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Reduction is...

Algebra: a procedure to pass to
the quotient in the Hamiltonian
category

Geometry: a way to construct
new Poisson and symplectic
manifolds

Applied dynamics: a systematic
method to eliminate variables
using symmetries and/or
conservation laws

Theoretical dynamics: a way to
get intuition on the dynamical
behavior of symmetric systems

Numerics: 1s 1t worth 1t?



Example: The Weinstein-Moser
Theorem

e Weinstein-Moser: if d?h(m) > 0then 1/2 dim M
periodic orbits at each neighboring energy level.

e Relative Weinstein-Moser (JPO (2003)): Rel-
ative periodic orbits around stable relative at

neighboring energy-momentum-isotropy levels

% (dim UF — dim(N(K)/K) — dim (N (K)/K )A>




We will focus on

* Poisson and symplectic category

Leave aside
* Lagrangian side: different philosophy.
* Singular cotangent bundle reduction,
nonholonomic reduction, reduction of
Dirac manifolds and implicitly defined
Hamiltonian systems, Sasakian,

Kahler, hyperkahler, contact
manifolds....

References
e J.ook at review

* Symplectic: Marsden, Weinstein
(1974), Sjamaar, Lerman (1991)

* Poisson: Marsden, Ratiu (1986), JPO,
Ratiu (1998)



Structure of the course

Lecture I: Introduction.
Preliminaries on:

— Symmetries/group actions

— Poisson and symplectic
manifolds

Lecture II: Poisson reduction.

Lecture III: Momentum maps.
Normal forms.

Lecture IV: Symplectic
reduction. Regular and singular.



Symmetry/Group actions

Definition. M a manifold and G a Lie group.

A left action of G on M is a smooth mapping
d .G x M — M such that

(i) P(e, 2) = z, for all z € M and

(ii) (g, ®(h, 2)) = P(gh, z) for all g, h € G
and z € M.

We will often write
g-z:=d(g, 2) 1= Py(z) := 0*(g).
and
Ag ={2,| g € G} C Diff(M).

The triple (M, G, ®) is called a G—space or a
G—-manafold.

Examples of group actions.

e Translation and conjugation. The left
(right) translation L, : G — G, (Ry)
h — gh, induces a left (right) action of G on
itself.



e The inner automorphism AD, = I, :
G — G, given by I4 = Rg_1 o Ly defines a
left action of G on itself called conjugation.

e Adjoint and coadjoint action. The dif-
ferential at the identity of the conjugation map-
ping defines a linear left action of GG on g called
the adjoint representation of G on g

If Adj : g" — g" is the dual of Adg, then the

map
ES

d:GEGxgt — ¢
(ga V) — Ad;—lya

defines also a linear left action of G on g*

called the coadjoint representation of G
on g~



e Group representation. If the manifold
M is a vector space V and G acts linearly
on V, that is, &, € GL(V) for all ¢ € G,
where GL(V') denotes the group of all linear
automorphisms of V', then the action is said
to be a representation of G on V. For
example, the adjoint and coadjoint actions of
(G defined above are representations.

e Tangent lifts of group actions. The map
® induces a natural action on the tangent bun-

dle T'M of M by
where g € G and v, € T}, M.

e Cotangent lifts of group actions. Let
O : GxM — M be asmooth Lie group action
on the manifold M. The map ® induces a
natural action on the cotangent bundle T™* M

of M by
g Q= T;-mq)g—l C Qm,

where g € G and oy, € T5, M.



The infinitesimal generator & € X(M)
associated to & € g is the vector field on M defined
by

d

fM(m> = % 0 CI)eXp tf(m) = Ted™ - §.

The infinitesimal generators are complete vector
fields. The flow of €37 equals (t,m) — exp t&-m.

Moreover, the map £ € g — &y € X(M) is a
Lie algebra antihomomorphism, that is,

(i) (a& +bn)yr = a&py + bnyy,
(ii) [€, nlar = 1€ maa ).

Let g be a Lie algebra and M a smooth man-
ifold. A right (left) Lie algebra action
of g on M is a Lie algebra (anti)homomorphism
£ €gr— &y € X(M) such that the mapping
(m, &) € M x g — &y(m) € TM is smooth.

Given a Lie group action, we will refer to the Lie
algebra action induced by its infinitesimal gener-
ators as the assoctated Lie algebra action.
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Stabilizers and orbits. The 2sotropy sub-
group or stabilizer of an element m in the
manifold M acted upon by the Lie group G is
the closed subgroup

whose Lie algebra g, equals

gm =1{£ € 9| &p(m) =0} (1)
The orbit O,, of the element m € M under the
oroup action @ is the set
Om=G-m:={Py(m)|g € G}.

The isotropy subgroups of the elements in a group
orbit are related by the expression

Ggm = gGmg_1 for all g € G.

The notion of orbit allows the introduction of an
equivalence relation in the manifold M, namely;,
two elements x,y € M are equivalent if and only
if they are in the same G—orbit, that is, if there
exists an element g € G such that ®4(z) = v.
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The space of classes with respect to this equiva-
lence relation is usually referred to as the space

of orbits and, depending on the context, it is
denoted by the symbols M /G or M/Aq.

The action is
e Transitive if there is only one orbit.

e Free if the isotropy of every element in M
consists only of the identity element.

e Proper whenever the map © : G x M —
M x M defined by

O(g,2) = (2, (g, 2))
is proper. Equivalent to the following condi-
tion: for any two convergent sequences {my, }

and {gn -mp} in M, there exists a convergent
subsequence {gn, } in G.

Examples of proper actions: compact group ac-
tions, SFE(n) acting on R™, Lie groups acting on
themselves by translation.
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Proper actions

O : G X M — M be a proper action of the Lie
ogroup GG on the manifold M. Then:

(i) The isotropy subgroups Gy, are compact.

(ii) The orbit space M /G is a Hausdorff topologi-
cal space. (Even when M and G are not Haus-

dorft.)

(iii) If the action is free, M /G is a smooth man-
ifold, and the canonical projection m : M —

M /G defines on M the structure of a smooth
left principal G-bundle.

(iv) If all the isotropy subgroups of the elements
of M under the G—action are conjugate to a
given one H then M /G is a smooth manifold
and 7 : M — M/G defines the structure
of a smooth locally trivial fiber bundle with
structure group N(H)/H and fiber G/H.

(v) If the manifold M is paracompact then there
exists a G—invariant Riemannian metric on it.

(vi) If the manifold M is paracompact then smooth

G—invariant functions separate the G—orbits.
12



Tubes and Slices

Twisted product. Let G be a Lie group and
H C G asubgroup. Suppose that H acts on the
left on the manifold A. The twisted action of
H on the product G x A is defined by

h - (ga (I) — (gha h_l ' CL).

This action is free and proper by the freeness
and properness of the action on the G—tactor.
The twisted product G X A is defined as
the orbit space (G x A)/H corresponding to the
twisted action.

Tube. Let M be a manifold and G a Lie group
acting properly on M. Let m € M and denote
H = G,,. A tube around the orbit G - m is a
G—equivariant diffeomorphism

w:GXxgA—U,

where U is a G—invariant neighborhood of G - m
and A is some manifold on which H acts.
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Slice Theorem. G a Lie group acting properly
on M at the point m € M, H .= Gy,. There
exists a tube

QY . G XH B —U

about G - m. B is an open H-invariant neigh-
borhood of 0 in a vector space H—equivariantly

isomorphic to Ty, M /T, (G-m) on which H acts
linearly by

h-(v+Thn(G-m))=Tn®, v+ Th(G-m).

Dymanical consequences. G-invariant vec-
tor fields X can be locally decomposed as

X:XT+XN

Geometric consequences. Isotropy, fized

point, and orbit type spaces are submani-
folds:

M(H) = {Z e M| G, e (H)},

M7 ={zeM|HcCG.)},
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Structure Theorems

Principal Orbit Theorem: M connected.
The subset M"%9 N M is connected, open, and
dense in M. M /G contains only one principal
orbit type, which is a connected open and dense
subset of it.

The Stratification Theorem: Let M be
a smooth manifold and G a Lie group acting
properly on it. The connected components of
the orbit type manifolds M< H) and their pro-
jections onto orbit space M gy /G constitute a
Whitney stratification of M and M /G, respec-
tively. This stratification of M /G is minimal
among all Whitney stratifications of M/G.

Theorem. Let GG be a Lie group acting prop-
erly on the smooth manifold M and m € M a
point with isotropy subgroup H := G,,. Then

(Tin(G-m)°)H = {df(m) | f € C°(M)“}.
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Symmetry Reduction

o M a G—manifold. X & %(M)G Flow F3.
e [{-isotropy type submanifold My

preserved by the flow F} and N (H )-invariant.

oy My — Myg/(N(H)/H)
iH ) MH — M.

e Reduced vector field:
XHOWH:TWHOXOiH,
with flow FtH given by
FtHOWH:WHOFtOiH.

e Lincar compact actions and Hilbert’s Theo-
renmn.
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Symplectic manifolds

A symplectic manifold is a pair (M, w),
where M is a manifold and w € Q*(M) is a
closed non—degenerate two—form on M, that is,

oedw =0
e for every m € M. the map
v € TyM — wim)(v,-) e Ty M
is a linear isomorphism

If w is allowed to be degenerate, (M, w) is called
a presymplectic manifold. A Hama:lto-
nian dynamaical system is atriple (M, w, h),
where (M, w) is a symplectic manifold and h &
C'> (M) is the Hamiltonian function of the
system. By non—degeneracy of the symplectic
form w, to each Hamiltonian system one can as-

sociate a Hamaltonian vector field X; €
X (M), defined by the equality

iy,w = dbh.
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Example Let V be a vector space and V*
its dual. Let Z = V x V*. The canonical
symplectic form €} on 7 is defined by

Q(v1, 1), (v2, a2)) = (a2, v1) — (a1, v2).

Example Let () be a smooth manifold and
T7Q) its cotangent bundle. Let mo : T7Q — Q

be the projection and © the one—form on T*Q
defined by

O(8) - vg == (8, Tgmg - vg),
where 8 € T7Q and vg € Tg(T™Q). The
canonical symplectic form () on the cotan-
gent bundle T*(Q) is defined by 2 = —dO.

Darboux theorem Locally

n
wly = quz A dp;.
i=1
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In canonical coordinates, Xj is determined by
the well-known Hamzilton equations,

dq"  Oh dp; _ Oh

dt  Op;’ dt _(‘9_qi'

The Poisson bracket of f,g € C°(M) is
the function { f, g} € C°°(M) defined by

U 93(2) = wlz)(Xp(2), Xg(2)).

In canonical coordinates, the Poisson bracket takes
the form

Of 0g  0g Of
{f: 9} = Z(—@‘a—qza—m) |

19



Poisson manifolds

o (M, {-,-}) Poisson manifold. (C*°(M), {-,-})
Lie algebra such that
{fg,h} = f{g,h} + g{f h}
e Castmars elements in the center of algebra.

e Derivations and vector fields. Hamiltonian vec-
tor fields

Xplfl =4/, h}
e Example: The Lie-Poisson bracket The

dual g* of a Lie algebra g is a Poisson manifold
with respect to the £—Lie—Poisson brack-
ets {-,-}+ defined by

o of 0g
{f,9 () ==+ <u, [M 5u]>
g_{b € g is defined by

(1.3 = Df ) v

for any v € g*. Given h € Coo(g*)
Xp(p) = $ad5h/5ﬂ,u, nwegr

20



The Poisson tensor. The derivation prop-
erty of the Poisson bracket implies that for any
two functions f, g € C°(M), the value of the
bracket { f, g}(z) on f only through d f(z) which

allows us to define a contravariant antisymmetric

two-tensor B € A*(T*M) by

B<Z)(@Za ﬁz) — {fa g}(z)v
with df(z) = a, and dg(z) = B3,. This ten-
sor is called the Potsson tensor of M. The
vector bundle map BY : T*M — T M naturally
associated to B is defined by

B(z)(a, B:) = (az, BY(B.)).

Its range D := BYT*M) C TM is called the
characteristic distribution. For any point
m € M, the dimension of D(m) as a vector sub-

space of Ty, M is called the rank of the Poisson
manifold (M, {-,-}) at the point m.
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The Weinstein coordinates of a Poisson
manifold. Let (M, {-,-}) be a m—dimensional
Poisson manifold and zp € M a point where
the rank of (M, {-,-}) equals 2n, 0 < 2n < m.
There exists a chart (U, @) of M whose domain
contains the point zp and such that the associ-
ated local coordinates, denoted by

1 n
(q )yt 7q 7p17"' 7pn7217°°° 7Zm—2n)7

satisty

{d", ¢’} ={pispj} = 14" 2z} = {pi> 21} = 0,
and {qi,pj} = 5;-, for all 4,7k, 1 < 14,5 <n,
1< k<m-—2n.

For all k,1, 1 < k,Il < m — 2n, the Poisson
bracket {z1, z;} is a function of the local coordi-
nates z5, ..., 2™ 727 exclusively, and vanishes at
2p. Hence, the restriction of the bracket {-, -} to
the coordinates 21, ... ™2™ induces a Pois-
son structure that is usually referred to as the
transverse Poisson structureof (M, {-, -})
at m.
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A smooth mapping ¢ @ (M, {-,-}1) = (M2, {-,-}2)
is canonical or Poisson it for all g, h €

C'>°(Ms) we have
0 {g, h}o={¥"g, ¥ g}1.

In the symplectic category, ¢ : (Mj,wi) —
(M3, w9) canonical or symplectic if
0wy = wy.
e Symplectic maps are immersions.
e A diffeomorphism ¢ : My — Mo between two
symplectic manifolds (M7, wq) and (Mo, wo)
is symplectic if and only if it is Poisson.

e [f the symplectic map ¢ : M{ — Mo is not a
diffeomorphism it may not be a Poisson map.

Let (S, {-,-}°) and (M, {-, - }) be two Poisson
manifolds such that S C M and the inclusion
ig: S < M is an immersion. (S,{-,-}°)is a
Poisson submanifold of (M, {-, - YM) if ig
1S a canonical map.
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An immersed submanifold ) of M is called a
quasi Poisson submanifoldof (M, {-, - }M)

if for any q € (), any open neighborhood U of ¢
in M, and any f € C77(U) we have

Xligla) € Toig(ToQ),
where 1 @ ¢ < M is the inclusion and Xy
is the Hamiltonian vector field of f on U with
respect to the restricted Poisson bracket {-, }% .
Any Poisson submanifold is quasi Poisson. The
converse 1s not true.

Given two symplectic manifolds (M, w) and (S, wg)
such that S C M and the inclusion ¢ : S — M
is an immersion, the manifold (S, wg) is a sym-
plectic submanifold of (M,w) when i is a
symplectic map. Symplectic submanifolds of a
symplectic manifold (M, w) are in general nei-
ther Poisson nor quasi Poisson manifolds of M.
The only quasi Poisson submanifolds of a sym-
plectic manifold are its open sets which are, in
fact, Poisson submanifolds.

24



Symplectic Foliation Theorem. Let (M, {-,-})
be a Poisson manifold and D the associated char-
acteristic distribution. D is a smooth and inte-
orable generalized distribution and its maximal
integral leaves form a generalized foliation de-
composing M into initial submanifolds L. each
of which is symplectic with the unique symplectic
form that makes the inclusion ¢ : £ — M into a
Poisson map, that is, £ is a Poisson submanifold
of (M, {-,-}).

Example Let g* with the Lie-Poisson struc-
ture. The symplectic leaves of the Poisson man-
ifolds (g*,{-,-}+) coincide with the connected
components of the orbits of the elements in g*
under the coadjoint action. In this situation, the
symplectic form for the leaves is given by the
Kostant—Kirillov—Souriau (KKS) expres-
sion

B (W)Eg ), 1ge(v)) = £ (v, [E, 7).

25



Canonical symmetries

o (M, {-,-}) Poisson manifold. G acts canoni-
cally on M when

WiLf. ) = (@) f. 3h)
e Fasy Poisson reduction: (M, {-,-}) Poisson
manifold, G Lie group acting canonically, freely,

and properly on M. The orbit space M /G is
a Poisson manifold with bracket

{f, ¥/ % w(m)) = {f o, gom}(m),

e Reduction of Hamiltonian dynamics: h € C°°(M )&
reduces to h € C*°(M/G) given by homw = h
such that

Xy =Tmo Xy
e What about the symplectic leaves?”

26



How do we do it?

e Consider R® with bracket
8f 89 Of Og
oh =Yg g

e St-action given by
d: SlxRY — RO
(€', (x, y)) — (Rgx, Ryy),
e Hamiltonian of the spherical pendulum

1
h:§<y,y>+<az,eg>

e Impose constraint < xz,x >=1

e Angular momentum: J(x, y) = x1y2 — x2y1.

Hilbert basis of the algebra of S invariant poly-
nomials is given by

01 = I3 agzy%+y§+y§ 05:£C%+£C%
g2 = Y3 04 = T1Y1 + T2Y2 06 = I1Y2 — L2Y1-

Semialgebraic relations

O'Z + 0(23 = o5(03 — 0%), o3 > 0, os > 0.

27



Hilbert map
c: TR? — RO
(%, y) — (01(%,¥), ..., 06(%, y)).
The S' orbit space TR3/St can be identified

with the semialgebraic variety o(TR3) C RY,
defined by these relations.

T'S? is a submanifold of RY given by
TS?={(x,y) e R’ |<x,x >=1, < x,y >=0}.

TS? is S1-invariant. 7.5%/S1 can be thought of
the semialgebraic variety o(T'S?) defined by the
previous relations and

O’5-|—O'%:1 o4+ o109 =0,
which allow us to solve for o4 and o3, yielding

TS%/S' = o(TS?) = {(01, 03, 03, 06) € R* |

010} + 0 = (1= o7)(03 — 03),

jo1] <1, 03 > 0}.

28



j=0 1

If u # 0 then (T 32) . appears as the graph of
the smooth function

2 2
o5 +
=21 gyl <.

The case 1 = 0 is singular and (T'S?)g is not a
smooth manifold.

(TS g 09 o3 |06
o1 0 I —o7| 209 |0
oy —(1—0%)| 0 | —20103 0
o3| —209 |2010% 0 0
olls 0 0 0 0
Reduced Hamiltonian
1
H = —03 + 01

2 29



Poisson reduction by distributions

e Reduction of the 4-tuple (M, {-,-}, D, S)

e S encodes conservation laws and D invariance
properties

e S submanifold of (M, {-,-}). Dg:=DNTS
o (M, {-,-}) Poisson manifold, D C TM. D is
Poisson if
df|p =dglp=0=d{f, g}|p =0

e When does the bracket on M induce a bracket
on S/Dg"?
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e The functions C’gfi Dy At characterized by the
. . 50 .

following property: f € C3 y DS(V) if and only

if for any z € V there exists m € WB;(V),

U, open neighborhood of m in M, and F' €
C57(Up) such that

Je ”Ds‘@ls(vwfm =F ‘@}g(V)mUm'
I 1s a local extension of f o mp, at the
- 1
point m € WDS(V).
o 57 Ds has the (D, Dg)-local extension

property when the local extensions of fomrp S
can always be chosen to satisfy

dF(n)‘D(n) = 0.
o (M, {-,-},D,S)is Poisson reducible when
(S/DS,C’gf}DS,{-,-}S/DS) is a well defined

Poisson manifold with
{1,957/ PS(mpg(m)) = {F,G}(m).

F, G are local D—invariant extensions of f o
Tpg and gomp,.
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Theorem (Marsden, Ratiu (1986)/ JPO, Ratiu
(1998) (singular)).
(M, {-,-}, D, S) is Poisson reducible if and only
if

BYD°) c TS+ D.

Examples

Coisotropic submanifolds:
BY((TS)°) c TS

Dirac’s first class constraints (Bojowald, Strobl
(2002)).

If S be an embedded coisotropic submanifold of
M and D := B*(TS)°) then (M, {-,-},D,S)
is Poisson reducible.

Appear in the context of integrable systems as
the level sets of integrals in involution.
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Cosymplectic manifolds and

Dirac’s formula

An embedded submanifold S C M is called
cosymplectic when

(i) BY(TS)°)NTS = {0}.

(ii) Tss _I_ Tsﬁs — T3M7

for any s € S and Ls the symplectic leaf of
(M, {-,-}) containing s € S. The cosymplec-
tic submanifolds of a symplectic manifold (M, w)

are its symplectic submanifolds (a.k.a. second
class constraints). In this case

TM|g = BY(TS)°) & TS
Theorem(Weinstein (1983)) S cosymplectic. Let
D := BY(TS)°) ¢ TM|g. Then
(i) (M, {-,-}, D, .S) is Poisson reducible.

(ii) The corresponding quotient manifold equals
S and the reduced bracket {-,-}° is given by

{£,9}(s) = {F.G}(s),
F,G € C57(U) are local D-invariant exten-
sions of f and g. 33



(iii) The Hamiltonian vector field X ¢ of an ar-
bitrary function f € C'g% (V') can be written
as

Ti-Xp=mgoXpoi, (1)
where ' € C37(U) is an arbitrary local exten-
sion of f and wg : TM|g — TS is the pro-
jection induced by the Whitney sum decom-
position TM|g = BY(TS)°)® TS of TM]|g.

(v) The symplectic leaves of (S, {-,-}°) are the
connected components of the intersections SN
L, with £ a symplectic leaf of (M, {-,-}). Any
symplectic leaf of (S, {-,-}°) is a symplectic
submanifold of the symplectic leaf of (M, {-,-})
that contains it.

(vi) Let Lg and ,CSS be the symplectic leaves of
(M, {-,-}) and (S, {-,-}°), respectively, that
contain the point s € 5. Let wye and wpg

be the corresponding symplectic forms. Then
B*(5)((TS)°) is a symplectic subspace of T L

34



and

BHs)(1:5)°) = (1.25) " @

(vii) Let Bg € A%(T*S) be the Poisson tensor
associated to (S, {-,-}°). Then

Bg:TrSOBmSOTrE, (3)

where g+ T*S — T"M|g is the dual of
ng:TM|g—TS.

Formula (3) gives in local coordinates Dirac’s for-
mula:

{f,9}°(s) = {F G}(s)
— Z{F P} (s)Cy(s) {0, G (s)

1,7=1
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The momentum map

e (M,w) symplectic manifold, G acting canoni-

cally
e Momentum map J : M — ¢g*

I8 =< J,6>, i, w=dI*
with
d
Eni(m) = —r| expl&-m

t=0

e Noether’s Theorem: the fibers of J are pre-
served by the Hamiltonian flows associated to
G-invariant Hamiltonians.

Example: linear momentum. Take the

phase space of the N—particle system, that is,
T*R3N . The additive group R? acts on it by

(O (qla pl> — (ql + v, pl>
J: T"R3N — Lie(R?) ~ R3
' N
(q;, ') VD 1D

36



Example: angular momentum. Let SO(3)
act on R? and then, by lift, on T*R3, that is,

A-(q, p) = (Aq, Ap).
J: TR’ — so( )* ~R?
(g, p) — axp
which is the classical angular momentum.

Example: lifted actions on cotangent
bundles. Let G be a Lie group acting on the
manifold ¢) and then by lift on its cotangent bun-

dle T*Q.
(J(ag), &) = {ag, £g(q)),
for any ag € T%(Q) and any £ € g.

Example: symplectic linear actions. Let
(V, w) be a symplectic linear space and let G be
a subgroup of the linear symplectic group, acting
naturally on V.

(3(0), &) = 50(Ev(v), v)
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Properties of the momentum map

e Regularity of the action is equivalent to the
regularity of the momentum map

range Tind = (gm)"
o ker Ty, J = (g - m)¥.

e Fixistence:
p:9/le, 8] — H'(M,R)
& ig,wl

e Equivariance: When (g, |-, ]) — (C*°(M),{-, -

defined by £ +— J S £ € g, is a Lie algebra ho-

momorphism, that is,
J&n = 136 N, ¢ neqg
Answer: iff
T.J - &p(2) = —ade I(2),

A momentum map that satisfies this relation
in called tnfinittestmally equivariant.

e J is G—equivariant when
Ad* 1 oJ =Jod,,
9

e If (7 is compact J can be chosen G—equivari?%nt



Equivariance

Define the non equivariance one—cocycle

associated to J as the map
ES

o: G — g
g+ J(Pg(2)) — Ad/ _1(I(2)).

Then:

(i) The definition of o does not depend on the
choice of z € M;

(ii) The mapping o is a g*—valued one—cocycle
on G with respect to the coadjoint represen-
tation of G on g*.

We define the affine action of G on g* with

cocycle o by
ES

O:Gxg" — g
(9, p) — Ad;_m+0(g>-

© determines a left action of G on g*. The mo-
mentum map J : M — g* is equivariant with
respect to the symplectic action ® on M and the

affine action ¥ on g*.
39



The affine orbits @), are also symplectic with
G-invariant symplectic structure given by

s (Vg ), g V) = £, [€, 1)) F 2(E ),

where the infinitesimal non equivariance cocycle
> € Z%(g,R) is given by

XigXxXg — R
(57 77) — 2(57 77) — d/O'\n(G) ) 57
with oy : G — R defined by oy)(g) = (a(g),n)-

Reduction Lemma:

gu.m:g.mmkerTmJ:gmﬂ(G'W)W-
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Momentum maps and isotropy type man-
ifolds The free, proper, and canonical action ot
L™ = N(Gm)"™/Gm on Mg has a momen-
tum map Jpm - Mg — (Lie(L™))* given by

Iin(z) = Mgy (2) =), =€ ME,

In this expression A : (g2,)m — (Lie(L™))* de-
notes the natural L"—equivariant isomorphism
given by

d
(80 G| ewtean) = 10.6)

for any 8 € (gi,)%™, & € Lie(N(Gm)™) =
Lie(N(Gm)).

The non equivariance one—cocycle 7 : M/} —
Gm

(Lie(L™))* of the momentum map Jzm is given
by the map

() = Ao(n)+n-pu— p).
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Convexity

J: M — g* coadjoint equivariant. G, M com-
pact. The intersection of the image of J with a
Weyl chamber is a compact and convex poly-
tope. This polytope is referred to as the mo-
mentum polytope.

Delzant’s theorem proves that the symplectic toric
manifolds are classified by their momentum poly-
topes. A Delzant polytope in R" is a convex
polytope that is also:

(i) Simple: there are n edges meeting at each
vertex.

(ii) Rational: the edges meeting at a vertex p
are of the form p 4+ tu;, 0 <t < o0, u; € 2",
ie{l,... ,n}.

(iii) Smooth: the vectors {uy,... ,un} can be
chosen to be an integral basis of Z".

Delzant’s Theorem can be stated by saying that
{symplectic toric manifolds} — {Delzant polytopes
(M, w, T"J - M — R") +— J(M)

1S a bijection. o



The cylinder valued
momentum map

e Condevaux, Dazord, Molino [1988] Géometrie
du moment. UCB, Lyon.

o M x gt — M, M connected
o€ QM x g*;g")

(@(m, 1) - (v, ),€) = (igy @)(m) - vm — 11,)
e o has zero curvature = 'H discrete

o M holonomy bundle < horizontal leat
K

N *

M g

p e

M - g% /H

e Standard momentum map exists < H = {0}

e K always exists and it is a smooth momentum
0 w

o ker(T),K) = ((Lie(H)) - m)

o range (17, K) = Ty m¢ ((gm)°) 43



Equivariance

K : M — g*/H cylinder valued momentum
map associated to a G—action on (M, w)

e H is Ad*-invariant: Ad;_l(H) C H, g€
If GG is connected, H is pointwise fixed.
e There exists a unique action
Ad* G x g*/H — g*/H
such that for any g € G
Ad;_l O M = T O Ad;_l
Define
olg,m) =K(g-m)— Ad;_lK(m)
o If M is connected o : G x M — g*/H does
not depend on M .

o0 : G — g*/H is a group-valued one-cocyle,
that is

o(gh) = o(g) + Ad;_1o(h)



The map
O:Gxg"/H — g*/H
(9, p+H) — Ad_(n+H) + ()
is a group action such that
K(g-m) = 6y(K(m))

Reduction Lemma
gu+ﬁ-m:kerTmKﬂg-m

Corollary: if ‘H is closed then
0,7 m=(@-m*“Ng-m
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Cylinder and Lie group valued

momentum maps

McDuff, Ginzburg, Huebschmann,Jeffrey, Hueb-
schmann, Alekseev, Malkin, and Meinreken (1998)

(-, -) bilinear symmetric non degenerate form on
g J: M — G is a G—valued momentum
map for the g—action on M whenever

i¢, w(m) - vy = (Tm(LJ<m>_1 o J)(vm), 5)

Any cylinder valued momentum map associated
to an Abelian Lie algebra action whose corre-
sponding holonomy group is closed can be un-
derstood as a Lie group valued momentum map.

Proposition f : g — g* isomorphism given
by § — (€,-), E €gand T == f~Y(H). [ in-
duces an Abelian group isomorphism f : g/7 —
g*/Hby f(E+T) := (&, -)+H. Suppose that H
is closed in g* and define J .= f~l1o K : M —
g/7, where K is a cylinder valued momentum
map for the g-action. Then J : M — g/7 is

a g/7T —valued momentum map for the actio%of
the Lie algebra g of (g/7,+) on (M, w).



Lie group valued momentum maps
produce closed holonomy groups

Theorem H C g* holonomy group associated
to the g-action. f:g — g* f:9/7T — g*/H,
and 7 = f~1(H) as before. Let G be a con-
nected Abelian Lie group whose Lie algebra is
g and suppose that there exists a G—valued mo-
mentum map A : M — G associated to the
g-action whose definition uses the form (-, -).

(i) If exp : g — G is the exponential map, then

H C f(kerexp).

(ii) H is closed in g*.

Let J = f oK : M — g/T, where K :
M — g*/H is a cylinder valued momentum map
for the g—action on (M,w). If f(kerexp) C H
then J : M — g/7T = g/kerexp ~ G is a G-
valued momentum map that differs from A by a
constant in G.

Conversely, if H = f(kerexp) then J : M —

g/ kerexp ~ G is a G-valued momentum map.
a7



The optimal momentum map

Problems with the traditional momentum map:

e Possible non existence of J:
1. St acting on T? by
eigb . (6291 6@92) . (6i<¢+91>, 67;92).

)

Lie group valued momentum maps. Dirac
11926], McDuft [1988], Alekseev et al. [1997].

2. (R3, {-,-}) with Poisson tensor

0 1 0
B=1-1 01
0 —10

(R,4) acts on R3 by X - (z,y,2) = (z +
Ay, z). NO MOMENTUM MAP!

e Singular case not optimal (finite groups). Does
not see law of conservation of isotropy.

I N versus  IJNwpw) N Mp
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¢ JPO, Ratiu [2002]
oG actson (M,{-,-})viad:Gx M — M.
e A ={Pyg: M - M|geG} CP(M).
o Al = {X (m)| f € C®°(M)“}.
e The canonical projection

J: M — M/Aq

is the optimal momentum map associ-
ated to the G-action on M.
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e J always defined:
1.5t on T?
J : T2 — gl
(€i91 ei@g) —_ €i(92.

)

2.R on R?
J : R3S R
(z,y,2) —> z+2. @
¢ Why momentum map?

Noether’s Theorem: [ is universal. Let
Fy flow of X}, h € C°(M)C then

JoFy=4
e Why optimal?
Theorem: G acting properly on (M, w) with

associated momentum map J : M — g%

Then:
An(m) =ker T, J N Ty Mg .
Hence, the level sets of J are

3 p) = I H(w) N My,
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Symplectic reduction

e Marsden, Weinstein (1974): free proper action
implies J~1(u)/G, “canonically” symplectic

% *w
T u

where 7, : J7Hp) — I (w)/G, and iy,
I~ ) = M
e Reduction of dynamics: h € C®°(M)C. The

flow Fy of X, leaves J~™(u) invariant and

commutes with the G—action, so it induces a
flow Ft” on M), defined by

WMoFtoiH:Ft'uowM.
The flow F}' on (M,,, wy,) is Hamiltonian with
associated reduced Hamziltonian func-
tion h, € C°°(M,) defined by
hyom, ="hoiy.
The triple (M,;, wy,, hy,) is called the reduced
Hamzltonian system.

e Reduces the search of relative equilibria and
relative periodic orbits to equilibria and peri-
odic orbits. >



Reconstruction of dynamics: Assume that
an integral curve ¢, (t) of the reduced Hamilto-
nian system Xp —on (M, wy,) is known. Let

mgy € J71(1) be given. Can one determine from
this data the integral curve of the Hamiltonian
system X, with initial condition my? In other
words, can one reconstruct the solution of the
given system knowing the corresponding reduced
solution”

Pick a smooth curve d(t) in J~(u) such that
d(0) = mg and 7, (d(t)) = cu(t). Then, if ()
denotes the integral curve of X, with ¢(0) = my,
we can write ¢(t) = g(t) - d(t) for some smooth
curve g(t) in G, determined in two steps:

o Step 1: find a smooth curve £(t) in g,

E(t)(d(t)) = Xp(d()) — d(2):

o Step 2: with £(t) € g, determined above,
solve the non—autonomous differential equa-
tion on G,

g(t) = TeLg<t>§(t), with g(0) =e.
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Coadjoint orbits as reduced spaces. Take
M = T*@G, where G is a Lie group with Lie al-
oebra g, the G—action being the cotangent lift
of left translation, and the associated momen-
tum map J7 : ay € TG — T R4(ay) €
g* which is right invariant. For each u € g*
we can form the symplectic point reduced space
(T™G)y, wy). Recall also that the momentum
map for the lift of right translations is left in-
variant and is given by Jp : ay € TG —
T¢ Ly(ag) € g

The momentum map Jp : T*G — g* in-
duces for each u € g* a symplectic diffeomor-
phism Jp : (T*G)u,wyu) — (O“’wg)u) given
by Jr([Ty R—11]) = Adj p.
Cotangent bundles. GG acts on () freely and
properly. The map

20 ((T*Q)o, (h) — (TH(Q/G), %))

given by @o(|ag])(Typ(vg)) == ag(vy), with o €
J—10), vg € TyQ, is a symplectomorphism.
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We now study the symplectic reduced space

(T7Q) s w)-

Let 1/ == plgyu € g, the restriction of u to gy,
and consider the G —action on () and its lift to
T*(@). An equivariant momentum map of this
action is the map J# : T*Q — g,, obtained by
restricting J. Assume there is a Gy —invariant
one-form «a, on @ with values in (J#)~1(n).

For § € gy and ¢ € @, the identity (ngon)(q) =
au()(€0()) = (Jau(g), &) = (1, &) shows

that ngon is a constant function on (). There-
fore, for £ € g,;, this implies ngdaM = £§Qozﬂ—
dngon = 0, since £€QO‘M = 0 by G/-invariance
of oy, It follows that there is a unique two-form
5, on @, such that pZﬂu = day,. Since py, 18 a
submersion, (5, 1s closed, but need not be exact.
Let B, = WZQM@L where TQ, ° T*Q, — Q is
the cotangent bundle projection.



Embedding cotangent bundle reduction
theorem Under the above hypotheses, the map

o (T7Q)yus (2)) — (T°Qu, g, — By,

given by gy (|ag])(Typu(ve)) = (ag—au(q))(vg).
for oy € I, vq € T,Q, is a symplectic em-
bedding onto a vector subbundle of 7%¢),. The
map ¢, is onto T%Q),, if and only if g = g,.
The additional summand By, in the symplectic
structure of T%Q), is called a magnetic term.
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Symplectic orbit reduction
(i) The set Mo, = J710,)/G is a regular
quotient symplectic manifold with the sym-

plectic form wo, uniquely characterized by
the relation

- +
zzkguw = Wéuwou +J Euwou, (5)
where J,, is the restriction of J to J —10,)

and w(“; is the +—symplectic structure on the
7

affine orbit O,,. The maps i@u : J_l((’)u) s
M and 7, J-Y0o,) — Mo, are natural
injection and the projection, respectively. The
pair (MOW w@M) is called the symplectic
orbit reduced space.

(ii) Thesed are, up to connected components,
the symplectic leaves of (M/G,{-, } p/q)-

(iii) Same dynamical statements that we have
for the point reduced spaces.
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Cylinder Valued Regular Reduction The-
orem: G acts freely and properly. If H is closed
then K—1([u])/G ) 18 symplectic with form given

by

If H is not closed the theorem is false in general

See presentation of Ratiu in the conference for
the general case.
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Optimal reduction

(M, {-,-}) Poisson manifold, G acts properly
and canonically on M. Then, for any p € M /A,

e J~!(p) is an initial submanifold of M.

e The isotropy subgroup G, C G of is an (im-
mersed) Lie subgroup of G.

o If G, acts properly on J~1(p) then M, =

g1 (p)/Gpis aregular quotient manifold called
the reduced phase space.

e The canonical projection
—1 —1
mp:d (p) =3 (p)/Gp
1S a submersion.

e Optimal Symplectic Reduction: M is
symplectic with w, given by

mpwp(m)(Xy(m), Xp(m)) = {f, h}(m),

for any m € J(p) and f,h € C®(M)C.
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THE GLOBALLY HAMILTONIAN
CASE

My = 37 (1) 1 My /N, (H)
=J7 () N My/(Ng,(H)/H)
_ G H
~ (7 0 M) /Gy = M
These are Sjamaar and Lerman [1991] reduced

spaces.

e Guillemin, Sternberg (1982): Kahler reduc-
tion at zero. Kirwan (1984)

e Sjamaar, Lerman (1991), Bates, Lerman (1997):
Singular reduction

e Sjamaar (1995): Singular Kahler
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Singular reduction

(H)

e There is a unique symplectic structure wy,

on M/SH> = [J7 () N GuMz|/G)y charac-
terized by

ZIELH) * = 7TIl(fif) *CUIELH>

e The symplectic spaces M EL}D stratify I~ (1) /G 10

e Sjamaar’s principle and regularization

I 1) N GuMp) /Gy == I72(0)/ L

e For the record

J2(0)/L§ = (37 () N Mf)/(Ng,(H)?/H)
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Stratification in what
sense?

e Decomposed space: R, S € Z with RNS # 0,
then R C S

e Stratification: decomposed space with a con-
dition on the set germ of the pieces

e Stratification with smooth structure: there are

charts ¢ : U — ¢(U) C R™ from an open
set U C P to a subset of R" such that for
every stratum S € S the image ¢(U N .S) is a
submanifold of R™ and the restriction ¢|;7ng :

UNS — ¢(UNS) is a diffeomorphism.
e Whitney stratifications

e Cone space: existence of links

YU — (SNU) x CL,
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Where do the charts
come from?

e Marle-Guillemin-Sternberg normal form (1984)

e Hamiltonian G—manifold (M,w,G,J : M —
g*) can be locally identified with

(Yr =G xg,, (m; x V), wy,)
e The momentum map takes the expression
J(lg,p,0]) = Ad__1(J(m) + p+ Ty (v)) + o(g)
e Main observation

)Gy =~ 37 10) /G

e The symplectic strata are locally described by
the strata obtained (roughly speakmg) from
the stratification by orbit types of Jy, 1(0) as
a Gy, space

e Generalization by Scheerer and Wulft (2001)

with local momentum maps and by JPO and
Ratiu (2002) using the Chu map
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The reconstruction
equations

Xq=Xp=0
Xm(Q, P; ’U) — TeLg(Dmi(h © 7T><p, U))
Xy = BS(Dy, (hom)(p,v))

Xmﬁ — ]P)m* (&d*D (]’LOﬂ')’O) -+ ad*Dm?UlOﬂ')JV(v)'

*k
my
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Hamiltonian Coverings

g acting symplectically on (M,w). py : N —
M is a Hamaltonian covering map of (M, w):

(i) py is a smooth covering map

(ii) (N,wy) is a connected symplectic manifold
(iii) pyy is a symplectic map
(

iv) g acts symplectically on (IV,wyr) and has a
standard momentum map Ky : N — g*

(v) pyy is g—equivariant, that is, &y7(py(n)) =
Tapn - En(n), for any n € N and any & € g.



The category of Hamiltonian covering
maps
g Lie algebra acting symplectically on (M, w).
° Ob(f)> — {(pN . N — Ma WN, 8, [KND}

with ppr ©+ N — M a Hamiltonian covering
map of (M,w)

o Mor(9)) = {q: (N1, w1) — (Ny,wy)} with:
(i) g is a symplectic covering map
(ii) ¢ is g-equivariant
(iii) the diagram

g
Ky, Ky,
/
/ q
N - N
AN
PN, \\ PN,
M

commutes for some Ky, € [Ky,|and Ky, €
Kp,)- *



Proposition Let (M,w) be a connected sym-
plectic manifold and g be a Lie algebra acting
symplectically on it. Let (p: M- M W 0, K])
be the object in $ constructed using the univer-
sal covering of M.

For any other object (py : N — M,wy, g, [ Ky])
of §, there exists a morphism q : M — N in
Mor($).

Any other object n §) that satisfies the same
universality property is isomorphic to (p: M —

M W 8, [K])
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The holonomy bundles of o are Hamil-
tonian coverings of (M,w,g).

Proposition The pair (]\7, wrr = prw) is a
symplectic manifold on which g acts symplecti-
cally by

£ (m, 1) = (Eyg(m), —W(m)(E, ),
where ¥ : M — Zz(g) is the Chu map. The

—~

projection K : M — g* of M into g*is a
momentum map for this action. The 4- tuple
(p: M — M,w— 7 8 K]) is an object in §

Theorem (p : M — M, WiTs 85 K]) is a uni-
versal Hamiltonian covered space in §), that is,

given any other object (py : N — M, wy, g, Ky

in §, there exists a (not necessarily unique) mor-
phism ¢ : N — M in Mor($). Any other object
of § that satisfies this universality property is
isomorphic to (p : M — M, w— 7 8 K]).
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Reduction using the cylinder
valued momentum map

First ingredient: a coadjoint’’ action

K : M — g*/H cylinder valued momentum
map associated to a G—action on (M, w)

e H is Ad*-invariant: Ad;_l(H) CH,ged
e There exists a unique action
Ad* G xg"/H — g*/H
such that for any g € G
.Ad;_l O M = W O Ad;_l
Second ingredient: a non-equivariance cocycle

Define
o(g.m) i= Klg - m) — Ad) K(m)
o If M is connected o : G x M — g*/H does
not depend on M .

o0 : G — g*/H is a group-valued one-cocyle,
that is

o(gh) = olg) + AL o) ©



The Reduction Theorem

The map
O: G X g*/_ﬁ — g*/E
(g:n+H) — Ad__i(p+H) +0(g)
is a group action such that
K(g - m) = 6,(K(m))

Reduction Lemma

gMJrﬁ-m:kerTmKﬂg’m

Corollary: if H is closed then
0, m=I(g-m~Ng-m

Regular Reduction Theorem: G acts freely
and properly. If H is closed then K~ Y([u])/G M
is symplectic with form given by

*

Tl =

Y] = tu

If 'H is not closed the theorem is false in general
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Stratification Theorem

Using the symplectic slice theorem the cylinder
valued momentum map locally looks like

K(olg, p,v]) = O4(K(m) + mc(p + Iy, (v)))

Reproduce the Bates-Lerman proposition in this
setup

K~ ([u]) NYy
~ {[g,0,0] € Yy | g € Gy,p,v € I,1(0)}

Stratification Theorem If H is closed then
the quotient K=1([u])/ G, 1s a cone space with
strata

K™ ([u) N GyMEl/Gly =~ T H(p)/G,

Sjamaar’s principle is missing
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Groupoids

A groupoid G = X with base X and total
space G:

(i) a, 0 : G — X. «is the target map and
3 is the source map. An element ¢ € G
is thought of as an arrow from 3(g) to a(g)
m X.

(ii) The set of composable pairs is de-
fined as:

={(g.h) € G x G| Blg) = a(h)}
There is a product map m G2 - @
that satisfies a(m(g, h)) = a(g), B(m(g, h)) =
B(h), and m(m(g, h), k) = m(g, m(h, k)),
for any g, h, k € G.

(iii) An injection € : X — G, the iden-
tity section, such that e¢(a(g))g = g =
ge(B(g)). In particular, a0 € = F o€ is the
identity map on X.

(iv) An tnversion mapi: G — G, i(g) =
gL g € G, such that ¢~ g = €(B(g)) and
g9~ = elalg)).



Examples
o Group: G = {e}.
e The action groupoid:
—O:-GxM—-M
-GxXxM=M
* Oé(g,TTL) =g - m, ﬁ<97m> = m
xe(m) .= (e,m)
«(g;m) L= (gL, g-m)
—The orbits and isotropy subgroups of this
oroupoid coincide with those of the group
action O.

e The cotangent bundle of a Lie group.
~-T"G~Gxg"
-T*G = ¢"
kalg, p) = Ad g, Blg, p) = g

«e(p) = (e, 1)
«m((g, Ady ), (b, 1)) = (gh, 1)

(g ) = (g7 A )
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e The Baer groupoid B(G) = &(G).
— G(G) set of subgroups of G
—B(G) set of cosets of elements in &(G)
xa, : B(G) — G(G) are defined by
a(D) = Dg~ !, B(D) = gD for some
geD.
xm(D1, D) := D1 Ds.
+ The orbits of B(G) = &(G) are given by

the conjugacy classes of subgroups of G.
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Groupoid Actions

J: M — X amap from M into X and
G XM= {lg,m)eGxM]pBg)=J(m)}

A (left) groupoid action of G on M with mo-
ment map J : M — X 1s a mapping

UV:GEXx M — M
<g>m> = g m .= W(Qam%

that satisfies the following properties:
(i) J(g-m) = alg).

(if) gh-m=g- (h-m),

(iii) (e(J(m))) - m = m.
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Examples of Actions

(i) A groupoid acts on its total space
and on its base. A groupoid G = X acts
on G by multiplication with moment map o. G
acts on X with moment map the identity Iy via
g-Plg) = alg).

(ii) The G—-action groupoid acts on G-
spaces. Let GG be acting on two sets M and N
and let J : M — N be any equivariant map with
respect to those actions. The map J induces an
action of the product groupoid G x N = N on
M. The action is defined by

U: (GXxN)x;M — M
(((g, J(m)),m) — g-m.
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(iii) The Baer groupoid acts on G—spaces.
Let G be a Lie group, M be a G-space, and

e B:M—G6(G),meMr— Gy € 6(G)
¢B(G) xp M ={(gGm,m) € B(G) x M |
m e M}

¢B(G) xg M — M given by (¢Gpp,m) —
g - m defines an action of the Baer groupoid
B(G) = 6(G) on the G-space M with mo-
ment map B

e The level sets of the moment map are the
isotropy type subsets of M
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Groupoid model of the optimal
momentum map

oK : M — g/ H, non equivariance one-cocycle
oc:G—g"/H.

o x g*/H = g*/H action groupoid associ-
ated to the affine action of G on g*/H

¢ B(G) = &(G) Baer groupoid of G

o (G x g*/H)xB(G) = g*/HxS(G) be the
product groupoid and I' = g*/H x &(G) be
the wide subgroupoid defined by

[i={((g: W), 9H) | g € G, p € g*/H, H € &(G)}.
o[ = g*/H x &(@) acts naturally on M with

moment map
J: M — g*"/H x 6(G)
m — (K(m),Gp,).
e Action of I' on M:
v ['xy M — M
(((9,K(m)), gGm),m) — g -m.
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By the universality property of the optimal mo-
mentum map there exists a unique map ¢ : M / A’G —

g*/H x &(G) ;
M -g*/H x 6(G)

It 'H is closed
37N, Gm) = K~ ([u)) N Mg, = T (p)

Connectedness implies ¢ injective.
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