, if c(t)
denotes the integral curve of Xh with c(0) = m0,
we can write c(t) = g(t) · d(t) for some smooth
curve g(t) in Gµ determined in two steps:

• Step 1: find a smooth curve ξ(t) in gµ

ξ(t)M(d(t)) = Xh(d(t)) − ḋ(t);

• Step 2: with ξ(t) ∈ gµ determined above,
solve the non–autonomous differential equa-
tion on Gµ

ġ(t) = TeLg(t)ξ(t), with g(0) = e.
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Coadjoint orbits as reduced spaces. Take
M = T ∗G, where G is a Lie group with Lie al-
gebra g, the G–action being the cotangent lift
of left translation, and the associated momen-
tum map JL : αg ∈ T ∗G �→ T ∗

e Rg(αg) ∈
g∗ which is right invariant. For each µ ∈ g∗

we can form the symplectic point reduced space
((T ∗G)µ, ωµ). Recall also that the momentum
map for the lift of right translations is left in-
variant and is given by JR : αg ∈ T ∗G �→
T ∗

e Lg(αg) ∈ g∗.
The momentum map JR : T ∗G → g∗ in-

duces for each µ ∈ g∗ a symplectic diffeomor-
phism JR : ((T ∗G)µ, ωµ) → (Oµ, ω−

Oµ
) given

by JR([T ∗
g Rg−1µ]) = Ad∗g µ.

Cotangent bundles. G acts on Q freely and
properly. The map

ϕ0 :
(
(T ∗Q)0, (ΩQ)0

)
→

(
T ∗(Q/G), ΩQ/G

)

given by ϕ0([αq])(Tqρ(vq)) := αq(vq), with αq ∈
J−1(0), vq ∈ TqQ, is a symplectomorphism.
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We now study the symplectic reduced space

((T ∗Q)µ, ωµ).

Let µ′ := µ|gµ ∈ g∗µ the restriction of µ to gµ,
and consider the Gµ–action on Q and its lift to
T ∗Q. An equivariant momentum map of this
action is the map Jµ : T ∗Q → gµ obtained by
restricting J. Assume there is a Gµ–invariant

one-form αµ on Q with values in (Jµ)−1(µ′).
For ξ ∈ gµ and q ∈ Q, the identity (iξQαµ)(q) =

αµ(q)(ξQ(q)) = 〈J(αµ(q)), ξ〉 = 〈µ′, ξ〉 shows
that iξQαµ is a constant function on Q. There-

fore, for ξ ∈ gµ, this implies iξQ
dαµ = £ξQ

αµ−
diξQ

αµ = 0, since £ξQ
αµ = 0 by Gµ-invariance

of αµ. It follows that there is a unique two-form
βµ on Qµ such that ρ∗µβµ = dαµ. Since ρµ is a
submersion, βµ is closed, but need not be exact.
Let Bµ = π∗Qµ

βµ where πQµ
: T ∗Qµ → Qµ is

the cotangent bundle projection.
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Embedding cotangent bundle reduction
theorem Under the above hypotheses, the map

ϕµ : ((T ∗Q)µ, (ΩQ)µ) → (T ∗Qµ, ΩQµ
− Bµ),

given by ϕµ([αq])(Tqρµ(vq)) := (αq−αµ(q))(vq),

for αq ∈ J−1(µ), vq ∈ TqQ, is a symplectic em-
bedding onto a vector subbundle of T ∗Qµ. The
map ϕµ is onto T ∗Qµ if and only if g = gµ.
The additional summand Bµ in the symplectic
structure of T ∗Qµ is called a magnetic term .
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Symplectic orbit reduction

(i) The set MOµ
:= J−1(Oµ)/G is a regular

quotient symplectic manifold with the sym-
plectic form ωOµ

uniquely characterized by
the relation

i∗Oµ
ω = π∗Oµ

ωOµ
+ J∗Oµ

ω+
Oµ

, (5)

where JOµ
is the restriction of J to J−1(Oµ)

and ω+
Oµ

is the +–symplectic structure on the

affine orbit Oµ. The maps iOµ
: J−1(Oµ) ↪→

M and πOµ
: J−1(Oµ) → MOµ

are natural
injection and the projection, respectively. The
pair (MOµ

, ωOµ
) is called the symplectic

orbit reduced space.

(ii) Thesed are, up to connected components,
the symplectic leaves of (M/G, {·, ·}M/G).

(iii) Same dynamical statements that we have
for the point reduced spaces.
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Cylinder Valued Regular Reduction The-
orem: G acts freely and properly. If H is closed
then K−1([µ])/G[µ] is symplectic with form given
by

π∗[µ]ω[µ] = i∗µω

If H is not closed the theorem is false in general

See presentation of Ratiu in the conference for
the general case.
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Optimal reduction
(M, {·, ·}) Poisson manifold, G acts properly
and canonically on M . Then, for any ρ ∈ M/A′

G,

• J−1(ρ) is an initial submanifold of M .

• The isotropy subgroup Gρ ⊂ G of is an (im-
mersed) Lie subgroup of G.

• Tm(Gρ · m) = Tm(J−1(ρ)) ∩ Tm(G · m).

• If Gρ acts properly on J−1(ρ) then Mρ :=

J−1(ρ)/Gρ is a regular quotient manifold called
the reduced phase space.

• The canonical projection

πρ : J−1(ρ) → J−1(ρ)/Gρ

is a submersion.

•Optimal Symplectic Reduction: Mρ is
symplectic with ωρ given by

π∗ρωρ(m)(Xf (m),Xh(m)) = {f, h}(m),

for any m ∈ J−1(ρ) and f, h ∈ C∞(M )G.
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THE GLOBALLY HAMILTONIAN
CASE

Mρ = J−1(µ) ∩ MH/NGµ
(H)

= J−1(µ) ∩ MH/(NGµ
(H)/H)

� (J−1(µ) ∩ M
Gµ

(H)
)/Gµ = M

(H)
µ

These are Sjamaar and Lerman [1991] reduced
spaces.

• Guillemin, Sternberg (1982): Kähler reduc-
tion at zero. Kirwan (1984)

• Sjamaar, Lerman (1991), Bates, Lerman (1997):
Singular reduction

• Sjamaar (1995): Singular Kähler
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Singular reduction

•There is a unique symplectic structure ω
(H)
µ

on M
(H)
µ := [J−1(µ) ∩ GµMz

H ]/Gµ charac-
terized by

i
(H) ∗
µ ω = π

(H) ∗
µ ω

(H)
µ

•The symplectic spaces M
(H)
µ stratify J−1(µ)/Gµ

• Sjamaar’s principle and regularization

[J−1(µ) ∩ GµMz
H ]/Gµ � J−1

Lz (0)/Lz
0

• For the record

J−1
Lz (0)/Lz

0 = [J−1(µ) ∩ Mz
H ]/(NGµ

(H)z/H)
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Stratification in what
sense?

•Decomposed space: R, S ∈ Z with R∩S̄ �= ∅,
then R ⊂ S̄

• Stratification: decomposed space with a con-
dition on the set germ of the pieces

• Stratification with smooth structure: there are
charts φ : U → φ(U) ⊂ R

n from an open
set U ⊂ P to a subset of R

n such that for
every stratum S ∈ S the image φ(U ∩S) is a
submanifold of R

n and the restriction φ|U∩S :
U ∩ S → φ(U ∩ S) is a diffeomorphism.

•Whitney stratifications

•Cone space: existence of links

ψ : U → (S ∩ U) × CL,
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Where do the charts
come from?

•Marle-Guillemin-Sternberg normal form (1984)

•Hamiltonian G–manifold (M,ω,G,J : M →
g∗) can be locally identified with

(Yr := G ×Gm
(m∗

r × Vr) , ωYr
)

•The momentum map takes the expression

J([g, ρ, v]) = Ad∗
g−1(J(m) + ρ + JV (v)) + σ(g)

•Main observation

J−1(µ)/Gµ � J−1
Vr

(0)/Gm

•The symplectic strata are locally described by
the strata obtained (roughly speaking) from
the stratification by orbit types of J−1

Vr
(0) as

a Gm space

•Generalization by Scheerer and Wulff (2001)
with local momentum maps and by JPO and
Ratiu (2002) using the Chu map
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The reconstruction
equations

Xq = Xh = 0

Xm(g, ρ, v) = TeLg(Dm∗
r
(h ◦ π)(ρ, v))

XVr
= B


V (DVr

(h ◦ π)(ρ, v))

Xm∗
r

= Pm∗

(
ad∗D

m∗
r
(h◦π)ρ

)
+ ad∗D

m∗
r
(h◦π)JV (v).
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Hamiltonian Coverings

g acting symplectically on (M, ω). pN : N →
M is a Hamiltonian covering map of (M,ω):

(i) pN is a smooth covering map

(ii) (N, ωN ) is a connected symplectic manifold

(iii) pN is a symplectic map

(iv) g acts symplectically on (N, ωN) and has a
standard momentum map KN : N → g∗

(v) pN is g–equivariant, that is, ξM(pN (n)) =
TnpN · ξN(n), for any n ∈ N and any ξ ∈ g.
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The category of Hamiltonian covering
maps

g Lie algebra acting symplectically on (M, ω).

• Ob(H) = {(pN : N → M,ωN, g, [KN ])}
with pN : N → M a Hamiltonian covering
map of (M,ω)

• Mor(H) = {q : (N1, ω1) → (N2, ω2)} with:

(i) q is a symplectic covering map

(ii) q is g–equivariant

(iii) the diagram

N1 N2

M

g∗

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�

pN1
pN2

KN1
KN2

q

commutes for some KN1
∈ [KN1

] and KN2
∈

[KN2
].
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Proposition Let (M,ω) be a connected sym-
plectic manifold and g be a Lie algebra acting
symplectically on it. Let (p̂ : M̂ → M, ω

M̂
, g, [K̂])

be the object in H constructed using the univer-
sal covering of M .
For any other object (pN : N → M,ωN, g, [KN ])

of H, there exists a morphism q : M̂ → N in
Mor(H).
Any other object in H that satisfies the same

universality property is isomorphic to (p̂ : M̂ →
M,ω

M̂
, g, [K̂]).
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The holonomy bundles of α are Hamil-
tonian coverings of (M,ω, g).

Proposition The pair (M̃, ω
M̃

:= p̃∗ω) is a
symplectic manifold on which g acts symplecti-
cally by

ξ
M̃

(m, µ) := (ξM(m),−Ψ(m)(ξ, ·)),

where Ψ : M → Z2(g) is the Chu map. The

projection K̃ : M̃ → g∗ of M̃ into g∗ is a
momentum map for this action. The 4–tuple
(p̃ : M̃ → M, ω

M̃
, g, [K̃]) is an object in H

Theorem (p̃ : M̃ → M,ω
M̃

, g, [K̃]) is a uni-
versal Hamiltonian covered space in H, that is,
given any other object (pN : N → M,ωN, g, [KN ])
in H, there exists a (not necessarily unique) mor-

phism q : N → M̃ in Mor(H). Any other object
of H that satisfies this universality property is
isomorphic to (p̃ : M̃ → M,ω

M̃
, g, [K̃]).
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Reduction using the cylinder
valued momentum map

First ingredient: a ``coadjoint’’ action

K : M → g∗/H cylinder valued momentum
map associated to a G–action on (M,ω)

• H is Ad∗-invariant: Ad∗
g−1(H) ⊂ H, g ∈ G

• There exists a unique action

Ad∗ : G × g
∗/H → g

∗/H
such that for any g ∈ G

Ad∗
g−1 ◦ πC = πC ◦ Ad∗

g−1

Second ingredient: a non-equivariance cocycle

Define

σ(g,m) := K(g · m) −Ad∗
g−1K(m)

• If M is connected σ : G × M → g∗/H does
not depend on M .

• σ : G → g∗/H is a group-valued one-cocyle,
that is

σ(gh) = σ(g) + Ad∗
g−1σ(h)
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The Reduction Theorem

The map

Θ : G × g∗/H −→ g∗/H
(g, µ + H) �−→ Ad∗

g−1(µ + H) + σ(g)

is a group action such that

K(g · m) = Θg(K(m))

Reduction Lemma

gµ+H · m = kerTmK ∩ g · m

Corollary: if H is closed then

gµ+H · m = (g · m)ω ∩ g · m

Regular Reduction Theorem: G acts freely
and properly. If H is closed then K−1([µ])/G[µ]
is symplectic with form given by

π∗[µ]ω[µ] = i∗µω

If H is not closed the theorem is false in general
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Stratification Theorem

Using the symplectic slice theorem the cylinder
valued momentum map locally looks like

K(φ[g, ρ, v]) = Θg(K(m) + πC(ρ + JVm
(v)))

Reproduce the Bates-Lerman proposition in this
setup

K−1([µ]) ∩ Y0

� {[g, 0, v] ∈ Y0 | g ∈ G[µ], v ∈ J−1
Vm

(0)}

Stratification Theorem If H is closed then
the quotient K−1([µ])/G[µ] is a cone space with
strata

[K−1([µ]) ∩ G[µ]M
z
H ]/G[µ] � J−1(ρ)/Gρ

Sjamaar’s principle is missing
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Groupoids
A groupoid G ⇒ X with base X and total
space G:

(i) α, β : G → X . α is the target map and
β is the source map. An element g ∈ G
is thought of as an arrow from β(g) to α(g)
in X .

(ii) The set of composable pairs is de-
fined as:

G(2) := {(g, h) ∈ G × G | β(g) = α(h)}.
There is a product map m : G(2) → G
that satisfies α(m(g, h)) = α(g), β(m(g, h)) =
β(h), and m(m(g, h), k) = m(g, m(h, k)),
for any g, h, k ∈ G.

(iii) An injection ε : X → G, the iden-
tity section, such that ε(α(g))g = g =
gε(β(g)). In particular, α ◦ ε = β ◦ ε is the
identity map on X .

(iv) An inversion map i : G → G, i(g) =
g−1, g ∈ G, such that g−1g = ε(β(g)) and
gg−1 = ε(α(g)).
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Examples
•Group: G ⇒ {e}.
•The action groupoid:

– Φ : G × M → M

– G × M ⇒ M

∗ α(g,m) := g · m, β(g, m) := m

∗ ε(m) := (e, m)

∗ m((g, h · n), (h, n)) := (gh, n)

∗ (g,m)−1 := (g−1, g · m)

– The orbits and isotropy subgroups of this
groupoid coincide with those of the group
action Φ.

•The cotangent bundle of a Lie group.

– T ∗G � G × g
∗

– T ∗G ⇒ g∗

∗ α(g, µ) := Ad∗
g−1µ, β(g, µ) := µ

∗ ε(µ) = (e, µ)

∗ m((g, Ad∗
h−1µ), (h, µ)) = (gh, µ)

∗ (g, µ)−1 = (g−1, Ad∗
g−1µ).
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•The Baer groupoid B(G) ⇒ S(G).

– S(G) set of subgroups of G

– B(G) set of cosets of elements in S(G)

∗ α, β : B(G) → S(G) are defined by
α(D) = Dg−1, β(D) = g−1D for some
g ∈ D.

∗m(D1, D2) := D1D2.

∗ The orbits of B(G) ⇒ S(G) are given by
the conjugacy classes of subgroups of G.
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Groupoid Actions

J : M → X a map from M into X and

G ×J M := {(g, m) ∈ G × M | β(g) = J(m)}.
A (left) groupoid action of G on M with mo-
ment map J : M → X is a mapping

Ψ : G ×J M −→ M
(g, m) �−→ g · m := Ψ(g, m),

that satisfies the following properties:

(i) J(g · m) = α(g),

(ii) gh · m = g · (h · m),

(iii) (ε(J(m))) · m = m.
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Examples of Actions

(i) A groupoid acts on its total space
and on its base. A groupoid G ⇒ X acts
on G by multiplication with moment map α. G
acts on X with moment map the identity IX via
g · β(g) := α(g).

(ii) The G–action groupoid acts on G–
spaces. Let G be acting on two sets M and N
and let J : M → N be any equivariant map with
respect to those actions. The map J induces an
action of the product groupoid G × N ⇒ N on
M . The action is defined by

Ψ : (G × N ) ×J M −→ M
(((g, J(m)),m) �−→ g · m.
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(iii) The Baer groupoid acts on G–spaces.
Let G be a Lie group, M be a G–space, and

•B : M → S(G), m ∈ M �−→ Gm ∈ S(G)

•B(G) ×B M := {(gGm, m) ∈ B(G) × M |
m ∈ M}

•B(G) ×B M → M given by (gGm, m) �→
g · m defines an action of the Baer groupoid
B(G) ⇒ S(G) on the G–space M with mo-
ment map B

• The level sets of the moment map are the
isotropy type subsets of M
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Groupoid model of the optimal
momentum map

•K : M → g∗/H, non equivariance one–cocycle
σ : G → g∗/H.

•G × g∗/H ⇒ g∗/H action groupoid associ-
ated to the affine action of G on g∗/H

•B(G) ⇒ S(G) Baer groupoid of G

•
(
G × g∗/H

)
×B(G) ⇒ g∗/H×S(G) be the

product groupoid and Γ ⇒ g∗/H× S(G) be
the wide subgroupoid defined by

Γ := {((g, [µ]), gH) | g ∈ G, µ ∈ g
∗/H, H ∈ S(G)}.

• Γ ⇒ g∗/H×S(G) acts naturally on M with
moment map

J : M −→ g∗/H× S(G)
m �−→ (K(m), Gm).

•Action of Γ on M :

Ψ : Γ ×J M −→ M
(((g,K(m)), gGm),m) �−→ g · m.
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By the universality property of the optimal mo-
mentum map there exists a unique map ϕ : M/A′

G →
g∗/H× S(G)

M g∗/H× S(G)

M/A′
G

�
�

�
�

�
�

�
�� �

�
�

�
�

�
�
��

�

J ϕ

J

If H is closed

J
−1([µ], Gm) = K−1([µ]) ∩ MGm

= J−1(ρ)

Connectedness implies ϕ injective.


