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Abstract. We present a quick review of several reduction techniques for symplectic and
Poisson manifolds using local and global symmetries compatible with these structures.

Reduction based on the standard momentum map (symplectic or Marsden–Weinstein
reduction) and on generalized distributions (the optimal momentum map and optimal
reduction) is emphasized. Reduction of Poisson brackets is also discussed and it is shown how
it defines induced Poisson structures on cosymplectic and coisotropic submanifolds.
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1. Introduction

The use of symmetries in the quantitative and qualitative study of dynamical systems

has a long history that goes back to the founders of mechanics. In most cases, the

symmetries of a system are used to implement a procedure generically known under

the name of reduction that restricts the study of its dynamics to a system of smaller

dimension. This procedure is also used in a purely geometric context to construct

new nontrivial symplectic or Poisson manifolds.

Most of the reduction methods presented in this paper can be seen as a general-

ization systematizing the techniques of elimination of variables found in classical

mechanics. These procedures consist basically of two steps. First, one restricts the

dynamics to flow invariant submanifolds of the system in question. Sometimes, these

invariant manifolds appear as the level sets of a momentum map induced by the

symmetry of the system. The construction of these momentum maps and the

interplay between symmetry and conservation laws is one of the main topics of this

presentation. The second step consists in projecting the restricted dynamics onto the

symmetry orbit quotients of the spaces constructed in the first step. This passage to
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the quotient generally yields spaces that are not smooth manifolds, which explains

why this procedure is sometimes called singular reduction.

Here we provide a self-contained, quick, and general overview of some of the

reduction techniques found in the literature. The results presented here are not

original, even though many of them cannot be found in journals; they appear for the

first time in [44]. The proofs are omitted to keep the size of this review within a

reasonable length. This allows the reader to gain a panoramic overview of these

methods without being distracted by technical details. These are extremely important

when a deeper understanding is desired but are avoidable in a first contact with the

subject. All the proofs can be found in the original papers cited in the text or in our

monograph [44].

2. Symmetry Reduction

The word reduction appears in the mathematics and physics literature in a variety of

contexts.

2.1. THE CASE OF GENERAL VECTOR FIELDS

Let M be a smooth manifold and G be a Lie group acting properly on M. Let

X 2 XðMÞG be a G-equivariant vector field on M and Ft be the corresponding

(necessarily equivariant) flow. For any isotropy subgroup H of the G-action on M,

the H-isotropy type submanifold MH defined by

MH :¼ fm 2 M j Gm ¼ Hg ð2:1Þ
is preserved by the flow Ft. The symbol Gm denotes the isotropy subgroup of the

element m 2 M. This property is known as the law of conservation of isotropy. The

properness of the action guarantees that Gm is compact and that the (connected

components of) MH are embedded submanifolds of M for any closed subgroup H of

G. The manifolds MH are, in general, not closed in M. Moreover, the quotient group

NðHÞ=H (where NðHÞ denotes the normalizer of H in G) acts freely and properly on

MH. Hence, if pH: MH ! MH=ðNðHÞ=HÞ denotes the projection onto orbit space

and iH: MH,!M is the injection, the vector field X induces a unique vector field XH

on the quotient MH=ðNðHÞ=HÞ defined by the expression

XH � pH ¼ TpH � X � iH;
whose flow FH

t is given by FH
t � pH ¼ pH � Ft � iH. We will refer to

XH 2 X MH=ðNðHÞ=HÞð Þ as the H-isotropy type reduced vector field corresponding to

X.

This reduction technique has been widely exploited in specific examples (see [6, 13,

14]). When the symmetry group G is compact and we are dealing with a linear action

the construction of the quotient MH=ðNðHÞ=HÞ can be implemented in a very

explicit and convenient manner by using the invariant polynomials of the action and

the theorems of Hilbert, Schwarz, and Mather. Apart from the already cited works,

the papers [7, 17–19] all use this method in concrete examples.
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2.2. THE HAMILTONIAN CASE

Let ðM;xÞ be a symplectic manifold and G a connected Lie group, with Lie algebra

g, acting freely and properly by symplectomorphisms on ðM;xÞ. Assume that this

action admits an associated equivariant momentum map J: M ! g�. If G is compact

or semisimple this always holds. Recall that J is defined by the condition that for any

element n 2 g, the Hamiltonian vector field XJn associated to the function

Jn :¼ hJ; ni satisfies XJn ¼ nM, where nM is the infinitesimal generator vector field

given by n 2 g.

The Marsden–Weinstein reduction theorem [30] states that for any regular value

l 2 JðMÞ � g� of J, the quotient Ml :¼ J�1ðlÞ=Gl is a symplectic manifold with

symplectic form xl uniquely determined by the equality p�lxl ¼ i�lx, where Gl is the

isotropy subgroup of the element l 2 g� with respect to the coadjoint action of G on

g�, il: J
�1ðlÞ,!M the canonical injection, and pl: J�1ðlÞ ! J�1ðlÞ=Gl the projec-

tion onto the orbit space.

In terms of dynamics, the interest of this construction is given by the fact that for

any G-invariant Hamiltonian h 2 C1ðMÞG, the corresponding Hamiltonian flow Ft

leaves the connected components of J�1ðlÞ invariant (Noether’s Theorem) and

commutes with the G-action, so it induces a flow Fl
t on Ml, uniquely determined by

the identity pl � Ft � il ¼ Fl
t � pl. The flow Fl

t is Hamiltonian on ðMl; xlÞ, with
Hamiltonian function hl 2 C1ðMlÞ defined by the relation hl � pl ¼ h � il. The

function hl is called the reduced Hamiltonian.

Symplectic reduction is a very powerful tool that has been involved in many

developments in symplectic geometry and in the study of Hamiltonian dynamical

systems with symmetry [1]. Nevertheless, there are situations in which the just

described reduction procedure does not work or is not efficient enough. For instance,

the following situations can occur:

� The symmetry of the system does not admit a momentum map. This problem has

been solved in some situations with the introduction of other types of momentum

maps [2, 8, 12, 15, 32].

� The action is not free and therefore the symplectic quotient Ml is not a smooth

manifold. In the presence of a momentum map this situation has been treated in

[4, 5, 9, 37, 46].

� The symmetry group is discrete and therefore the momentum map does not

provide any conservation law.

� The phase space the system is not a symplectic but a Poisson manifold [28, 42].

3. Conservation Laws via Generalized Distributions

The optimal momentum map has been introduced in [43] as an approach, based on

generalized distributions, to the problem of finding and describing the conservation

laws associated to a canonical symmetry.
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Unlike the standard momentum map, this object is related to global rather than to

infinitesimal symmetries. One of the main goals behind its study consists in capturing

the conservation laws that cannot be detected by the previously described momen-

tum map. Even the generalized momentum maps alluded to above become trivial

when the Lie algebra of the symmetry group is zero. This eliminates discrete sym-

metries from the general reduction scheme, a case that is very important in appli-

cations.

Another particularly convenient feature of the optimal momentum map is its

generality. The construction presented previously (and other similar methods) is very

symplectic in nature. This can be generalized to the Poisson setting, but there the

existence of the momentum map becomes even more problematic. As will be shown

in this section, the optimal momentum map always exists for any canonical group

action on a Poisson manifold.

The use of the term ‘optimal’ is justified by the following property: the level sets of

this map are the smallest possible submanifolds of phase space that are preserved by

the flows of Hamiltonian vector fields of G-invariant functions. To be more specific,

recall that the Hamiltonian vector field associated to an invariant Hamiltonian is

automatically equivariant and therefore satisfies the law of conservation of the

isotropy, discussed in Section 2. Thus, the isotropy type manifolds are invariant

under its flow. This conservation law cannot be detected either by the standard

momentum map discussed previously, or by its various generalizations mentioned

above.

3.1. GENERALIZED FOLIATIONS AND DISTRIBUTIONS

To explain all of this, we quickly review generalized foliations and distributions. We

begin with the notion of initial submanifold that naturally appears in this context. Let

M and N be smooth manifolds and assume that N � M as sets. Then N is called an

initial submanifold ofM if the inclusion map i: N ,! M is an immersion satisfying the

following condition: for any smooth manifold P and anymap g: P ! N, g is smooth if

and only if i � g: P ! M is smooth. By its very definition, the smooth manifold

structure that makes N into an initial submanifold of M is unique. As we shall see

below, initial submanifolds are very much relevant for generalized foliations.

A generalized foliation on M is a partition U ¼ fLaga2A of this manifold into

disjoint connected sets, called leaves, such that each point z 2 M has a generalized

foliated chart, defined as a pair ðU;u : U ! W � R
mÞ with z 2 U and such that for

each leaf La there is a natural number n � m, called the dimension of La, and a subset

Aa � R
m�n such that

uðU \ LaÞ ¼ fðz1; . . . ; zmÞ 2 W j ðznþ1; . . . ; zmÞ 2 Aag:
Each element ðzinþ1; . . . ; z

i
mÞ 2 Aa determines a connected component ðU \ LaÞi of

U \ La, that is, uððU \ LaÞiÞ ¼ fðz1; . . . ; zn; zinþ1; . . . ; z
i
mÞ 2 Wg. Notice that, unlike

in the case of standard foliations, the number n may change from leaf to leaf. The

generalized foliated charts induce on the leaves a smooth manifold structure relative
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to which they are initial submanifolds of M. Recall that even in the case of the usual

foliations, that is, the dimension n is constant on M, the leaves are rarely embedded;

they are, however, initial manifolds.

A generalized distribution D on M is a subset of the tangent bundle TM such that,

for any point m 2 M, the fiber DðmÞ :¼ D \ TmM is a vector subspace of TmM. The

dimension of DðmÞ is called the rank or the dimension of the distribution D at the

point m. A differentiable section of D is a differentiable vector field X defined on an

open subset U of M, such that for any point m 2 U, XðmÞ 2 DðmÞ. An immersed

connected submanifold N ofM is said to be an integral manifold of the distribution D

if, for every z 2 N, TziðTzNÞ � DðzÞ, where i: N ,! M is the injection. The integral

submanifold N is said to be of maximal dimension at a point z 2 N if

TziðTzNÞ ¼ DðzÞ. The generalized distribution D is differentiable if, for every point

m 2 M and for every vector v 2 DðmÞ, there exists a differentiable section X of D,

defined on an open neighborhood U of m, such that XðmÞ ¼ v. The generalized

distribution D is completely integrable if, for every point m 2 M, there exists an

integral manifold of D everywhere of maximal dimension which contains m. The

generalized distribution D is involutive if it is invariant under the (local) flows

associated to differentiable sections of D. This definition of involutivity is more

general than the usual one encountered in the Frobenius theorem and it only

coincides with it when the dimension of DðmÞ is the same for any m 2 M, that is,

precisely when D is a vector subbundle of TM. There are various characterizations of

the complete integrability of a distribution, the most common being the Stefan–

Sussmann Theorem: D is completely integrable if and only if it is involutive.

Let D be an integrable generalized distribution. Then for every point m 2 M there

exists a unique connected integral manifold Lm of D that contains m and which is

maximal in the following sense: it is everywhere of maximal dimension and if there is

any other connected integral manifold L0 of maximal dimension that intersects Lm,

then L0 is an open submanifold of Lm. The submanifold Lm is called the maximal

integral manifold or the accessible set of D containing m. The maximal integral

manifolds of D are always initial submanifolds of M and constitute a generalized

foliation UD ofM. We shall denote byM=D :¼ M=UD the leaf space of UD. The term

‘accessible set’ is justified by the fact that the maximal integral manifold Lm of D

containing the point m coincides with the set of points that can be reached by

applying to m finite compositions of flows of the (locally defined) differentiable

sections that span D. This immediately leads to the concept of pseudogroups of

transformations to which we turn next.

3.2. PSEUDOGROUPS AND THE EXTENSION PROPERTY

Recall that a monoid is a set with an associative operation which contains a two-sided

identity element (which is hence unique). A pseudogroup is a submonoid A of a given

monoid such that each element has an inverse in A. In particular, the set of all local

diffeomorphisms of a manifold is not just a monoid but a pseudogroup. A useful
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property of pseudogroups of local diffeomorphisms ofM is that they have orbits that

partition the manifold. The orbit through m 2 M of the pseudogroup of transfor-

mations A is defined by

A �m :¼ fuðmÞ j u 2 A;m is in the domain ofug:

Endowing the space of orbits M=A of a pseudogroup A of local diffeomorphisms

with the quotient topology, makes the canonical projection M ! M=A both con-

tinuous and open. A pseudogroup A of local diffeomorphisms of the manifold M is

called integrable if its orbits form a generalized foliation of M. In particular, the

orbits of an integrable pseudogroup are initial submanifolds of M. The generalized

distribution DA associated to the pseudogroup A is defined by the condition that

DAðmÞ equals the tangent space to the A-orbit through m 2 M at m.

The pseudogroup A of local diffeomorphisms of M is said to have the extension

property if any A-invariant function f 2 C1ðUÞA defined on any A-invariant open

subset U has the following feature: for any z 2 U, there is an A-invariant open

neighborhood V � U of z and an A-invariant smooth function F 2 C1ðMÞA such

that f jV ¼ FjV.
The group of (global) diffeomorphisms associated to a proper Lie group action has

the extension property.

3.3. POLAR PSEUDOGROUPS

If ðM; f�; �gÞ is a Poisson manifold, denote by PLðMÞ the pseudogroup of all local

Poisson diffeomorphisms of M and by PðMÞ the group of Poisson diffeomorphisms

of M. It turns out that the optimal momentum map presented later on in this section

has much to do with the notion of polarity introduced in [38].

If A � PLðMÞ is a pseudogroup of local Poisson diffeomorphisms of M, denote by

FA the set of Hamiltonian vector fields associated to all the elements of C1ðUÞA (A-

invariant functions in C1ðUÞ), for all open A-invariant subsets U of M, that is,

FA ¼ Xf j f 2 C1ðUÞA;with U � M open and A-invariant
n o

:

The distribution DFA
associated to the family FA, that is,

DFA
ðmÞ :¼ XfðmÞ j f2C1ðUÞA; withU�M open and A-invariant; m 2U

n o
for every m 2 U, is called the polar distribution defined by A. Any generating family

of vector fields for DFA
is called a polar family of A. The family FA is the standard

polar family of A. The polar pseudogroup of A is defined by

A0 :¼ fF1
t1
� � � � �Fn

tn
j n2N and Fk

tk
is a local flow of some Xfk 2 FA; 1� k� ng:

For example, ifA � PLðMÞ apseudogroupof local Poisson diffeomorphismsofM that

has the extension property, then the family fXf j f 2 C1ðMÞAg is a polar family.

A very important property of the polar distribution of a group of Poisson diffe-

omorphisms is that it is automatically Poisson and integrable.
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PROPOSITION 3.1. Let ðM; f�; �gÞ be a Poisson manifold and A � PðMÞ a group of

Poisson diffeomorphisms of M. Then the following hold.

(i) The polar pseudogroup A0 acts canonically and is integrable.

(ii) Any element of A commutes with any element of A0.

(iii) Any element u 2 A0 induces a local diffeomorphism �u of the presheaf space

ðM=A;C1
M=AÞ, uniquely determined by the relation �u � pA ¼ pA � u, where pA:

M ! M=A is the projection. In other words, the standard polar pseudogroup A0

acts on the presheaf space ðM=A;C1
M=AÞ.

(iv) The group A acts naturally on the orbit space M=A0. More specifically, for any

/ 2 A, there is a diffeomorphism �/ of the quotient space ðM=A0;C1
M=A0 Þ uniquely

determined by the relation �/ � pA0 ¼ pA0 � /, where pA0 : M ! M=A0 is the pro-

jection.

3.4. PRESHEAF SPACES

We elaborate now on the meaning of the smoothness statements in parts (iii) and

(iv).

Let F be a presheaf of functions defined on the topological space P. The pair

ðP;FÞ is called a presheaf space. In all that follows it is assumed that FðUÞ is an

algebra of continuous real valued functions on U for every open set U � P.

Let ðP1;F 1Þ and ðP2;F 2Þ be two presheaf spaces. The continuous map f:

ðP1;F 1Þ ! ðP2;F 2Þ is said to be smooth if for any open set U � P2 we have

f�F 2ðUÞ � F 1ðf�1ðUÞÞ; where f�s :¼ s � f for any s 2 F 2ðUÞ. A bijective smooth map

between presheaf spaces whose inverse is also smooth is called a diffeomorphism.

LetR be an equivalence relation on the presheaf space ðM;FMÞ and p:M ! M=R

the canonical projection. The presheaf FM on M naturally induces the quotient

presheaf FM=R on M=R by

FM=RðUÞ :¼ ff function on U j f � pjp�1ðUÞ 2 FMðp�1ðUÞÞg:

If FM is a sheaf, then so is FM=R.

If M is a smooth manifold, the map that assigns to each open set the smooth

functions on it is a sheaf denoted by C1
M. If A is a pseudogroup of local diffeo-

morphisms acting on M, then it defines an equivalence relation on M whose classes

are the A-orbits. Thus the previous construction yields the quotient presheaf C1
M=A

on M=A given on any open set U � M by

C1
M=AðUÞ :¼ ff 2 C1ðUÞ j f � pjp�1ðUÞ 2 C1

Mðp�1ðUÞÞg;

where p: M ! M=A is the canonical projection. The words ‘smooth’ and ‘diffeo-

morphism’ in parts (iii) and (iv) of Proposition 3.1 need to be understood in terms of

these definitions.

Let M be a topological space and FM a presheaf of functions on M. Let S � M be

a subset of M endowed with a given topology T that does not necessarily coincide

with the subspace topology. The presheaf FM induces naturally the presheaf F S;M of
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Whitney smooth functions on ðS; T Þ which is defined in the following way: for each

open subset V of S the set of functions FS;MðVÞ equals all functions on V having the

property that for any z 2 V there is a open neighborhood Uz of z inM and a function

F 2 FMðUzÞ such that fjUz\V ¼ FjUz\V. The function F is called a local extension of f

at z.

Let f: ðM;FMÞ ! ðN;FNÞ be a smooth function and S and T two topological

subspaces of M and N, respectively, such that fðSÞ � T. Then the map �f:

ðS;FS;MÞ ! ðT;FT;NÞ constructed by restricting the domain and range of f to S and

T, respectively, is also smooth.

If R is a regular equivalence relation on the smooth manifold M then the quotient

topological space M=R is a smooth manifold and the canonical projection p:
M ! M=R is a surjective submersion. Let C1

M=R denote the presheaf of smooth

functions on the manifold M=R. At the same time, the presheaf C1
M of smooth

functions on M induces a quotient presheaf of functions on M=R, denoted by

C1
M=R;p. The fact that p is a submersion implies that

C1
M=R ¼ C1

M=R;p: ð3:1Þ

An equivalence relation R on the topological space M with a presheaf of functions

FM can be used to define another presheaf on the topological space of saturated

open sets. An open subset of M is said to be R-invariant or R-saturated if it is the

union of R-equivalence classes. The R-saturated sets ofM form a topology forM, in

general strictly weaker than the original topology. The presheaf FR
M of R-invariant

or R-saturated functions associates to each R-invariant open subset U the set

FR
MðUÞ :¼ ff 2 FMðUÞ j f is constant on the equivalence classes of Rg:

Let S � M be a subset of M endowed with a given topology T and restrict the

equivalence relation R to S. Consider the presheaf ðF S;MÞR of R-invariant functions

on S and the restriction ðFR
MÞS;M to S of the presheaf FR

M on R-invariant functions

of M. A presheaf of much importance later on is the intersection of these two,

denoted by FR
S;M, that is,

FR
S;M :¼ ðFS;MÞR \ ðFR

MÞS;M:

The presheaf ðF S;MÞR limits the domain ofFR
S;M toR-invariant open sets of ðS; T Þ. To

bemore explicit, for any such setV,FR
S;MðVÞ consists ofR-invariant functions fdefined

on V with the property that for any z 2 V there exists an open R-saturated neigh-

borhood Uz of z in M and a function F 2 FR
MðUzÞ such that f jUz\V ¼ FjUz\V: We will

refer to FR
S;M as the presheaf of Whitney invariant functions on S induced by FR

M.

PROPOSITION 3.2. Let M be a topological space with a presheaf FM of functions

on it. Let R be an equivalence relation on M and S anR-invariant subset of M endowed

with a given topology T . If F S=R;M=R is the presheaf of Whitney smooth functions on

S=R considered as a subset of M=R, then FS=R;M=R � FR
S=R; where FR

S=R is the

quotient presheaf on S=R corresponding to FR
S;M. If the projection p: M ! M=R is an

open map then FS=R;M=R ¼ FR
S=R:
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3.5. THE OPTIMAL MOMENTUM MAP

If U: G�M ! M is a canonical Lie group action on the Poisson manifold

ðM; f�; �gÞ, denote by AG :¼ fUgjg 2 Gg � PðMÞ the associated group of Poisson

diffeomorphisms and by A0
G the polar pseudogroup. The optimal momentum map J :

M ! M=A0
G is defined as the projection of M onto the orbit space M=A0

G of the

pseudogroup A0
G, polar to AG that, by Proposition 3.1, is integrable. We will refer to

the quotient M=A0
G as the momentum space of J .

Notation. To simplify the notation, we shall use in the sequel interchangeably the

symbol A0
G to denote both the standard polar pseudogroup to AG and the polar

distribution. It will be always clear from the context which notion is used. Moreover,

we will denote by A0
G �m the orbit of the polar pseudogroup through m 2 M and by

A0
GðmÞ the polar distribution evaluated at m.

3.6. THE OPTIMAL MOMENTUM MAP FOR PROPER ACTIONS

If the G-action on M is proper, the subgroup AG has the extension property. In this

case, it can be shown that the optimal momentum map can be defined as the pro-

jection J : M ! M=DF onto the leaf space of the integrable distribution spanned by

the family of vector fields

F :¼ Xf j f 2 C1ðMÞG
n o

ð3:2Þ

and that the polar pseudogroup A0
G is a subgroup of the global diffeomorphisms

group of M.

A particular case of the situation presented above is the case of a compact Lie

group G acting canonically and linearly on a Poisson vector space ðV; f�; �gÞ. Let
B :¼ fr1; . . . ; rng be a Hilbert basis for this action. By the Schwarz–Mather Theo-

rem, any G-invariant function can be written as fðr1; . . . ; rnÞ, for some f 2 C1ðRnÞ,
so the chain rule guarantees that the distribution spanned by the family F in (3.2) is

the same as the one spanned by the finite family fXr1 ; . . . ;Xrng.
Let us compute a few examples of optimal momentum maps.

EXAMPLE 1. As already remarked, a canonical Lie group action on a Poisson

manifold does not necessarily preserve its symplectic leaves. Here is a simple

example. Endow ðR3; f�; �gÞ with the Poisson bracket defined by the Poisson tensor

whose matrix in standard Euclidean coordinates is

B ¼
0 1 0
�1 0 1
0 �1 0

0@ 1A:

If f 2 C1ðR3Þ, the associated Hamiltonian vector field is given by

Xfðx; y; zÞ ¼
@f

@y

@

@x
þ @f

@z
� @f

@x

� �
@

@y
� @f

@y

@

@z
: ð3:3Þ
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This shows that the Casimir functions are all of the form fðx; y; zÞ :¼ gðxþ zÞ, with
g 2 C1ðRÞ and that the symplectic leaves are hence given by the planes

xþ z ¼ constant.

Let the additive group ðR;þÞ act on R
3 by k � ðx; y; zÞ :¼ ðxþ k; y; zÞ, for any

k 2 R and any ðx; y; zÞ 2 R
3. It is clear that this action preserves the Poisson bracket

but, obviously, the symplectic leaves xþ z ¼ constant are not invariant under this

group action. In spite of this, we shall compute below the optimal momentum map

which produces a conservation law associated to this symmetry.

As the ðR;þÞ-action is proper, we can use the distribution in (3.2) to define the

corresponding optimal momentum map. Notice first that the invariant functions

f 2 C1ðMÞR in this case are all of the form fðx; y; zÞ 	 �fðy; zÞ, with �f 2 C1ðR2Þ
arbitrary. The expression (3.3) of the Hamiltonian vector fields defined by this

bracket shows that the A0
R
-orbits on R

3 coincide with those of the R
2-action on R

3

given by ðl; mÞ � ðx; y; zÞ :¼ ðxþ l; yþ m; z� lÞ, for any ðl; mÞ 2 R
2 and any

ðx; y; zÞ 2 R
3. Therefore, M=A0

G can be identified with R and the associated optimal

momentum map J : R3 ! R is given by J ðx; y; zÞ ¼ xþ z. A straightforward veri-

fication shows that the Hamiltonian flow associated to any invariant function

fðx; y; zÞ 	 �fðy; zÞ preserves the level sets of J . Note that J is a Casimir function of

the Poisson manifold ðR3; f�; �gÞ.

EXAMPLE 2. The following example is classical: a free and canonical action of a

compact Lie group on a compact symplectic manifold that does not admit a stan-

dard momentum map. Consider the two torus T2 ¼ fðeih1 ; eih2Þg with the symplectic

form x :¼ dh1 ^ dh2. The circle S1 ¼ fei/g acts canonically on T
2 by

ei/ � ðeih1 ; eih2Þ :¼ ðeiðh1þ/Þ; eih2Þ but does not admit a standard momentum map J:

T
2 ! R. We shall compute below the optimal momentum map for this action.

The properness of the action allows us to use again the leaf space of the distri-

bution (3.2). It is easy to see that in this case, every S1-invariant function

f 2 C1ðT2ÞS
1

can be written as fðeih1 ; eih2Þ ¼ gðeih2Þ for some arbitrary g 2 C1ðS1Þ.
The Hamiltonian vector field associated to any of these invariant functions is given

by Xf ¼ @g=@h2 @=@h1. Since g is an arbitrary function on the circle, we can identify

the quotientM=A0
G with the second circle S1 in the torus T2. The optimal momentum

map J : T2 ! S1 is therefore given by J ðeih1 ; eih2Þ ¼ eih2 . In this case, the optimal

momentum map is S1-valued and coincides with the Lie group valued momentum

map defined in [2].

3.7. THE MOMENTUM SPACE

In both examples the momentum spaceM=A0
G is a smoothmanifold. This is a very rare

occurrence. The quotient space M=A0
G carries, in general, a rather complicated

topology that has not yet been fully explored. Even if the canonical G-action on the

Poisson manifold M is such that the quotient topological space M=G ¼ M=AG is a

smooth manifold with the projection p: M ! M=G a surjective submersion, the
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associated momentum space M=A0
G could be an extremely nonsmooth topological

spacewith very unpleasant properties. The only general statements known today about

the optimal momentum map J :M ! M=A0
G is that it is a continuous and open map.

EXAMPLE 3. Endow M :¼ T
2 � T

2 with the symplectic form x :¼ dh1 ^ dh2þffiffiffi
2

p
dw1 ^ dw2, where ðeih1 ; eih2 ; eiw1 ; eiw2Þ 2 M, and consider the canonical free circle

action given by

ei/ � ðeih1 ; eih2 ; eiw1 ; eiw2Þ :¼ ðeiðh1þ/Þ; eih2 ; eiðw1þ/Þ; eiw2Þ:
ThusM=AS1 is a smooth manifold and the projection pA

S1
:M ! M=AS1 is a surjective

submersion. The polar distribution A0
S1 does not behave the same way. Indeed,

C1ðMÞS
1

¼ ff 2 C1ðMÞ j fðeih1 ; eih2 ; eiw1 ; eiw2Þ ¼ gðeih2 ; eiw2 ; eiðh1�w1ÞÞ
for some g 2 C1ðT3Þg;

so by looking at the flows of Hamiltonian vector fields of functions in C1ðMÞS
1

, one

immediately sees that the leaves of A0
S1 fill densely the manifold M and that the leaf

space M=A0
S1 can be identified with the leaf space T

2=R of a Kronecker (irrational)

foliation of a two-torus T2.

EXAMPLE 4. Consider on C
3 the standard symplectic form

xððz1; z2; z3Þ; ðz01; z02; z03ÞÞ ¼ �Im hðz1; z2; z3Þ; ðz01; z02; z03Þi
and let SU(3) act naturally on C

3. This action is canonical and linear and therefore

has a standard associated momentum map. The polar distribution A0
SUð3Þ is spanned

by the Hamiltonian vector fields associated to the elements of a Hilbert basis of

invariant polynomials. In this case, the polynomial

fðz1; z2; z3Þ ¼ 1
2 jz1j2 þ jz2j2 þ jz3j2
� �

constitutes such a basis. The Hamiltonian flow of Xf is given by

Ftðz1; z2; z3Þ ¼ ðz1e�it; z2e
�it; z3e

�itÞ:
Therefore, the momentum space C3=A0

SUð3Þ coincides with C
3=S1, where S1 acts on

C
3, by

ei/ � ðz1; z2; z3Þ ¼ ðei/z1; ei/z2; ei/z3Þ: ð3:4Þ
This quotient space can be identified with ðCPð2Þ � R

þÞ [ f�g, where f�g denotes a

singleton or, said differently, with the cone CðCPð2ÞÞ based on CPð2Þ. Indeed, if p:
C

3 ! C
3=S1 is the canonical projection and z ¼ ðz1; z2; z3Þ, then the mapping that

assigns pðz1; z2; z3Þ to z=kzk½ 
; kzkð Þ if z 6¼ 0, and to � if z ¼ 0, provides the needed

identification (the symbol z=kzk½ 
 denotes the element p z=kzkð Þ 2 CPð2Þ). The

optimal momentum map J : C3 ! ðCPð2Þ � R
þÞ [ f�g has the expression

J ðzÞ ¼
z
kzk

h i
kzk

� �
; if z 6=0 ,

�; if z=0.

(
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3.8. THE MOMENTUM SPACE AS A G-TOPOLOGICAL SPACE

By Proposition 3.1(iv) there is a smooth G-action on M=A0
G (smooth in the sense of

presheaf spaces) given by

g � J ðmÞ :¼ J ðg �mÞ; for any g 2 G; m 2 M: ð3:5Þ

This is the unique G-action on M=A0
G that makes the optimal momentum map G-

equivariant and it coincides with the usual smooth G-action on the leaf space of any

distribution spanned by G-equivariant vector fields.

3.9. THE UNIVERSALITY PROPERTY

The optimal momentum map J : M ! M=A0
G associated to a canonical G-action on

a Poisson manifold ðM; f�; �gÞ satisfies Noether’s condition, that is, J is constant

along the flow of any Hamiltonian vector field defined by a G-invariant function.

Indeed, due to the integrability of the polar distribution A0
G (see Proposition 3.1), the

Stefan–Sussmann Theorem implies that the level sets of the optimal momentum

map, that is, the leaves of the polar distribution, coincide with the orbits of the polar

pseudogroup. More specifically, if m 2 M is such that JðmÞ ¼ q 2 M=A0
G, then

J�1ðqÞ ¼ A0
G �m. As the polar pseudogroup consists of finite compositions of flows

of Hamiltonian vector fields associated to all the possible invariant Hamiltonians,

Noether’s condition for J follows immediately.

In addition, J has the following universality property. Below, by ‘momentum

map’ onM we mean any map K:M ! S whose target space is some set S such that J

satisfies the Noether condition stated above. If S has additional topological or

smooth structure, one requires that K is a map in the same category.

THEOREM 3.3 (Universality of the optimal momentum map). The optimal

momentum map is a universal object in the category of Hamiltonian symmetric systems

with a momentum map. More specifically, if ðM; f�; �g;G;K: M ! PÞ is any Hamil-

tonian G-space with momentum map K: M ! P and J : M ! M=A0
G is the optimal

momentum map defined using the canonical G-action on M, then there exists a unique

map u: M=A0
G ! P such that the following diagram commutes:

If K is smooth and G-equivariant with respect to some presheaf of functions on P and

some G-action on P, then u is also smooth and G-equivariant.
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3.10. COMPARISON BETWEEN THE OPTIMAL AND STANDARD MOMENTUM MAPS

Let G be a Lie group acting properly and canonically on the symplectic manifold

ðM;xÞ. The polar distribution A0
G can be explicitly determined in this case.

THEOREM 3.4. Let G be a Lie group acting properly and canonically on the sym-

plectic manifold ðM;xÞ. Then for any m 2 M

A0
GðmÞ ¼ ðg �mÞx \ TmM

m
Gm
; ð3:6Þ

where Mm
Gm

is the connected component of the isotropy type submanifold MGm
that

contains the point m.

Using this information one can compare J : M ! M=A0
G and a given standard

momentum map J: M ! g�. We shall return to the relationships below when dis-

cussing singular reduction. In the next corollary it is assumed that the symplectic

group action has an associated standard momentum map J: M ! g� with nonequi-

variance one-cocycle r: G ! g�, that is, rðgÞ :¼ Jðg �mÞ �Ad�g�1JðmÞ for any g 2 G

and m 2 M. The fact that r does not depend on m 2 M is a consequence of the

connectivity of M. Denote by H: G� g� ! g� the affine action of G on g� defined by

r, that is, Hðg; mÞ :¼ Ad�g�1mþ rðgÞ for any g 2 G and m 2 g�. Let l 2 g� be a value of

J; Gl will denote the isotropy subgroup of l with respect to the affine action H.

COROLLARY 3.5. Let G be a Lie group acting properly and canonically on the con-

nected symplecticmanifold ðM;xÞ and admitting a standardmomentummapJ:M �! g�

with nonequivariance one-cocycle r: G ! g�. Let J : M ! M=A0
G be the optimal

momentum map. Then, for any m 2 M such that JðmÞ ¼ l and J ðmÞ ¼ q, we have

J�1ðqÞ ¼ ðJ�1ðlÞ \Mm
Gm
Þm; ð3:7Þ

where ðJ�1ðlÞ \Mm
Gm
Þm denotes the connected component of J�1ðlÞ \Mm

Gm
that con-

tains the point m.

The isotropy subgroup Gq of the point q 2 M=A0
G with respect to the action (3.5)

equals Gq ¼ NGlðGmÞcðmÞ; where NGlðGmÞcðmÞ is the closed subgroup of

NGlðGmÞ :¼ NðGmÞ \ Gl consisting of the elements in NGlðGmÞ that leave the con-

nected component ðJ�1ðlÞ \Mm
Gm
Þm of J�1ðlÞ \Mm

Gm
invariant; NðGmÞ denotes the

normalizer of Gm in G.

The standard momentum map has the following remarkable property. Let ðM; xÞ
be a connected symplectic manifold and G a Lie group acting on M in a canonical

and proper fashion. Suppose that this action has an associated (not necessarily

equivariant) momentum map J: M ! g�. Then for any m 2 M, the intersection

J�1ðJðmÞÞ \Mm
Gm

is an embedded submanifold of M.

Even though, in general, the level sets of the optimal momentum map are just

initial submanifolds of M, Corollary 3.5 and the result above imply that in the
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symplectic case and if a standard momentum map exists, the level sets J�1ðqÞ are
embedded submanifolds of M.

4. The Optimal Momentum Map and Groupoids

In this short section we show that, in some sense, the optimal momentum map can be

interpreted as the moment map of a natural groupoid action. The results in this

section are admittedly incomplete because the investigation of the relationship be-

tween the optimal momentum map and groupoids begun in [33] and [52] has not

been yet totally clarified and is the subject of ongoing research.

4.1. GROUPOIDS

We recall here the minimal necessary background on groupoids for our develop-

ments. We refer to [3, 23, 34] and references therein for further information.

A groupoid G!!X over the set X, the base, is a set G, the total space, together with

the following structure maps:

(i) a; b: G ! X; a is the target and b is the source map. An element g 2 G is

thought of as an arrow from bðgÞ to aðgÞ in X.

(ii) The set of composable pairs is defined as

Gð2Þ :¼ fðg; hÞ 2 G� G j bðgÞ ¼ aðhÞg:
There is a product map m: Gð2Þ ! G that satisfies

aðmðg; hÞÞ ¼ aðgÞ; bðmðg; hÞÞ ¼ bðhÞ;
and

mðmðg; hÞ; kÞ ¼ mðg;mðh; kÞÞ; for any g; h; k 2 G:

One writes usually gh for mðg; hÞ.

(iii) An injection �: X ! G, called the identity section, such that �ðaðgÞÞg ¼
g ¼ g�ðbðgÞÞ. In particular, a � � ¼ b � � is the identity map on X.

(iv) An inversion map i: G ! G, also denoted by iðgÞ ¼ g�1, g 2 G, such that

g�1g ¼ �ðbðgÞÞ and gg�1 ¼ �ðaðgÞÞ.

If the total space and the base of a groupoid G!!X are smooth manifolds, the target

and source maps are surjective submersions, the multiplication, the inversion, and

the identity section are smooth maps, then G!!X is a called a Lie groupoid.

Given the groupoid G!!X, a subset H � G is a subgroupoid of G when it is

closed under multiplication and inversion. Under those circumstances H is a

groupoid over aðHÞ ¼ bðHÞ � X. If aðHÞ ¼ bðHÞ ¼ X, H!!X is called a wide

subgroupoid of G.

Any group is a groupoid over a set with just one element. Any set X can be

endowed with a trivial groupoid structure over itself by taking for the source and

target maps the identity. The Cartesian product X� X of any set X is a groupoid

over X by taking as target and source maps the projection on the first and second
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factors, respectively. The product is given by ðx; yÞðy; zÞ ¼ ðx; zÞ, x; y; z 2 X, the

identity section is �ðxÞ ¼ ðx; xÞ, and ðx; yÞ�1 ¼ ðy; xÞ. This is usually called the pair or

coarse groupoid. Let us give a few examples that are not trivial. Several of them will

be important in the ensuing discussion on the optimal momentum map.

EXAMPLE 1 Given two groupoids G1 and G2 over the sets X1 and X2, respectively,

there is a naturally defined product groupoid G1 � G2!!X1 � X2 by taking the

Cartesian product of the target and the source maps.

EXAMPLE 2 (The groupoid associated to a pseudogroup of transformations). Let

M be a smooth manifold and A a pseudogroup of local diffeomorphisms of M.

Define �A by

�A ¼ f�u : M ! M j u 2 A; �uðxÞ :¼ uðxÞ for x in the domain of u and �uðxÞ
:¼ x if notg

The product M� �A is a groupoid over M if one defines the structure maps a; b:
M� �A ! M by aðx; �uÞ ¼ �uðxÞ and bðx; �uÞ ¼ x, the product by

mððx; �uÞ; ðy; �wÞÞ :¼ ðy;u � wÞ, the identity section by �ðxÞ ¼ ðx; idMÞ, and the

inversion by ðx; �uÞ�1 ¼ ð�uðxÞ;u�1Þ, where �u; �w 2 �A. This groupoid M� �A!!M is

called the transformation groupoid associated to the pseudogroup A. Note that if A

consists of global diffeomorphisms of M, then �A ¼ A.

EXAMPLE 3 (The action groupoid). An important particular case of the pre-

vious example is obtained when one takes A ¼ AG ¼ fUg j g 2 Gg, where U:
G�M ! M is a smooth Lie group action. The resulting groupoid G�M!!M is

called the action groupoid . Since this example is crucial later on, we specify now

the structure maps:

aðg;mÞ :¼ g �m; bðg;mÞ :¼ m; �ðmÞ :¼ ðe;mÞ;

mððg; h � nÞ; ðh; nÞÞ :¼ ðgh; nÞ; and ðg;mÞ�1 :¼ ðg�1; g �mÞ;

for any g; h 2 G and m; n 2 M.

EXAMPLE 4 (The cotangent bundle of a Lie group as a groupoid). Let G be a Lie

group, T�G its cotangent bundle, g its Lie algebra, and g� the dual of g. If we identify

T�G with G� g� using right translations we can use the previous example to endow

T�G with a groupoid structure over g� by taking the following structure maps: for

any ðg; lÞ 2 G� g� let

aðg; lÞ :¼ Ad�g�1l; bðg; lÞ :¼ l; �ðlÞ ¼ ðe; lÞ;

mððg;Ad�h�1lÞ; ðh; lÞÞ ¼ ðgh; lÞ; and ðg; lÞ�1 ¼ ðg�1;Ad�g�1lÞ:

T�G!!g� is a symplectic groupoid.
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EXAMPLE 5 (The Baer groupoid). Let G be a group and SðGÞ be the set of

subgroups of G. Let BðGÞ be the set of cosets of elements in SðGÞ. It is not necessary
to specify if BðGÞ is the set of right or left cosets since they coincide: indeed, for any

g 2 G and any H 2 SðGÞ we have gH ¼ ðgHg�1Þg.
The set BðGÞ is a groupoid over SðGÞ, called the Baer groupoid, by choosing

aðDÞ ¼ Dg�1,bðDÞ ¼ g�1D forg 2 D.The setof composablepairs ðBðGÞÞð2Þ is givenby

ðBðGÞÞð2Þ :¼ fðD1;D2Þ 2 BðGÞ �BðGÞ j g�1
1 D1 ¼ D2g

�1
2 ;

for any g1 2 D1; g2 2 D2g:
The groupoid product defined on ðBðGÞÞð2Þ is given by mðD1;D2Þ :¼ D1D2 ¼
fgh j g 2 D1; h 2 D2g. If D 2 BðGÞ define D�1 :¼ g�1Dg�1, for any g 2 D. The

identity section is given by the inclusion map.

4.2. GROUPOID ACTIONS

Let G!!X be a groupoid over X, M a set, and J: M ! X a map. Define the fiber

product

G�J M :¼ fðg;mÞ 2 G�M j bðgÞ ¼ JðmÞg:
A (left) groupoid action of G on M with moment map J: M ! X is a mapping W:

G�J M ! M, denoted also by Wðg;mÞ ¼ g �m, that satisfies the following proper-

ties:

(i) Jðg �mÞ ¼ aðgÞ,
(ii) gh �m ¼ g � ðh �mÞ,
(iii) ð�ðJðmÞÞÞ �m ¼ m,

for any g; h 2 G and m 2 M. Notice that (i) guarantees that in (ii) each side of the

equality is defined if the other is.

Two immediate examples are the following. A groupoid G!!X acts on G by left

multiplication with moment map a. G also acts on X with moment map idX, where

g � bðgÞ :¼ aðgÞ. We shall give below two nontrivial examples.

EXAMPLE 6 (The G-action groupoid acts on G-spaces). Let G be a group acting on

two sets M and N and let J: M ! N be any equivariant map with respect to these

two actions. The map J naturally induces an action of the product groupoid

G�N!!N on the set M. Indeed,

ðG�NÞ �J M ¼ fððg; JðmÞÞ;mÞ j g 2 G;m 2 Mg � ðG�NÞ �M:

The action W: ðG�NÞ �J M ! M with moment J is defined by Jðððg; JðmÞÞ;mÞ :¼
g �m.

EXAMPLE 7 (The Baer groupoid acts on G-spaces) ([52]). Let G be a Lie group, M

a G-space, and B: M ! SðGÞ the map that assigns to each point m 2 M its isotropy

subgroup Gm 2 SðGÞ. Define BðGÞ �B M :¼ fðgGm;mÞ 2 BðGÞ �M j m 2 Mg. The
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map BðGÞ �B M ! M given by ðgGm;mÞ 7! g �m defines an action of the

Baer groupoid BðGÞ!!SðGÞ on the G-space M with moment map B. Notice that the

level sets of the moment map are the isotropy type subsets MH of of the G-action

on M.

EXAMPLE 8 (Action groupoids and momentum maps). Let ðM;xÞ be a connected

symplectic manifold acted canonically upon by a Lie group G. Suppose that this

action admits a standard momentum map J: M ! g� with nonequivariance one-

cocycle r: G ! g�. Let H: G� g� ! g� be the affine action on g� constructed with

this cocycle, that is, g � l :¼ Ad�g�1lþ rðgÞ for g 2 G and l 2 g�, and G� g�!!g� the

associated action groupoid. Since the momentum map J is equivariant with respect

to the G-action on M and the affine G-action on g�, it naturally induces an action of

the groupoid T�G ’ G� g� (Example 4) on M whose associated moment map is J

itself (see Example 6).

The same remark can be made regarding the optimal momentum map J :

M ! M=A0
G associated to a G-canonical action on the Poisson manifold ðM; f�; �gÞ.

In this case the groupoid in question is the action groupoid G�M=A0
G
!!M=A0

G

associated to the G-action on M=A0
G (see Proposition 3.1). This groupoid acts nat-

urally on M with associated moment map J .

4.3. A GROUPOID MODEL FOR THE OPTIMAL MOMENTUM MAP

With this background we can now link the concept of optimal momentum map to

groupoid moments. The expression (3.7) suggests that if the given G-action admits a

standard momentum map, the level sets of the optimal momentum map can be

‘parametrized’, up to connected components, by the isotropy subgroups of the group

action and the momentum values.

Let ðM;xÞ be a connected symplectic manifold acted canonically upon by a Lie

group G and suppose that this action admits a standard momentum map J: M ! g�

with nonequivariance one-cocycle r: G ! g�. Let T�G ’ G� g�!!g� be the action

groupoid associated to the affine action of G on g� and BðGÞ!!SðGÞ the Baer

groupoid of G (Example 5). Let T�G�BðGÞ!!g� �SðGÞ be the product groupoid

and C!!g� �SðGÞ the wide subgroupoid defined by

C :¼ fððg; lÞ; gHÞ j g 2 G; l 2 g�; H 2 SðGÞg:

It can be easily verified that C!!g� �SðGÞ acts naturally on M with moment map J:

M ! g� �SðGÞ given by JðmÞ ¼ ðJðmÞ;GmÞ.
The moment map J has the Noether property and encodes through its two

components the conservation of the standard momentum and the law of conserva-

tion of the isotropy which was one of the guiding principles behind the introduction

of the optimal momentum map. Indeed, both objects are closely related since the

universality property of the optimal momentum map (Theorem 3.3) implies that

there exists a unique map u: M=A0
G ! g� �SðGÞ such that the diagram
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commutes. Recall that the map u is defined by the equality

uðJ ðmÞÞ ¼ JðmÞ ¼ ðJðmÞ;GmÞ; m 2 M:

This expression, together with (3.7), allows us to injectively embed the quotient space

M=A0
G into g

� �SðGÞprovided that both the isotropyorbit typemanifoldsMGm
aswell

as the intersections J�1ðlÞ \MGm
are connected. Indeed, let m;m0 2 M be such that

uðJ ðmÞÞ ¼ uðJ ðm0ÞÞ or, equivalently, ðJðmÞ;GmÞ ¼ ðJðm0Þ;Gm0 Þ. Expression (3.7) in

Corollary 3.5 togetherwith the connectedness hypotheses implies that there is a unique

element q 2 M=A0
G such that m;m0 2 J �1ðqÞ, which establishes that u is injective.

5. Optimal Reduction

In this section we present and comment on the reduction procedure using the

optimal momentum map. As it will be seen, this approach overcomes the difficulties

posed by the use of the standard momentum map raised at the end of Section 2 and

unifies the different approaches to reduction discussed in that section. The reader

interested in the proofs of the following results is encouraged to check with the

original papers [39, 40] or with [44].

5.1. OPTIMAL POINT REDUCTION

The analogue of the Marsden–Weinstein reduction theorem in the optimal mo-

mentum setting is the following.

THEOREM 5.1 (Optimal point reduction by Poisson actions). Let ðM; f�; �gÞ be a

smooth Poisson manifold and G a Lie group acting canonically and properly on M. Let

J : M ! M=A0
G be the optimal momentum map associated to this action. For any

q 2 M=A0
G whose isotropy subgroup Gq acts properly on J �1ðqÞ (which is an initial

submanifold of M as the leaf of the integrable generalized distribution defined by the

pseudogroup A0
G), we have

(i) The orbit space Mq :¼ J�1ðqÞ=Gq is a smooth symplectic regular quotient

manifold with symplectic form xq defined by

p�qxqðmÞðXfðmÞ;XhðmÞÞ ¼ ff; hgðmÞ; ð5:1Þ

for any m 2 J�1ðqÞ and any f; h 2 C1ðMÞG, where pq : J�1ðqÞ ! Mq is the

canonical projection. The pair ðMq;xqÞ is the optimal reduced space of

ðM; f�; �gÞ at q.

JUAN-PABLO ORTEGA AND TUDOR S. RATIU28



(ii) Let h 2 C1ðMÞG. The flow Ft of Xh leaves J�1ðqÞ invariant, commutes with the

G-action, and therefore induces a flow F q
t on Mq uniquely determined by the

relation pq � Ft � iq ¼ F q
t � pq, where iq : J�1ðqÞ,!M is the inclusion.

(iii) The flow F q
t in ðMq;xqÞ is Hamiltonian with the Hamiltonian function

hq 2 C1ðMqÞ given by the equality hq � pq ¼ h � iq.
(iv) Let k 2 C1ðMÞG be another G-invariant function on M and f�; �gq the Poisson

bracket associated to the symplectic form xq on Mq. Then fh; kgq ¼
fhq; kqgq.

Note that the hypotheses of this theorem do not require the existence of a standard

momentum map associated to the action. The theorem is general enough to include

the Poisson case. Moreover, there are no assumptions on the freeness of the action

and the theorem still provides valuable information when the symmetry group is

discrete, even feg. Indeed, in this case the distribution A0
G coincides with the char-

acteristic distribution of the Poisson manifold. The level sets of the optimal

momentum map, and thereby the symplectic quotientsMq, are exactly the symplectic

leaves of the Poisson manifold ðM; f�; �gÞ. Thus, applying Theorem 5.1(i) for

G ¼ feg, one obtains the structure theorem for Poisson manifolds, that is, its

stratification into symplectic leaves.

The very definition of the polar distribution implies that for any q 2 M=A0
G there is

a unique symplectic leaf Lq of the Poisson manifold ðM; f�; �gÞ such that

J�1ðqÞ � Lq. Let iLq : J�1ðqÞ ,! Lq be the inclusion of J�1ðqÞ into the symplectic

leaf ðLq;xLqÞ of ðM; f�; �gÞ that contains it. As Lq is an initial submanifold of M, the

injection iLq is a smooth map. The form xq can also be written in terms of the

symplectic structure of the leaf Lq as p�qxq ¼ i�Lq
xLq . However, this does not imply

that the previous theorem could be obtained by just performing symplectic optimal

reduction on each symplectic leaf of the Poisson manifold, because these leaves are

not G-manifolds, in general. As we already noted, Poisson actions are not necessarily

leaf preserving.

Let us apply optimal reduction to the case of a proper G-action on a connected

symplectic manifold ðM;xÞ admitting a not necessarily equivariant momentum

map J: M ! g�. Corollary 3.5 relates the level sets of J and of the optimal

momentum map J , namely, if JðmÞ ¼ l 2 g�, J ðmÞ ¼ q 2 M=A0
G, then

J�1ðqÞ ¼ ðJ�1ðlÞ \Mm
Gm
Þm, where ðJ�1ðlÞ \Mm

Gm
Þm denotes the connected com-

ponent of J�1ðlÞ \Mm
Gm

that contains the point m. In addition, if NGlðGmÞcðmÞ is

the closed subgroup of NGlðGmÞ that leaves the connected component

ðJ�1ðlÞ \Mm
Gm
Þm of J�1ðlÞ \Mm

Gm
invariant, then the isotropy subgroup Gq of the

point q 2 M=A0
G with respect to the action (3.5) equals Gq ¼ NGlðGmÞcðmÞ and

NGlðGmÞcðmÞ=Gm acts freely and properly on ðJ�1ðlÞ \Mm
Gm
Þm. Thus the optimal

reduced space at q equals

J�1ðqÞ
Gq

¼
J�1ðlÞ \Mm

Gm

� �m

NGlðGmÞcðmÞ=Gm

: ð5:2Þ

SYMMETRY REDUCTION IN GEOMETRY 29



This shows the following:

� If there is a Lie group acting freely, properly, canonically, and this action has an

associated momentum map, then the optimal reduced spaces coincide (up to

connected components) with the Marsden–Weinstein reduced spaces discussed in

Section 2.

� If in the previous setup we drop the freeness hypothesis, the optimal reduced

spaces coincide with the singular reduced spaces of [5, 37, 44, 46], a topic that will

be discussed in the next section.

� If the group G is discrete, the optimal reduced spaces are (up to connected

components) the quotient manifolds MH=ðNðHÞ=HÞ which, by the theorem, are

symplectic.

Regarding the last point notice that, as we mentioned in Section 2, the quotients

MH=ðNðHÞ=HÞ are the spaces traditionally involved in the reduction of symmetric

vector fields on manifolds. That reduction scheme can actually be obtained by fol-

lowing an approach identical to the one presented in Theorem 5.1 by replacing the

distribution A0
G by the object that naturally generalizes it in the category of G-

manifolds. Indeed, let M be a smooth manifold acted properly upon by a Lie group

G and let XðMÞG be the set of G-equivariant vector fields on M. It can be proved

(see [41, 44]) that the generalized distribution defined by

DðmÞ ¼ fXðmÞ j X 2 XðMÞGg; m 2 M;

is integrable. Moreover, if J : M ! M=D is the projection onto the leaf space of the

distribution D, we have for any q 2 M=D

J�1ðqÞ=Gq ¼ Mm
Gm
= NðGmÞcðmÞ=Gm

� �
;

where m 2 J �1ðqÞ and Gq is the isotropy subgroup of q 2 M=D with respect to the

unique G-action on M=D that makes J equivariant. This expression shows that the

distribution theoretical approach to reduction unifies the apparently disconnected

procedures introduced in Section 2.

Theorem 5.1 has a properness hypothesis on the Gq-action on J�1ðqÞ, something

that was not present in the classical Marsden–Weinstein reduction theorem. In that

case, the properness of the G-action automatically implies the properness of the

restricted coadjoint isotropy group action on the level set of the momentum map. In

the case of optimal reduction, the properness of the Gq-action on J�1ðqÞ is a real

hypothesis. From the reduction point of view the existence of a standard momentum

map could be interpreted as an extra integrability property of the polar distribution

that makes its integrable leaves imbedded (and not just initial) submanifolds of M

and their isotropy subgroups automatically closed.

Here is an example due to Montaldi and Tokieda of a proper G-action with a

nonproper Gq-action on J�1ðqÞ. Consider Example 3 in Section 3, that is,

M :¼ T
2 � T

2 with the symplectic form x :¼ dh1 ^ dh2 þ
ffiffiffi
2

p
dw1 ^ dw2. Let T

2 act

canonically on M by
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ðei/1 ; ei/2Þ � ðeih1 ; eih2 ; eiw1 ; eiw2Þ :¼ ðeiðh1þ/1Þ; eiðh2þ/2Þ; eiðw1þ/1Þ; eiðw2þ/2ÞÞ:
Since the two-torus is compact this action is necessarily proper. Moreover, as T2 acts

freely, the corresponding orbit space M=A
T
2 is a smooth manifold such that the

projection pA
T2
: M ! M=A

T
2 is a surjective submersion. As in Example 3 of

Section 3, the polar distribution behaves badly. Indeed, C1ðMÞT
2

consists of all the

functions f of the form f 	 fðeiðh1�w1Þ; eiðh2�w2ÞÞ. An inspection of the Hamiltonian

flows associated to such functions readily shows that the leaves of A0
T
2 , that is, the

level sets of the optimal momentum map J , are the products of two leaves of an

irrational foliation in a two-torus. Moreover, it can be checked that for any

q 2 M=A0
T
2 , the isotropy subgroup T

2
q is the product of two discrete subgroups of S1,

each of which fill densely the circle. This density property immediately implies that

the Tq-action on J�1ðqÞ is not proper.
Let J : M ! M=A0

G be the optimal momentum map corresponding to a proper G-

action on ðM;xÞ. Fix q 2 M=A0
G a momentum value of J and let H � G be the

unique G-isotropy subgroup such that J�1ðqÞ � MH and Gq � H. The normalizer

NðHÞ of H in G acts naturally on MH. This action induces a free action of the

quotient group L :¼ NðHÞ=H on MH. Let M
q
H be the unique connected component

of MH that contains J�1ðqÞ and let Lq be the closed subgroup of L that leaves it

invariant. Obviously, Lq can be written as Lq ¼ NðHÞq=H for some closed subgroup

NðHÞq of NðHÞ.
The subsetMq

H is a symplectic embedded submanifold ofM on which the group Lq

acts freely and canonically. Denote by J Lq : Mq
H ! Mq

H=A
0
Lq the associated optimal

momentum map.

PROPOSITION 5.2 (Optimal Sjamaar’s Principle). With the notation just intro-

duced, we have the following:

(i) Let iqH : Mq
H ,! M be the inclusion. Then Tzi

q
H A0

LqðzÞ
� �

¼ A0
GðzÞ for any z 2 Mq

H.

(ii) Let z 2 J�1ðqÞ be such that J LqðzÞ ¼: r 2 Mq
H=A

0
Lq . Then J�1ðqÞ ¼ J �1

Lq ðrÞ:
(iii) Lq

r ¼ Gq=H.

(iv) ðMq
HÞr ¼ J�1

Lq ðrÞ=Lq
r ¼ J�1ðqÞ=ðGq=HÞ ¼ J �1ðqÞ=Gq ¼ Mq. Moreover, if Gq

acts properly on J�1ðqÞ this equality is true when we consider Mq and ðMq
HÞr as

symplectic spaces, that is, ðMq;xqÞ ¼ ððMq
HÞr; ðxjMq

H
ÞrÞ:

5.2. OPTIMAL ORBIT REDUCTION

We next turn to another reduction procedure involving the optimal momentum map.

If q 2 M=A0
G, denote byOq :¼ G � q the G-orbit of the action (3.5) onM=A0

G. Assume

that Gq acts properly on J�1ðqÞ. It can be shown that J�1ðOqÞ has a unique smooth

structure relative to which it is an initial submanifold of M. This structure coincides

with the one that makes it diffeomorphic to G�Gq J �1ðqÞ. Consequently, the quo-

tient manifold J�1ðOqÞ=G is naturally diffeomorphic to the symplectic point reduced

space because of the sequence of diffeomorphisms
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J�1ðOqÞ=G ’ G�Gq J�1ðqÞ=G ’ J�1ðqÞ=Gq:

The composed diffeomorphism J �1ðOqÞ=G ’ J�1ðqÞ=Gq can be explicitly imple-

mented as follows. Let fq: J �1ðqÞ ! J�1ðOqÞ be the inclusion. Since the inclusion

J�1ðqÞ ,! M is smooth and J�1ðOqÞ is initial in M, the map fq is smooth. Also,

since fq is ðGq;GÞ-equivariant, it drops to a unique smooth map Fq: J�1ðqÞ=Gq !
J�1ðOqÞ=G that makes the following diagram

ð5:3Þ

commutative. It is easy to see that Fq is a diffeomorphism. The orbit reduced space

J�1ðOqÞ=G can be therefore trivially endowed with a symplectic structure xOq by

defining xOq :¼ ðF�1
q Þ�xq. These remarks are summarized in the first points of the

following theorem which is the orbit counterpart of Theorem 5.1.

THEOREM 5.3 (Optimal orbit reduction by Poisson actions). Suppose that Gq acts

properly on J�1ðqÞ and let Oq :¼ G � q.

(i) There is a unique smooth structure on J�1ðOqÞ that makes it into an initial

submanifold of M.

(ii) The restricted G-action on J�1ðOqÞ is smooth and proper and all its isotropy

subgroups are conjugate to a given compact isotropy subgroup of the G-action on

M.

(iii) The quotient MOq : ¼ J�1ðOqÞ=G admits a unique smooth structure that makes

the projection pOq: J�1ðOqÞ ! J�1ðOqÞ=G a surjective submersion.

(iv) The optimal orbit reduced space MOq :¼ J�1ðOqÞ=G admits a unique sym-

plectic structure xOq that makes it symplectomorphic to the point reduced

space Mq.

(v) Let h 2 C1ðMÞG. The flow Ft of Xh leaves J�1ðOqÞ invariant, commutes with the

G-action, and therefore induces a flow F
Oq
t on MOq uniquely determined by the

relation pOq � Ft � iOq ¼ F
Oq
t � pOq , where iOq : J�1ðOqÞ,!M is the inclusion.

(vi) The flow F
Oq
t on ðMOq ;xOqÞ is Hamiltonian with the Hamiltonian function

hOq 2 C1ðMOqÞ given by the equality hOq � pOq ¼ h � iOq .

(vii) Let k 2 C1ðMÞG be another G-invariant function on M and f�; �gOq
the Poisson

bracket associated to the symplectic form xOq on MOq . Then, fh; kgOq
¼

fhOq ; kOqgOq
.

The counterpart of Proposition 5.2 for orbit reduction is the following statement.

PROPOSITION 5.4. Assume the notations and hypotheses of Theorem 5.3. Let

H � G be the unique G-isotropy subgroup such that J �1ðqÞ � MH and Gq � H.

Assume that Gq acts properly on J �1ðqÞ. Let Mq
H be the connected component of MH
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that contains J�1ðqÞ, NðHÞq the closed subgroup of the normalizer NðHÞ of H that

leaves Mq
H invariant, and Lq :¼ NðHÞq=H.

(i) Let z 2 J�1ðqÞ be such that J LqðzÞ ¼: r 2 Mq
H=A

0
Lq and N q :¼ NðHÞq�

q � M=A0
G. The set J �1

Lq ðLq � rÞ ¼ J �1ðN qÞ is an embedded submanifold of

J�1ðOqÞ.
(ii) The initial submanifold J�1ðOqÞ can be written as a disjoint union of its

embedded submanifolds:

J�1ðOqÞ ¼
a

½g
2G=NðHÞq
J�1ðN g�qÞ: ð5:4Þ

(iii) The symplectic quotient ðJ �1
Lq ðLq � rÞ=Lq; ðxjMq

H
ÞLq�rÞ is naturally symplecto-

morphic to the orbit reduced space ðJ �1ðOqÞ=G;xOqÞ. We will say that

ðJ �1
Lq ðLq � rÞ=Lq; ðxjMq

H
ÞLq�rÞ is an orbit regularization of ðJ �1ðOqÞ=G;xOqÞ.

In Theorem 5.3 we showed that the optimal orbit reduced spaces J �1ðOqÞ=G are

symplectic manifolds with the form that makes them symplectomorphic to the point

reduced spaces. We now show that the symplectic form xOq can be put in relation

with the presymplectic structure that one can define on some homogeneous spaces

that naturally arise in this context. These are the so called polar reduced spaces that

we introduce in the next proposition.

PROPOSITION 5.5. Let ðM; f�; �gÞ be a smooth Poisson manifold and G a Lie group

acting canonically and properly on M. Let J : M ! M=A0
G be the optimal momentum

map associated to this action and q 2 M=A0
G. Suppose that Gq is closed in G. Then the

polar distribution A0
G restricts to a smooth integrable regular distribution on J�1ðOqÞ,

that we will also denote by A0
G. The leaf space M0

Oq
:¼ J�1ðOqÞ=A0

G admits a unique

smooth structure that makes it into a regular quotient manifold and diffeomorphic to

the homogeneous manifold G=Gq. With this smooth structure the projection JOq :

J�1ðOqÞ ! J�1ðOqÞ=A0
G is a smooth surjective submersion. We will refer to M0

Oq
as

the polar reduced space.

The relation of the polar reduced spaces with orbit reduction is given in the next

theorem. For simplicity we formulate this result in the symplectic context. We refer

to [40] and [44] for the general Poisson case and examples.

THEOREM 5.6 (Polar reduction of a symplectic manifold). Let ðM;xÞ be a smooth

symplectic manifold and G a Lie group acting canonically and properly on M. Let

J : M ! M=A0
G be the optimal momentum map associated to this action and let

q 2 M=A0
G be such that Gq is closed in G. There is a unique presymplectic form x0

Oq
on

the polar reduced space M0
Oq

’ G=Gq that satisfies

i�Oq
x ¼ p�Oq

xOq þ J �
Oq
x0

Oq
: ð5:5Þ

The form x0
Oq

is symplectic if and only if for one point z 2 J�1ðOqÞ (and, hence, for
all) we have
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g � z \ ðg � zÞx � TzM
z
Gz
: ð5:6Þ

The characterization (5.6) of the symplecticity of x0
Oq

admits a particularly conve-

nient formulation when the G-action on the symplectic manifold ðM;xÞ admits a

standard momentum map J: M ! g�. Indeed, assume that M is connected and let

z 2 M be such that JðzÞ ¼ l 2 g� and Gz ¼ H. Then, if the symbol Gl denotes the

isotropy subgroup of l with respect to the affine G-action on g� defined with the

nonequivariance one-cocycle of J, we have that (5.6) is equivalent to

gl ¼ LieðNGlðHÞÞ: ð5:7Þ

6. Singular Point Reduction

After this review of some of the main results on optimal momentum maps and

reduction we turn our attention to the classical reduction procedure when the

freeness hypothesis on the group action as well as the regularity assumption on the

momentum value are dropped. In this section we present a summary of the results on

point reduction, that is, the generalization to the singular case of the classical

Marsden–Weinstein theorem. We shall also connect this reduction procedure to the

optimal reduction theorem.

6.1. THE SINGULAR SYMPLECTIC STRATA

Throughout this section the following notations and conventions will be in force.

Let ðM;xÞ be a connected symplectic manifold acted canonically and properly

upon by a Lie group G. It is assumed that this action has an associated standard

momentum map J: M ! g� with nonequivariance one-cocycle r: G ! g�, that is,

rðgÞ :¼ Jðg �mÞ �Ad�g�1JðmÞ for any g 2 G and m 2 M. Denote by H:

G� g� ! g� the affine action of G on g� defined by r, that is,

Hðg; mÞ :¼ Ad�g�1mþ rðgÞ for any g 2 G and m 2 g�. Let l 2 g� be a value of J, Gl

the isotropy subgroup of l with respect to the affine action H, and H � G an

isotropy subgroup of the G-action on M. Denote by Mz
H the connected compo-

nent of the H-isotropy type manifold MH that contains a given element z 2 M

such that JðzÞ ¼ l and let GlM
z
H be its Gl-saturation, that is, the union of all Gl-

orbits through all points of Mz
H.

THEOREM 6.1 (Singular symplectic point strata). The following hold:

(i) The set J�1ðlÞ \ GlM
z
H is an embedded submanifold of M.

(ii) The set M
ðHÞ
l :¼ ½J�1ðlÞ \ GlM

z
H
=Gl has a unique quotient differentiable

structure such that the canonical projection pðHÞ
l : J�1ðlÞ \ GlM

z
H �! M

ðHÞ
l is a

surjective submersion.

(iii) There is a unique symplectic structure xðHÞ
l on M

ðHÞ
l characterized by

i
ðHÞ �
l x ¼ pðHÞ �

l xðHÞ
l ; where i

ðHÞ
l : J�1ðlÞ \ GlM

z
H,!M is the natural inclusion.

The pairs ðMðHÞ
l ;xðHÞ

l Þ are called singular symplectic point strata.
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(iv) Let h 2 C1ðMÞG be a G-invariant Hamiltonian. Then the flow Ft of Xh leaves the

connected components of J�1ðlÞ \ GlM
z
H invariant and commutes with the Gl-

action, so it induces a flow Fl
t on M

ðHÞ
l that is characterized by

pðHÞ
l � Ft � iðHÞ

l ¼ Fl
t � p

ðHÞ
l :

(v) The flow Fl
t is Hamiltonian on M

ðHÞ
l , with reduced Hamiltonian function h

ðHÞ
l :

M
ðHÞ
l ! R defined by h

ðHÞ
l � pðHÞ

l ¼ h � iðHÞ
l : The vector fields Xh and X

h
ðHÞ
l

are

pðHÞ
l -related.

(vi) Let k: M ! R be another G-invariant function. Then fh; kg is also G-invariant

and fh; kgðHÞ
l ¼ fhðHÞ

l ; k
ðHÞ
l g

M
ðHÞ
l
; where f�; �g

M
ðHÞ
l

denotes the Poisson bracket

induced by the symplectic structure on M
ðHÞ
l .

For the next theorem we need a few preparatory remarks. For any z 2 M denote

by NðHÞz the set of elements in the normalizer NðHÞ of H that leaves the subman-

ifold Mz
H invariant. Note that H � NðHÞ. The subgroup NðHÞz is open and hence

closed in NðHÞ. The Lie group Lz :¼ NðHÞz=H acts freely and canonically on Mz
H

with associated momentum map JLz : Mz
H ! ðLieðLzÞÞ� given by

JLzðz0Þ :¼ KðJjMz
H
ðz0Þ � lÞ; z0 2 Mz

H; ð6:1Þ

where l :¼ JðzÞ 2 g�. In this expression, K: ðg�zÞ
H ! ðLieðLzÞÞ� denotes the natural

Lz-equivariant isomorphism given by

KðbÞ; d
dt

����
t¼0

ðexp tnÞH
	 


¼ hb; ni; ð6:2Þ

for any b 2 ðg�zÞ
H and n 2 LieðNðHÞzÞ ¼ LieðNðHÞÞ; g�z denotes the annihilator of gz

in g and ðg�zÞ
H are the H-fixed points in the vector space g�z . The nonequivariance

one-cocycle s: Mz
H ! ðLieðLzÞÞ� of the momentum map JLz is given by

sðlÞ ¼ KðrðnÞ þ n � l� lÞ; for any l ¼ nH 2 Lz; n 2 NðHÞz: ð6:3Þ
Since NðHÞz is open in NðHÞ, it follows that

LieðNðHÞz=HÞ ¼ LieðNðHÞ=HÞ ¼: l:

Sjamaar’s principle takes the form of a structure theorem for the singular strata.

THEOREM 6.2 (Structure theorem for the singular point strata). In the setup de-

scribed above the following statements hold:

(i) The canonical projection

pðHÞ
l : J�1ðlÞ \ GlM

z
H ! MðHÞ

l :¼ ½J�1ðlÞ \ GlM
z
H
=Gl

defines a smooth fiber bundle with fiber Gl=H and structure group NGlðHÞz=H.

(ii) Consider the free, proper, and canonical action of Lz :¼ NðHÞz=H on Mz
H and let

JLz : Mz
H ! l� be the associated momentum map given by (6.1). Then the

Marsden–Weinstein reduced space ðMz
HÞ0 at the zero value of this momentum

map is given by

ðMz
HÞ0 ¼ J�1

Lz ð0Þ=Lz
0 ¼ ½J�1ðlÞ \Mz

H
=ðNGlðHÞz=HÞ:
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Note that Lz
0 is, in general, different from Lz because the action is affine and not

linear.

(iii) The projection p0: J�1
Lz ð0Þ ! ðMz

HÞ0 defines a smooth principal Lz
0-bundle.

Regarding Gl=H as a right ðNGlðHÞz=HÞ-space and J�1ðlÞ \Mz
H as a left

ðNGlðHÞz=HÞ-space, consider the bundle with fiber Gl=H and structure group Gl

associated with p0, that is,

Gl=H�NGl ðHÞz=H J�1ðlÞ \Mz
H

� �
�! ½J�1ðlÞ \Mz

H
=ðNGlðHÞz=HÞ:

This bundle is Gl-symplectomorphic to pðHÞ
l : J�1ðlÞ \ GlM

z
H �! M

ðHÞ
l , that is,

Gl=H�NGl ðHÞz=H J�1ðlÞ \Mz
H

� �
is Gl-diffeomorphic to J�1ðlÞ \ GlM

z
H and

ðMz
HÞ0 ¼ J�1

Lz ð0Þ=Lz
0 ¼ ðJ�1ðlÞ \Mz

HÞ=ðNGlðHÞz=HÞ is symplectomorphic to

M
ðHÞ
l . We will say that ðMz

HÞ0 is a regularization of the singular symplectic point

stratum M
ðHÞ
l .

This last part of the theorem and Proposition 5.2 show that, up to connected

components, singular symplectic point strata are symplectomorphic to the corre-

sponding optimal reduced spaces. In other words, optimal reduction, which we have

already seen that it is always regular, directly yields the strata of the singular reduced

spaces.

It turns out that both the level sets and the quotients form a specific kind of

stratification that we make precise in the discussion below.

6.2. STRATIFIED SPACES

In this subsection we shall adopt the definitions, notations, and conventions in [45].

For the proofs of the statements reviewed here, we also refer to this work.

Recall that the subset A of a topological space P is said to be locally closed if each

of its points has an open neighborhood U in P such that U \ A is closed in U. An

injectively immersed submanifold is embedded if and only if it its image is locally

closed in the ambient manifold.

Let P be a topological space and Z a locally finite partition of P into smooth

manifolds Si � P, i 2 I, that are locally closed topological subspaces of P (hence,

their manifold topology is the relative one induced by P). The pair ðP;ZÞ is called a

decomposition of P with pieces in Z, or a decomposed space, if the following frontier

condition holds:

(DS) If R;S 2 Z are such that R \ �S 6¼ ;, then R � �S. In this case we write R � S.

If, in addition, R 6¼ S we say that R is incident to S or that it is a boundary

piece of S and write R � S.

The dimension of P is defined as dimP ¼ supfdimSi j Si 2 Zg. The depth dpðzÞ of
any point z 2 P relative to the decomposition Z is defined by

dpðzÞ :¼ supfk 2 N j 9 S0;S1; . . . ;Sk 2 Z with z 2 S0 � S1 � . . . � Skg:
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Note that dpðxÞ ¼ dpðyÞ for any x; y 2 S, S 2 Z. Thus the depth dpðSÞ of the piece
S 2 Z is well defined by dpðSÞ :¼ dpðxÞ, x 2 S. The depth dpðPÞ of ðP;ZÞ is defined
by dpðPÞ :¼ supfdpðSÞ j S 2 Zg.
A continuous mapping f: P ! Q between the decomposed spaces ðP;ZÞ and

ðQ;YÞ is a morphism of decomposed spaces if for every piece S 2 Z, there is a piece

T 2 Y such that fðSÞ � T and the restriction fjS: S ! T is smooth. If ðP;ZÞ and

ðP; T Þ are two decompositions of the same topological space we say that Z is coarser

than T or that T is finer than Z if the identity mapping ðP; T Þ ! ðP;ZÞ is a mor-

phism of decomposed spaces. A topological subspace Q � P is a decomposed sub-

space of ðP;ZÞ if for all pieces S 2 Z, the intersection S \Q is a submanifold of S

and the corresponding partition Z \Q forms a decomposition of Q.

Two subsets A and B of P are said to be equivalent at z 2 P if there is an open

neighborhood U of z such that A \U ¼ B \U. The equivalence class of A � P at z is

denoted by ½A
z and called the set germ of A at z.

A stratification (Definition 1.2.2 in [45]) of the topological space P is a map S that

associates to any z 2 P the set germ SðzÞ of a closed subset of P such that the

following condition is satisfied:

(ST) For every z 2 P there is a neighborhood U of z and a decomposition Z of U

such that for all y 2 U the germ SðyÞ coincides with the set germ of the piece

of Z that contains y.

The pair ðP;SÞ is called a stratified space (see Definition 1.2.2 in [45]). Any

decomposition of P defines a stratification of P by associating to each of its points

the set germ of the piece containing it. The converse is, by definition, locally true.

Two decompositions Z1 and Z2 of P are said to be equivalent if they induce the

same stratification of P. Any stratified space ðP;SÞ has a unique associated

decomposition ZS with the following maximality property: for any open subset

U � P and any decomposition Z of P inducing S on U, the restriction of ZS to U is

coarser than the restriction of Z to U. The decomposition ZS is called the canonical

decomposition associated to the stratification ðP;SÞ and its pieces are called the

strata. The local finiteness of the decomposition ZS implies that for any stratum S of

ðP;SÞ there are only finitely many strata R with S � R. In what follows the symbol S
in the stratification ðP;SÞ denotes both the map that sends each point to a set germ

and the set of pieces associated to the canonical decomposition ZS induced by the

stratification of P.

Let ðP;SÞ be a stratified space. A singular or stratified chart of P is a homeo-

morphism /: U ! /ðUÞ � R
n from an open set U � P to a subset of Rn such that for

every stratum S 2 S the image /ðU \ SÞ is a submanifold of Rn and the restriction

/jU\S: U \ S ! /ðU \ SÞ is a diffeomorphism. Two singular charts /:
U ! /ðUÞ � R

n and u: V ! uðVÞ � R
m are Ck-compatible if for any z 2 U \ V

there exist an open neighborhood W � U \ V of z, a natural number

N 
 maxfn;mg, open neighborhoods O;O0 � R
N of /ðUÞ � f0g and uðVÞ � f0g,

respectively, and a Ck-diffeomorphism w: O ! O0 such that im � ujW ¼ w � in � /jW,
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where in and im denote the natural embeddings of Rn and R
m into R

N by using the

first n and m coordinates, respectively. A singular or stratified atlas is defined as for

manifolds by using stratified charts. The same is true for compatible and maximal

stratified atlases. A maximal atlas on the stratified space ðP;SÞ determines a Ck-

differentiable structure on P and ðP;SÞ is called a Ck-stratified space. If k ¼ 1, ðP;SÞ
is called a smooth stratified space.

Stratified spaces with smooth structure are naturally presheaf spaces. Let ðP;SÞ be
a stratified space with smooth structure. The presheaf C1

P of smooth functions on P is

defined by assigning to any open set U � P the algebra C1
P ðUÞ of real-valued

functions on U consisting of all continuous functions f: U ! R with the following

property: for all z 2 U and any stratified chart /: V ! R
n such that z 2 V, there

exists an open neighborhood W of z and a smooth function �f: Rn ! R such that

W � U \ V and fjW ¼ �f � /jW.

Since the stratified space with smooth structure ðP;SÞ can be considered as the

presheaf space ðP;C1
P Þ the notion of smooth map between stratified spaces with

smooth structure can be defined by working in the category of presheaf spaces. Note

that smooth maps between stratified spaces are not, in general, stratified maps and,

conversely, stratified maps need not be smooth. These remarks allow the introduc-

tion of certain particularly well-behaved smooth stratified spaces.

Let P be a smooth stratified space and R;S � M two strata. Let /: U ! R
n be a

smooth stratified chart of M around the point z. The Whitney condition (B) at the

point z 2 R with respect to the chart ðU;/Þ is given by the following statement:

(B) Let fxngn2N � R \U and fyngn2N � S \U be two sequences with the same

limit z ¼ lim
n!1

xn ¼ lim
n!1

yn and such that xn 6¼ yn, for all n 2 N. Suppose that

the set of connecting lines /ðxnÞ/ðynÞ � R
n converges in projective space to a

line L and that the sequence of tangent spaces fTynSgn2N converges in the

Grassmann bundle of dimS-dimensional subspaces of TP to s � TzP. Then,

ðTz/Þ�1ðLÞ � s.

This condition does not depend on the chart used to formulate it. If condition (B)

is verified for every point z 2 R, the pair ðR;SÞ is said to satisfy the Whitney

condition (B) or that S is (B)-regular over R. A stratified space with smooth

structure such that for every pair of strata Whitney’s condition (B) holds, is

called a Whitney (B)-space.

There is also a weaker Whitney condition (A). We shall not elaborate on this

condition because it is not needed later.

6.3. LOCAL TRIVIALITY AND CONE SPACES

Let P be a topological space. Define the equivalence relation � in the product

P� ½0;1Þ by ðz; aÞ � ðz0; a0Þ if and only if a ¼ a0 ¼ 0. The cone CP on P is defined as

the quotient topological space P� ½0;1Þ= �. If P is a smooth manifold then the
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cone CP is a decomposed space with two pieces, namely, P� ð0;1Þ and the vertex

which is the class corresponding to any element of the form ðz; 0Þ, z 2 P, that is,

P� f0g. Analogously, if ðP;ZÞ is a decomposed (stratified) space then the associated

cone CP is also a decomposed (stratified) space whose pieces (strata) are the vertex

and the sets of the form S� ð0;1Þ, with S 2 Z.

A stratified space ðP;SÞ is said to be locally trivial if for any z 2 P there exist a

neighborhood U of z, a stratified space ðF;SFÞ, a distinguished point 0 2 F, and an

isomorphism of stratified spaces w: U ! ðS \UÞ � F, where S is the stratum that

contains z and w satisfies w�1ðy; 0Þ ¼ y, for all y 2 S \U. If F is a cone CL over a

compact stratified space L, then L is called the link of z.

An important corollary of Thom’s first isotopy lemma guarantees that every

Whitney (B) stratified space is locally trivial (see [31, 50]). A converse to this

implication needs the introduction of the so called cone spaces which will be

discussed next.

Let m 2 N [ f1;xg. A cone space of class Cm and depth 0 is the union of

countably many Cm manifolds together with the stratification whose strata are the

unions of the connected components of equal dimension. A cone space of class Cm

and depth dþ 1, d 2 N, is a stratified space ðP;SÞ with a Cm differentiable structure

such that for any z 2 P there exists a connected neighborhood U of z, a compact

cone space L of class Cm and depth d called the link, and a stratified isomorphism w:
U ! ðS \UÞ � CL, where S is the stratum that contains the point z, the map w
satisfies that w�1ðy; 0Þ ¼ y, for all y 2 S \U, and 0 is the vertex of the cone CL.

If m 6¼ 0 then L is required to be embedded into a sphere via a fixed smooth global

singular chart u: L ! Sl that determines the smooth structure of CL. More spe-

cifically, the smooth structure of CL is generated by the global chart s:
½z; t
 2 CL#tuðzÞ 2 R

lþ1. The maps w: U ! ðS \UÞ � CL and u: L ! Sl are re-

ferred to as a cone chart and a link chart respectively. Moreover, if m 6¼ 0 then w and

w�1 are required to be differentiable of class Cm as maps between stratified spaces

with a smooth structure.

The cone charts and the link charts in the definition of a cone space imply that it is

a stratified space with smooth structure. It is proved in [45] that any cone space of

class Cm with m 
 2 is a Whitney (B) stratified space.

Whitney stratified spaces are, in general, not cone spaces. A counterexample is

given by Neil’s parabola (see [45]). However, Mather’s theory of control data (see

[31] and page 410 of [46] for an outline of the construction of the link) implies that

Whitney (B) stratified subsets of Euclidean space are cone spaces. We caution that

the terminology in this area is not uniformly accepted; some authors (for instance

[46]) use cone spaces as the definition of stratified spaces.

6.4. THE STRATIFICATION THEOREMS

With this quick review of stratified and cone spaces the structure of the level sets of

the momentum map and that of the reduced spaces can be rigorously stated.
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THEOREM 6.3. Consider the closed subset J�1ðlÞ � M as a topological subspace of

M. Then the submanifolds of the type J�1ðlÞ \ GlM
z
H, with Mz

H the connected com-

ponent of the H-isotropy type submanifold that contains a point z such that JðzÞ ¼ l,
form a Whitney (B) stratification of J�1ðlÞ.

THEOREM 6.4. (Stratification Theorem). The symplectic strata M
ðHÞ
l introduced in

Theorem 6.1 form a symplectic Whitney (B) stratification of the quotient topological

space Ml :¼ J�1ðlÞ=Gl. In addition, the quotient Ml is a cone space when considered

as a stratified space with strata M
ðHÞ
l .

Unlike the orbit type stratification of any orbit space of a proper Lie group action

on a manifold, the symplectic stratification described in Theorem 6.4 is, in general,

not minimal among all the Whitney stratifications of the quotient J�1ðlÞ=Gl when

the value l 2 g� is not zero. As a corollary of Ml being a cone space one obtains the

following result (see Theorem 5.9 in [46]).

THEOREM 6.5 (Maximal Stratum Theorem). Each connected component of Ml

contains a unique open stratum that is connected, open, and dense in the connected

component of Ml that contains it.

7. Singular Orbit Reduction

With the same notations and conventions employed till now, consider the orbit

Ol � g� of the affine action H through l. It is important to remark that Ol is only

an initial submanifold of g�, in general. If the group G is algebraic, semisimple, or

compact then it is an embedded submanifold. It is straightforward to verify that

the natural inclusion J�1ðlÞ,!J�1ðOlÞ induces a bijective map between J�1ðlÞ=Gl

and J�1ðOlÞ=G. Even if l is a regular value of J and Gl acts freely and properly

on J�1ðlÞ it is not clear what the manifold structure on the quotient J�1ðOlÞ=G
should be. If, moreover, the orbit Ol is an embedded submanifold, then it is easy

to show that J is transverse to it and hence J�1ðOlÞ is also an embedded sub-

manifold of M. So if the G-action on M is free and proper and l is a regular value

of J, both quotients J�1ðlÞ=Gl and J�1ðOlÞ=G are smooth manifolds with their

respective projections surjective submersions and are, in addition, diffeomorphic. It

turns out that they are symplectomorphic if we endow J�1ðOlÞ=G with a sym-

plectic structure intimately connected to the symplectic structure on the orbit Ol

that we study next.

Let g be a Lie algebra acting canonically on the connected symplectic manifold

ðM;xÞ with momentum map J: M ! g� having nonequivariance one-cocycle r:
G ! g�. Define the infinitesimal nonequivariance two-cocycle of J as the element

R 2 K2ðgÞ given by

Rðn; gÞ :¼ J½n;g
ðzÞ � fJn; JggðzÞ; z 2 M; n; g 2 g; ð7:1Þ
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where JnðzÞ :¼ hJðzÞ; ni, for any z 2 M. As the definition implies, the left-hand side

of this equation does not depend on z 2 M. As was the case for the nonequivariance

one-cocycle, this independence on z follows from the connectedness of M. The

relationship between r: G ! g� and R: g� g ! R is given by Rðn; gÞ ¼ dbrgðeÞ � n,
where brg: G ! R is defined by brgðgÞ :¼ hrðgÞ; gi, for any n; g 2 g.

The affine Lie–Poisson space determined by the two-cocycle R 2 Z2ðg;RÞ is defined
as the vector space g� endowed with the Poisson bracket

ff; ggR�ðlÞ :¼ � l;
df
dl

;
dg
dl

� �	 

� R

df
dl

;
dg
dl

� �
; ð7:2Þ

for f; g 2 C1ðg�Þ and l 2 g�. The brackets (7.2) are also called the �R-Lie–Poisson
structures. In this formula, the functional derivative df=dl is defined as the unique

element of g satisfying

m;
df
dl

	 

¼ DfðlÞðmÞ

for any l; m 2 g�, where DfðlÞ 2 g�� denotes the Fréchet derivative of f at l. The
leaves of the Poisson structure 7.2 are the orbits Ol of the affine action H endowed

with the G-invariant orbit (or Kirillov–Kostant–Souriau) symplectic form

x�
Ol
ðmÞðng� ðmÞ; gg� ðmÞÞ ¼ �hm; ½n; g
i � Rðn; gÞ; ð7:3Þ

for arbitrary m 2 Ol, and n; g 2 g. In this formula ng� denotes the infinitesimal

generator vector field relative to the action H given by n 2 g, that is,

ng� ðmÞ :¼ �ad�nmþ Rðn; �Þ.

7.1. REGULAR ORBIT REDUCTION

With these preparatory remarks, if Ol is an embedded submanifold of g� and if the

action is free, proper, and Hamiltonian, we can state the following result [16, 24, 25].

The set MOl :¼ J�1ðOlÞ=G is a regular quotient symplectic manifold with the

symplectic form xOl uniquely characterized by the relation

i�Ol
x ¼ p�Ol

xOl þ J�Ol
xþ

Ol
; ð7:4Þ

where JOl is the restriction of J to J�1ðOlÞ and xþ
Ol

is the þ-symplectic structure on

the affine orbit Ol (see (7.3)). The maps iOl : J
�1ðOlÞ ,! M and pOl : J

�1ðOlÞ ! MOl

are the natural injection and the projection, respectively. The pair ðMOl ; xOlÞ is

called the symplectic orbit reduced space. This result can be used to reduce Hamil-

tonian G-equivariant dynamics. We will not discuss this here because that result will

be stated below in total generality for the singular case. We emphasize the similarity

between the orbit reduction formula (7.4) and its counterpart (5.5) in the optimal

context.

What if the orbitOl is not embedded or, equivalently, not locally closed in g�? One

proceeds in the following way ([44]). The freeness of the G-action guarantees that J is
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a submersion onto some open subset of g�. Since Ol is an initial submanifold, this

implies that J is transverse to Ol and hence, by the transversality theorem for initial

manifolds, J�1ðOlÞ is an initial submanifold of M whose tangent space at z is

TzðJ�1ðOlÞÞ ¼ g � zþ A0
GðzÞ, where g � z denotes the tangent space at z to the orbit

G � z � M. The free and proper G-action on M restricts to a free proper smooth

G-action on the G-invariant initial submanifold J�1ðOlÞ and, consequently, the

quotientMOl :¼ J�1ðOlÞ=G is a regular quotient manifold with pOl : J
�1ðOlÞ ! MOl

a surjective submersion. The proof of these statements uses various properties of

initial submanifolds. From this point, the proof of the statement proceeds as in the

case when Ol was an embedded submanifold. In other words, in the orbit reduction

theorem quoted above, one can drop the assumption that the orbit Ol is embedded.

The final result is that if G acts freely and properly on M and l 2 g� is a regular

value of J, the point reduced space ðMl;xlÞ and the orbit reduced space ðMOl ;xOlÞ
are symplectomorphic.

7.2. THE SINGULAR ORBIT REDUCTION THEOREMS

Based on the model of the manifold structure on the orbit reduced space discussed

previously, we turn now to the singular case. A very important technical point is the

choice of the topology for the set J�1ðOlÞ=G. In the point reduction approach J�1ðlÞ
was thought of as a topological subspace of M and of J�1ðlÞ=Gl was the resulting

topological quotient. This is not the right way to proceed when dealing with orbit

reduction; in this situation J�1ðOlÞ needs to be endowed not with the relative

topology but with the initial topology induced by the map JOl :¼ JjJ�1ðOlÞ:

J�1ðOlÞ ! Ol, where the orbit Ol comes with its own smooth structure diffeo-

morphic to G=Gl. This topology on J�1ðOlÞ is called the initial topology. Recall that

the initial topology induced by the map JOl : J
�1ðOlÞ ! Ol is characterized by the

fact that for any topological space Z and any map u: Z ! J�1ðOlÞ we have that u is

continuous if and only if JOl � u is continuous. Additionally, the set

B ¼ fJ�1
Ol
ðUÞ j U open in Olg is a subbase of this topology. In particular, this im-

plies that J�1ðOlÞ is first countable.
The following proposition shows that the initial topology of J�1ðOlÞ generalizes

to the singular case the smooth structure for this set considered in the regular sit-

uation discussed above.

PROPOSITION 7.1. Endowing J�1ðOlÞ with its initial topology, the map f:

G�Gl J
�1ðlÞ ! J�1ðOlÞ given by ½g; z
 7! g � z is a homeomorphism.

At this point all the necessary background for orbit reduction has been ex-

plained and we can state the following result. We are using all notations in force

till now.

THEOREM 7.2 (Singular symplectic orbit strata). Let l ¼ JðzÞ. The following hold:
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(i) The set GðJ�1ðlÞ \Mz
HÞ is an initial submanifold of M whose tangent space is

given by

Tm GðJ�1ðlÞ \Mz
HÞ

� �
¼ spanfnMðmÞ þ XfðmÞ j n 2 g; f 2 C1ðMÞGg
¼ g �mþ A0

GðmÞ;
ð7:5Þ

with A0
G the polar distribution associated to the G-action on M.

(ii) The set M
ðHÞ
Ol

:¼ ½GðJ�1ðlÞ \Mz
HÞ
=G has a unique quotient differentiable

structure such that the canonical projection

pðHÞ
Ol

: GðJ�1ðlÞ \Mz
HÞ �! M

ðHÞ
Ol

is a surjective submersion.

(iii) There is a unique symplectic structure xðHÞ
Ol

on M
ðHÞ
Ol

characterized by

i
ðHÞ �
Ol

x ¼ pðHÞ �
Ol

xðHÞ
Ol

þ J
ðHÞ �
Ol

xþ
Ol
; ð7:6Þ

where i
ðHÞ
Ol

: GðJ�1ðlÞ \Mz
HÞ,!M is the inclusion, J

ðHÞ
Ol

: GðJ�1ðlÞ \Mz
HÞ ! Ol is

obtained by restriction of the momentum map J, and xþ
Ol

is the þ-symplectic

form on Ol defined in ð7.3Þ. The pairs ðMðHÞ
Ol

;xðHÞ
Ol

Þ are called the singular

symplectic orbit strata.

(iv) Let h 2 C1ðMÞG be a G-invariant Hamiltonian. Then the flow Ft of Xh leaves the

connected components of GðJ�1ðlÞ \Mz
HÞ invariant and commutes with the G-

action, so it induces a flow F
Ol
t on M

ðHÞ
Ol

that is characterized by

pðHÞ
Ol

� Ft � iðHÞ
Ol

¼ F
Ol
t � pðHÞ

Ol
:

(v) The flow F
Ol
t is Hamiltonian on ðMðHÞ

Ol
;xðHÞ

Ol
Þ relative to the reduced Hamilto-

nian h
ðHÞ
Ol

: M
ðHÞ
Ol

! R defined by

h
ðHÞ
Ol

� pðHÞ
Ol

¼ h � iðHÞ
Ol

:

The vector fields Xh and X
h
ðHÞ
Ol

are pðHÞ
Ol

-related.

(vi) Let k:M ! R be another G-invariant function. Then fh; kg is also G-invariant and
fh; kgðHÞ

Ol
¼ fhðHÞ

Ol
; k

ðHÞ
Ol

g
M

ðHÞ
Ol

;

where f�; �g
M

ðHÞ
Ol

denotes the Poisson bracket induced by the symplectic structure

on M
ðHÞ
Ol

.

As for singular point reduced strata, there is a structure theorem for the singular

orbit strata or, equivalently, an orbit form of Sjamaar’s principle.

THEOREM 7.3 (Structure theorem for the singular orbit strata). The following hold:

(i) The canonical projection pðHÞ
Ol

: GðJ�1ðlÞ \Mz
HÞ �! M

ðHÞ
Ol

¼ ½GðJ�1ðlÞ\
Mz

HÞ
=G defines a smooth fiber bundle with fiber G=H and structure group

NðHÞz=H. We recall that NðHÞz is the open and hence closed subgroup of NðHÞ
that leaves Mz

H invariant.
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(ii) Consider the free, proper, and canonical action of Lz :¼ NðHÞz=H on Mz
H and let

JLz : Mz
H ! l� be the associated momentum map given by JLzðmÞ ¼

KðJjMz
H
ðmÞ � lÞ, for any m 2 Mz

H. Then the regular orbit reduced space ðMz
HÞO0

at the affine orbit corresponding to 0 2 l� is given by

ðMz
HÞO0

¼ J�1
Lz ðO0Þ=Lz ¼ J�1ðNðHÞz � lÞ \Mz

H


 �
=ðNðHÞz=HÞ ð7:7Þ

(iii) The projection pO0
: J�1

Lz ðO0Þ ! ðMz
HÞO0

defines a smooth principal Lz-bundle.

Regarding G=H as a right ðNðHÞz=HÞ-space and J�1ðNðHÞz � lÞ \Mz
H as a left

ðNðHÞz=HÞ-space, consider the bundle with fiber G=H and structure group G

associated to pO0
, that is,

G=H�NðHÞz=H J�1ðNðHÞz � lÞ \Mz
H

� �
�! J�1ðNðHÞz � lÞ \Mz

H


 �
=ðNðHÞz=HÞ:

This bundle is G-symplectomorphic to pðHÞ
Ol

: GðJ�1ðlÞ \Mz
HÞ �! M

ðHÞ
Ol

, that is,

G=H�NðHÞz=H J�1ðNðHÞz � lÞ \Mz
H

� �
is G-diffeomorphic to GðJ�1ðlÞ \Mz

HÞ
and the orbit reduced space

ðMz
HÞO0

¼ J�1
Lz ðO0Þ=Lz ¼ J�1ðNðHÞz � lÞ \Mz

H


 �
=ðNðHÞz=HÞ

is symplectomorphic to M
ðHÞ
Ol

. We say that ðMz
HÞO0

is a regularization of the

singular symplectic orbit stratum M
ðHÞ
Ol

.

The singular symplectic orbit strata form a stratification in the same sense as the

singular point strata.

THEOREM 7.4 (Orbit reduction stratification theorem and the singular reduction

diagram). Let ll: J
�1ðlÞ,!J�1ðOlÞ be the inclusion and Ll: J

�1ðlÞ=Gl ! J�1ðOlÞ=G
the map defined by the commutative diagram

Consider J�1ðlÞ=Gl as a smooth symplectically stratified topological space with the

stratification introduced in Theorem 6.4. Then

(i) The submanifolds in Theorem 7.2 induce a smooth symplectic stratification of

J�1ðOlÞ=G that makes it into a cone (and, hence, Whitney (B)) space.

(ii) The map Ll is a homeomorphism of cone spaces.

The Structure Theorem, Sjamaar’s Principle, and the singular reduction diagram

are illustrated in the following commutative diagram:
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In this diagram, the symplectomorphisms f
ðHÞ
l and f

ðHÞ
Ol

are the explicit implemen-

tation of Sjamaar’s Principle (see Theorems 6.2 and 7.3). We recall that L0 and L
ðHÞ
l

are also symplectomorphisms and that Ll is a homeomorphism of smooth sym-

plectic Whitney (B) stratified spaces.

8. Poisson Reduction

This section reviews the main theorems in the theory of Poisson reduction. The

hypotheses of the first theorem are strong and are rarely verified in physical appli-

cations. Nevertheless, this theorem serves as a model for the type of results that one

would like to have. The subsequent theorems will weaken and eliminate various

assumptions.

Let ðM; f�; �gÞ be a Poisson manifold and G a Lie group acting canonically on M.

If the G-action U: G�M ! M is free and proper, the orbit space M=G is a smooth

manifold and the canonical projection p: M ! M=G is a smooth surjective sub-

mersion.

THEOREM 8.1 (Regular Poisson reduction). Assume the hypotheses above. Let J :

M ! M=A0
G be the corresponding optimal momentum map. Then

(i) The orbit space M=G is a Poisson manifold with the Poisson bracket f�; �gM=G,

uniquely characterized by the relation

ff; ggM=GðpðmÞÞ ¼ ff � p; g � pgðmÞ; ð8:1Þ

for any m 2 M and f; g 2 C1ðM=GÞ.
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(ii) The Poisson structure induced by the bracket f�; �gM=G on M=G is the only one

for which the projection p: ðM; f�; �gÞ ! ðM=G; f�; �gM=GÞ is a Poisson map.

(iii) Let h 2 C1ðMÞG be a G-invariant smooth function on M. The Hamiltonian flow

Ft of Xh commutes with the G-action, so it induces a flow F
M=G
t on M=G char-

acterized by p � Ft ¼ F
M=G
t � p: The flow F

M=G
t is Hamiltonian on

ðM=G; f�; �gM=GÞ, for the reduced Hamiltonian function ½h
 2 C1ðM=GÞ defined
by ½h
 � p ¼ h: The vector fields Xh and X½h
 are p-related.

(iv) The symplectic leaves of ðM=G; f�; �gM=GÞ are given by the optimal orbit reduced

spaces J �1ðOqÞ=G;xOq

� �
, q 2 M=A0

G, introduced in Theorem 5.3.

(v) If the Poisson manifold ðM; f�; �gÞ is symplectic with form x and the G-action has

an associated standard momentum map J: M ! g�, then the symplectic leaves of

ðM=G; f�; �gM=GÞ are given by the spaces Mc
Ol

:¼ G � J�1ðlÞc=G;xc
Ol

� �
, where

J�1ðlÞc is a connected component of the fiber J�1ðlÞ and xc
Ol

the restriction to

Mc
Ol

of the symplectic form xOl of the orbit reduced space MOl defined in ð7.4Þ.
If, additionally, G is compact, M is connected, and the momentum map J is

proper, then Mc
Ol

¼ MOl .

8.1. POISSON REDUCTION BY PSEUDOGROUPS

The reduction theorem just presented is valid under very strong regularity hypoth-

eses that insure the smoothness of the orbit space onto which the Poisson bracket

and the corresponding equivariant dynamics can be projected. When these

hypotheses are not present, the orbit space is not smooth anymore and one needs to

work with presheaves of Poisson algebras.

Let M be a topological space with a presheaf F of smooth functions. A presheaf of

Poisson algebras on ðM;FÞ is a map f�; �g that assigns to each open set U � M a

bilinear operation f�; �gU: FðUÞ � FðUÞ ! FðUÞ such that the pair ðFðUÞ; f�; �gUÞ is
a Poisson algebra. A presheaf of Poisson algebras will be usually denoted as a triple

ðM;F ; f�; �gÞ. The presheaf of Poisson algebras ðM;F ; f�; �gÞ is nondegenerate if the

following condition holds: if f 2 FðUÞ is such that ff; ggU\V ¼ 0, for any g 2 FðVÞ
and any open set of V, then f is constant on the connected components of U.

Any Poisson manifold ðM; f�; �gÞ has a natural presheaf of Poisson algebras on its

presheaf of smooth functions C1
M that associates to any open subset U of M the

restriction f�; �gjU of the bracket f�; �g to C1ðUÞ � C1ðUÞ. We shall formulate below

a result that fully characterizes the situations in which the presheaf C1
M of Poisson

algebras on ðM; f�; �gÞ behaves properly under restrictions to subsets and projections

to the orbit spaces of pseudogroups of local Poisson diffeomorphisms of ðM; f�; �gÞ.
To do this, we return to the discussion on pseudogroups in Section 3.

LetM be a smooth manifold and A a pseudogroup of local diffeomorphisms ofM.

Let S � M be a subset of M endowed with a topology T that, in general, does not

coincide with the relative or subspace topology. The presheaf C1
M of smooth func-

tions on M induces a quotient presheaf C1
M=A on the orbit space M=A. Consider now

the subset
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AS :¼ a 2 A j aðsÞ 2 S for any s 2 S; s in the domain of af g:
Throughout this section we will assume that AS is a subpseudogroup of A. This

hypothesis allows the formation of the quotients S=AS andM=AS. Since the quotient

S=AS can be seen as a subset of M=AS, there is a well defined presheaf of Whitney

smooth functions C1
S=AS;M=AS

on S=AS induced by C1
M=AS

. The openness of the pro-

jection M ! M=AS guarantees, by Proposition 3.2, that

C1
S=AS;M=AS

¼ C1
S=AS

ð�ÞAS ;

where C1
S=AS

ð�ÞAS is the quotient presheaf on S=AS associated to the presheaf

C1
S;Mð�ÞAS of Whitney AS-invariant functions on S induced by C1

Mð�ÞAS . In order to

simplify notation, define

W1
S=AS

:¼ C1
S=AS;M=AS

¼ C1
S=AS

ð�ÞAS :

We recall that for any open set V � S=AS, the elements f 2 W1
S=AS

ðVÞ are charac-

terized by the fact that if pS: S ! S=AS is the projection onto orbit space then for

any m 2 p�1
S ðVÞ there exists an open AS-invariant neighborhood of m in M and

F 2 C1
MðUmÞAS such that

f � pSjp�1
S
ðVÞ\Um

¼ Fjp�1
S
ðVÞ\Um

: ð8:2Þ

The function F is called a local extension of f � pS at the point m.

Now assume that the given topology T on S is stronger than or equal to the

relative topology on S. The presheaf W1
S=AS

is said to have the ðA;ASÞ-local extension
property if AS is a subpseudogroup of A and for any f 2 W1

S=AS
ðVÞ and m 2 p�1

S ðVÞ
there exist an open A-invariant neighborhood Um of m in M and F 2 C1

MðUmÞA such

that

f � pSjp�1
S
ðVÞ\Um

¼ Fjp�1
S
ðVÞ\Um

:

The function F is called an A-invariant local extension of f � pS at m.

Finally, let ðM; f�; �gÞ be a smooth Poisson manifold, A � PLðMÞ a pseudogroup

of local Poisson diffeomorphisms of M, and S � M a subset of M such that W1
S=AS

has the ðA;ASÞ-local extension property. Then ðM; f�; �g;A;SÞ is said to be Poisson

reducible if S=AS;W
1
S=AS

; f�; �gS=AS

� �
is a well defined presheaf of Poisson algebras

where, for any open set V � S=AS, the bracket f�; �gS=AS

V : W1
S=AS

ðVÞ�
W1

S=AS
ðVÞ ! W1

S=AS
ðVÞ is given by

ff; ggS=AS

V ðpSðmÞÞ ¼ fF;GgðmÞ ð8:3Þ

for any m 2 p�1
S ðVÞ and where F;G are A-invariant local extensions at m of f � pS

and g � pS, respectively.
Using the concepts just introduced we formulate now a Poisson reduction theorem

for actions of pseudogroups of local Poisson diffeomorphisms. The following

notations are used below. If B 2 K2ðMÞ is the Poisson tensor associated to

ðM; f�; �gÞ, that is, BðmÞðdfðmÞ; dgðmÞÞ :¼ ff; ggðmÞ, for any smooth locally defined

functions f; g in a neighborhood of m 2 M, then B] : T�M ! TM denotes the bundle
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map given by B]ðdgÞ :¼ f�; gg. If V � TmM is a subspace, then its annihilator

V� � T�
mM is defined by V� :¼ fa 2 T�

mM j ha; vi ¼ 0 for all v 2 Vg.

THEOREM 8.2 ([42]). Let ðM; f�; �gÞ be a smooth Poisson manifold, A � PLðMÞ a
pseudogroup of local Poisson diffeomorphisms of M, and S � M a subset of M such

that W1
S=AS

has the ðA;ASÞ-local extension property. Let B]: T�M ! TM be the bundle

map associated to the Poisson tensor B of ðM; f�; �gÞ. Then ðM; f�; �g;A;SÞ is Poisson
reducible if and only if for any m 2 S we have

B]ðDmÞ � DS
m


 ��
; ð8:4Þ

where Dm :¼ fdFðmÞ j F 2 C1
MðUmÞA, for any open A-invariant neighborhood Um of m

in Mg, and where DS
m :¼ fdFðmÞ 2 Dm j FjUm\Vm

is constant, for an open A-invariant

neighborhood Um of m in M and an open AS-invariant neighborhood Vm of m in Sg.

Even though in this theorem only the subpseudogroup AS is needed in the con-

struction of the quotient space S=AS, the full pseudogroup A is used in the definition

of the Poisson bracket on this quotient when ðM; f�; �g;A;SÞ is Poisson reducible.

Actually, in spite of the fact that the reduction of ðM; f�; �g;A;SÞ and

ðM; f�; �g;AS;SÞ gives the same quotient manifold S=AS it does not yield the same

Poisson brackets on this quotient since different sets of functions are involved. There

are even instances in which ðM; f�; �g;A;SÞ is Poisson reducible whereas

ðM; f�; �g;AS;SÞ is not, as will be shown explicitly later on.

Theorem 8.2 has several useful corollaries which we now state.

COROLLARY 8.3. Let S be an embedded submanifold of the Poisson manifold

ðM; f�; �gÞ. The triple ðM; f�; �g;SÞ is Poisson reducible if and only if

B]ðT�
mMÞ � TmS; for any m 2 S; ð8:5Þ

or, equivalently, whenever

TmLm � TmS; for any m 2 S; ð8:6Þ
where Lm is the symplectic leaf of ðM; f�; �gÞ containing the point m 2 S. If S is only an

immersed submanifold of M then the conditions (8.5) or (8.6) are sufficient but, in

general, not necessary conditions for the Poisson reducibility of ðM; f�; �g;SÞ. In both

cases, the Poisson reducibility of ðM; f�; �g;SÞ implies that ðS; f�; �gjSÞ is a Poisson

manifold.

COROLLARY 8.4. Let ðM; f�; �gÞ be a smooth Poisson manifold, B 2 K2 Mð Þ the

associated Poisson tensor, and D a smooth, integrable, and regular distribution on M

generated by a family of local infinitesimal Poisson automorphisms of M. Then there is

a unique Poisson bracket f�; �gM=D on the quotient manifold M=D for which the pro-

jection pD: M ! M=D is a Poisson map.

If M is symplectic with form x then the rank of the Poisson structure f�; �gM=D at the

point pDðmÞ is
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rank B
]
M=DðpDðmÞÞ

� �
¼ dimM� dimDðmÞ � dim ðDðmÞÞx \DðmÞ½ 
; ð8:7Þ

where BM=D 2 K2 T�ðM=DÞð Þ is the Poisson tensor associated to the bracket f�; �gM=D

on M=D.

COROLLARY 8.5. Let G be a Lie group acting freely, properly, and canonically on

the Poisson manifold ðM; f�; �gÞ via the map U: G�M ! M. Let A :¼ AG ¼
fUg j g 2 Gg � PðMÞ and let S be an embedded G-invariant submanifold of M. Then

ðM; f�; �g;A;SÞ is Poisson reducible if and only if

B]ððg �mÞ�Þ � TmS; for any m 2 S: ð8:8Þ

If the G-action on M is not free, the inclusion

B] ðg �mÞ�ð ÞGm

� �
� TmS; for any m 2 S; ð8:9Þ

implies that ðM; f�; �g;A;SÞ is Poisson reducible.

8.2. POISSON REDUCTION BY DISTRIBUTIONS

Next, we want to analyze the Poisson reduction procedure by generalized distribu-

tions. The existence of a pseudogroup of global Poisson diffeomorphisms will not be

required anymore in the following theorems. We begin by extending the notion of

integrability of generalized distributions to decomposed subsets.

Let M be a differentiable manifold and S � M a decomposed subset of M. Let

fSigi2I be the pieces of this decomposition. The topology of S is not necessarily the

relative topology as a subset of M. We say that D � TMjS is a smooth distribution on

S adapted to the decomposition fSigi2I, if D \ TSi is a smooth distribution on each Si

for all i 2 I. The distribution D is said to be integrable if D \ TSi is integrable for

each i 2 I.

The integrability of the distributions DSi
:¼ D \ TSi on Si allows the partitioning

of each Si into the corresponding maximal integral manifolds. Thus, there is an

equivalence relation on Si whose equivalence classes are precisely these maximal

integral manifolds. Doing this on each Si, gives an equivalence relation DS on the

whole set S by taking the union of the different equivalence classes corresponding to

all the DSi
. The quotient space S=DS is defined by S=DS :¼

S
i2I Si=DSi

and pDS
:

S ! S=DS denotes the natural projection.

Let ðM; f�; �gÞ be a Poisson manifold and D � TM a smooth distribution on M.

The distribution D is called Poisson or canonical , if the condition dfjD ¼ dgjD ¼ 0,

for any f; g 2 C1
MðUÞ and any open subset U � P, implies that dff; ggjD ¼ 0. Note

that if D is spanned by a family of infinitesimal Poisson automorphisms then D is a

Poisson distribution. The converse is not necessarily true.

We shall define now a presheaf of smooth functions on S=DS that requires less

invariance properties than those that appeared in the context of quotients by
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pseudogroups of transformations. Define the presheaf of smooth functions C1
S=DS

on

S=DS by associating to any open subset V of S=DS the set of functions C1
S=DS

ðVÞ
characterized by the following property: f 2 C1

S=DS
ðVÞ if and only if for any z 2 V

there exists m 2 p�1
DS
ðVÞ, an open neighborhood Um of m inM, and F 2 C1

MðUmÞ such
that

f � pDS
jp�1

DS
ðVÞ\Um

¼ Fjp�1
DS

ðVÞ\Um
: ð8:10Þ

The function F is called, as before, a local extension of f � pDS
at the point

m 2 p�1
DS
ðVÞ.

The presheaf C1
S=DS

is said to have the ðD;DSÞ-local extension property if the

topology of S is stronger than the relative topology and the local extensions of

f � pDS
defined in (8.10) can always be chosen to satisfy

dFðnÞjDðnÞ ¼ 0; for any n 2 p�1
DS
ðVÞ \Um:

The function F is called a local D-invariant extension of f � pDS
at the point

m 2 p�1
DS
ðVÞ.

PROPOSITION 8.6. Suppose that S is a smooth embedded submanifold of M and that

DS is a smooth, integrable, and regular distribution on S. Then the presheaf C1
S=DS

coincides with the presheaf of smooth functions on S=DS when considered as a regular

quotient manifold.

Let ðM; f�; �gÞ be a Poisson manifold, S a decomposed subset ofM, and D � TMjS
a Poisson integrable generalized distribution adapted to the decomposition of S.

Assume that C1
S=DS

has the ðD;DSÞ-local extension property. We say that

ðM; f�; �g;D;SÞ is Poisson reducible if ðS=DS;C
1
S=DS

; f�; �gS=DSÞ is a well defined

presheaf of Poisson algebras where, for any open set V � S=DS, the bracket

f�; �gS=DS

V : C1
S=DS

ðVÞ � C1
S=DS

ðVÞ ! C1
S=DS

ðVÞ is given by

ff; ggS=DS

V ðpDS
ðmÞÞ :¼ fF;GgðmÞ;

for any m 2 p�1
DS
ðVÞ. In this formula, the maps F;G are local D-invariant extensions

at m of f � pDS
and g � pDS

, respectively.

THEOREM 8.7. Let ðM; f�; �gÞ be a Poisson manifold with associated Poisson

tensor B 2 K2ðMÞ, S a decomposed space, and D � TMjS a Poisson integrable

generalized distribution adapted to the decomposition of S. Assume that C1
S=DS

has

the ðD;DSÞ-local extension property. Then ðM; f�; �g;D;SÞ is Poisson reducible if

for any m 2 S

B]ðDmÞ � DS
m


 ��
; ð8:11Þ

where

Dm :¼ dFðmÞ j F 2 C1
MðUmÞ; dFðzÞjDðzÞ ¼ 0; for all z 2 Um \ S;

n
and for any open neighborhood Um of m in Mg
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and

DS
m :¼ dFðmÞ 2 Dm j FjUm\Vm

is constant for an open neighborhood Um

�
of m in M and an open neighborhood Vm of m in Sg:

Note that if S is endowed with the relative topology then

DS
m :¼ dFðmÞ 2 Dm j FjUm\Vm

is constant for an open neighborhood Um

�
of m in Mg:

As opposed to the situation in Theorem 8.2, condition (8.11) is sufficient for

Poisson reducibility but, in general, is not necessary. The reason behind this is that

the functions that define the spaces Dm and DS
m are not defined on saturated open

sets. As we will see in Theorem 8.8, an alternative hypothesis that makes this con-

dition necessary and sufficient is, roughly speaking, the regularity of the distribution

DS :¼ D \ TS.

8.3. THE REGULAR CASE

Next, we investigate the consequences of this theorem if the distribution D is regular.

Let ðM; f�; �gÞ be a Poisson manifold and S an embedded submanifold of M. Let

D � TMjS be a subbundle of the tangent bundle of M restricted to S such that

DS :¼ D \ TS is a smooth, integrable, regular distribution on S and D is canonical.

THEOREM 8.8 ([28]). Let ðM; f�; �gÞ be a Poisson manifold with associated Poisson

tensor B 2 K2ðMÞ and S an embedded smooth submanifold of M. Let D � TMjS be a

canonical subbundle of the tangent bundle of M restricted to S such that DS :¼ D \ TS

is a smooth, integrable, and regular distribution on S. Then ðM; f�; �g;D;SÞ is Poisson
reducible if and only if

B]ðD�Þ � TSþD: ð8:12Þ

One of the key technical difficulties in proving this theorem is given by the fol-

lowing statement that is useful also in other contexts when carrying out Poisson

reduction.

LEMMA 8.9. Let M be a smooth manifold and S an embedded submanifold of M. Let

D � TMjS be a subbundle of the tangent bundle of M restricted to S such that

DS :¼ D \ TS is a smooth, integrable, regular distribution on S. Then the presheaf

C1
S=DS

has the ðD;DSÞ-local extension property.

Remark 8.10. Even though in the previous theorem only the distribution DS

intervenes in the construction of the quotient manifold S=DS, the full distribution

D is used in the definition of the Poisson bracket on this quotient when

ðM; f�; �g;D;SÞ is Poisson reducible. Actually, in spite of the fact that the
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reduction of ðM; f�; �g;D;SÞ and ðM; f�; �g;DS;SÞ gives the same quotient mani-

fold S=DS it does not yield the same Poisson brackets on this quotient since

different sets of functions are involved. This is particularly evident in the fol-

lowing example in which we show, using Theorem 8.8, that ðM; f�; �g;D;SÞ is

reducible whereas ðM; f�; �g;DS;SÞ is not.

Let ðM;xÞ be a connected symplectic manifold acted freely and canonically upon

by a connected and compact Lie group G. Let J: M ! g� be a coadjoint equivariant

standard momentum map associated to this action, l 2 g� one of its values, and

Gl � G its coadjoint isotropy subgroup. Let D be the distribution on M given by the

tangent spaces to the orbits of the G-action and S :¼ J�1ðlÞ, which is a smooth

closed submanifold of M because of the freeness of the action. In this case DS is the

distribution given by the tangent spaces to the orbits of the Gl-action. The com-

pactness and connectedness of G implies that Gl is connected (see Theorem 3.3.1 in

[11]) and, hence, S=DS ¼ J�1ðlÞ=Gl.

The quadruple ðM;x;D; J�1ðlÞÞ satisfies (8.12) and is hence Poisson reducible.

Indeed, in this case the expression (8.12) is ðg �mÞx � kerTmJþ g �m, for any

m 2 J�1ðlÞ, which amounts to kerTmJ � kerTmJþ g �m (since ðg �mÞx ¼ kerTmJ),

which is an obvious inclusion.

On the other hand, the quadruple ðM;x;DS; J
�1ðlÞÞ is not Poisson reducible even

though the corresponding quotient manifold is the same as for ðM;x;D; J�1ðlÞÞ.
Indeed, condition (8.12) reads in this case

ðgl �mÞx � kerTmJþ gl �m ¼ kerTmJ; for any m 2 J�1ðlÞ

However,

ðgl �mÞx ¼ ðkerTmJ \ g �mÞx ¼ ðkerTmJÞx þ ðg �mÞx ¼ g �mþ kerTmJ

which is, in general, not a subset of kerTmJ.

A useful consequence of Theorems 8.7 and 8.8 is given by the following statement:

PROPOSITION 8.11. Let ðM; f�; �gÞ be a Poisson manifold with associated Poisson

tensor B 2 K2ðMÞ. Let S be an embedded submanifold of M and D :¼ B]ððTSÞ�Þ �
TMjS. Assume that the characteristic distribution DS :¼ D \ TS of S relative to the

Poisson bracket f�; �g is a smooth and integrable generalized distribution on S such that

C1
S=DS

has the ðD;DSÞ-local extension property. Then ðM; f�; �g;D;SÞ is Poisson

reducible.

The next topic in this section is the reduction of coisotropic submanifolds. Let

ðM; f�; �gÞ be a Poisson manifold with associated Poisson tensor B 2 K2ðMÞ and S an

immersed smooth submanifold of M. Denote by ðTSÞ� :¼ fas 2 T�
sM j has; vsi ¼ 0;

for all s 2 S; vs 2 TsSg � T�M the conormal bundle of the manifold S; it is a vector

subbundle of T�MjS. The manifold S is called coisotropic if B] ðTSÞ�ð Þ � TS. Note

that this is the straightforward generalization of the definition of a coisotropic

submanifold of a symplectic manifold. Indeed, if the Poisson bracket onM is defined
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by a symplectic form x 2 X2ðMÞ, then B] ðTSÞ�ð Þ ¼ ðTSÞx and the condition given

above becomes ðTSÞx � TS, that is, S is coisotropic in ðM;xÞ. In the symplectic

case, coisotropic submanifolds appear sometimes in the physics literature under the

name of first class constraints. The main properties of coisotropic submanifolds are

summarized in the following proposition.

PROPOSITION 8.12. Let ðM; f�; �gÞ be a Poisson manifold with associated Poisson

tensor B 2 K2ðMÞ and S an embedded smooth submanifold of M. The following are

equivalent:

(i) S is coisotropic;

(ii) if f 2 C1ðMÞ satisfies fjS 	 0 then XfjS 2 XðSÞ;
(iii) for any s 2 S, any open neighborhood Us of s in M, and any function g 2 C1ðUsÞ

such that XgðsÞ 2 TsS, if f 2 C1ðUsÞ satisfies ff; ggðsÞ ¼ 0, it follows that

XfðsÞ 2 TsS;

(iv) the subalgebra ff 2 C1ðMÞ j fjS 	 0g is a Poisson subalgebra of ðC1ðMÞ; f�; �gÞ.

Coisotropic submanifolds naturally induce distributions with good properties

relative to reduction.

PROPOSITION 8.13. Let ðM; f�; �gÞ be a Poisson manifold with associated Poisson

tensor B 2 K2ðMÞ. Let S be an embedded coisotropic submanifold of M and

D :¼ B]ððTSÞ�Þ. Then:

(i) D ¼ D \ TS ¼ DS is a smooth generalized distribution on S.

(ii) D is integrable.

(iii) If C1
S=DS

has the ðD;DSÞ-local extension property then ðM; f�; �g;D;SÞ is Poisson
reducible.

Remark 8.14. Let ðM; f�; �gÞ be a Poisson manifold and B 2 K2ðMÞ the corre-

sponding Poisson tensor. Let S be an embedded submanifold such that the charac-

teristic distribution DS :¼ B]ððTSÞ�Þ \ TS is a smooth, integrable, Poisson, and

regular distribution on S. Even though the quotient manifolds associated to the qua-

druples ðM; f�; �g;D;SÞ and ðM; f�; �g;DS;SÞ are the same and ðM; f�; �g;D;SÞ is

reducible by Proposition (8.11), the quadruplet ðM; f�; �g;DS;SÞ is, in general,

not reducible. Actually, its reducibility is, by Theorem 8.8, equivalent to S being a

coisotropic submanifold of M. Indeed, by Proposition 8.13 and Lemma 8.9 if S is

coisotropic then ðM; f�; �g;DS;SÞ is reducible. Conversely, if ðM; f�; �g;DS;SÞ is

reducible then by Theorem 8.8 we have B]ðD�
SÞ � TSþDS ¼ TS since DS � TS.

Additionally,

B]ððTSÞ�Þ � B]ððTSÞ�Þ þ B]ð½B]ððTSÞ�Þ
�Þ ¼B]ððTSÞ� þ ½B]ððTSÞ�Þ
�Þ
¼B]ð½B]ððTSÞ�Þ \ TS
�Þ ¼ B]ðD�

SÞ
Thus ðM; f�; �g;DS;SÞ is Poisson reducible relative to the characteristic distribution if

and only if S is coisotropic.
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The difference in terms of reducibility between ðM; f�; �g;D;SÞ and

ðM; f�; �g;DS;SÞ is the same as that between the systems ðM;x;D; J�1ðlÞÞ and

ðM;x;DS; J
�1ðlÞÞ that we considered in Remark 8.10.

EXAMPLE. Coisotropic submanifolds appear naturally when one has integrals in

involution. Let ðM; f�; �gÞ be a Poisson manifold with Poisson tensor B and let

f1; . . . ; fk 2 C1ðMÞ be k smooth functions in involution, that is,

ffi; fjg ¼ 0; for any i; j 2 f1; . . . ; kg:
Assume that 0 2 R

k is a regular value of the function F :¼ ðf1; . . . ; fkÞ : M ! R
k and

let S :¼ F�1ð0Þ. Since for any s 2 S, spanfdf1ðsÞ; . . . ; dfkðsÞg � TsSð Þ� and the

dimensions of both sides of this inclusion are equal we get

spanfdf1ðsÞ; . . . ; dfkðsÞg ¼ TsSð Þ�:
Hence,

B]ðsÞððTsSÞ�Þ ¼ span Xf1ðsÞ; . . . ;XfkðsÞ
� �

;

and B]ðsÞððTsSÞ�Þ � TsS by the involutivity of the components of F. Consequently, S

is a coisotropic submanifold of ðM; f�; �gÞ and Proposition 8.13 can be applied to it.

9. Cosymplectic Submanifolds and Dirac’s Formula

The main goal of this section is to study certain submanifolds of a Poisson sub-

manifold that are not Poisson themselves but to which the Poisson reduction method

in Theorem 8.8 can be applied. As we shall see, these manifolds are intimately

related to constraints and, in particular, to Dirac’s formula for constrained Poisson

brackets.

9.1. COSYMPLECTIC SUBMANIFOLDS

Let ðM; f�; �gÞ be a Poisson manifold and B 2 K2ðMÞ its associated Poisson tensor.

An embedded submanifold S � M is called cosymplectic if

(i) B]ððTSÞ�Þ \ TS ¼ f0g.
(ii) TsSþ TsLs ¼ TsM,

for any s 2 S and Ls the symplectic leaf of ðM; f�; �gÞ containing s 2 S.

The cosymplectic submanifolds of a symplectic manifold ðM;xÞ are its symplectic

submanifolds. In the physics literature, if the phase space is given by a symplectic (as

opposed to a Poisson) manifold, coisotropic submanifolds appear often under the

name of second-class constraints. The main properties of cosymplectic submanifolds

are summarized in the following proposition.

PROPOSITION 9.1. Let ðM; f�; �gÞ be a Poisson manifold, B 2 K2ðMÞ the corre-

sponding Poisson tensor, and S a cosymplectic submanifold of M. Then for any s 2 S,
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(i) TsLs ¼ ðTsS \ TsLsÞ � B]ðsÞððTsSÞ�Þ, where Ls is the symplectic leaf of

ðM; f�; �gÞ that contains s 2 S.

(ii) ðTsSÞ� \ kerB]ðsÞ ¼ f0g.
(iii) TsM ¼ B]ðsÞððTsSÞ�Þ � TsS.

(iv) B]ððTSÞ�Þ is a subbundle of TMjS and, hence, TMjS ¼ B]ððTSÞ�Þ � TS.

(v) The symplectic leaves of ðM; f�; �gÞ intersect S transversely and hence S \ L is an

initial submanifold of S, for any symplectic leaf L of ðM; f�; �gÞ.
The following theorem is due to Weinstein [51].

THEOREM 9.2 (The Poisson structure of a cosymplectic submanifold). Let

ðM; f�; �gÞ be a Poisson manifold, B 2 K2ðMÞ the corresponding Poisson tensor, and S

a cosymplectic submanifold of M. Let D :¼ B]ððTSÞ�Þ � TMjS. Then

(i) ðM; f�; �g;D;SÞ is Poisson reducible.

(ii) The corresponding quotient manifold equals S and the reduced bracket f�; �gS is

given by

ff; ggSðsÞ ¼ fF;GgðsÞ; ð9:1Þ
where f; g 2 C1

S;MðVÞ are arbitrary and F;G 2 C1
MðUÞ are local D-invariant

extensions of f and g around s 2 S, respectively.

(iii) The Hamiltonian vector field Xf of an arbitrary function f 2 C1
S;MðVÞ is given by

Ti � Xf ¼ XF � i; ð9:2Þ
where F 2 C1

MðUÞ is a local D-invariant extension of f and i: S,!M is the

inclusion.

(iv) The Hamiltonian vector field Xf of an arbitrary function f 2 C1
S;MðVÞ can be

written as

Ti � Xf ¼ pS � XF � i; ð9:3Þ

where F 2 C1
MðUÞ is an arbitrary local extension of f and pS: TMjS ! TS is the

projection induced by theWhitney sum decomposition TMjS ¼ B]ððTSÞ�Þ � TS of

TMjS.
(v) The symplectic leaves of ðS; f�; �gSÞ are the connected components of the inter-

sections S \ L, with L a symplectic leaf of ðM; f�; �gÞ. Any symplectic leaf of

ðS; f�; �gSÞ is a symplectic submanifold of the symplectic leaf of ðM; f�; �gÞ that
contains it.

(vi) Let Ls and LS
s be the symplectic leaves of ðM; f�; �gÞ and ðS; f�; �gSÞ, respectively,

that contain the point s 2 S. Let xLs
and xLS

s
be the corresponding symplectic

forms. Then B]ðsÞððTsSÞ�Þ is a symplectic subspace of TsLs and

B]ðsÞððTsSÞ�Þ ¼ TsLS
s

� �xLs ðsÞ: ð9:4Þ
(vii) Let BS 2 K2ðSÞ be the Poisson tensor associated to ðS; f�; �gSÞ. Then

B
]
S ¼ pS � B]jS � p�S; ð9:5Þ

where p�S: T
�S ! T�MjS is the dual of pS: TMjS ! TS.
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Note that this theorem provides presheaves of Poisson algebras on ðS;C1
S;MÞ and

on ðS;C1
S Þ. When S is paracompact both presheaves coincide.

COROLLARY 9.3. Let ðM; f�; �gÞ be a Poisson manifold and S � M an embedded

submanifold. Then S is a cosymplectic submanifold of ðM; f�; �gÞ if and only if it

satisfies the following two properties:

(i) TsS \ TsLs is a symplectic subspace of ðTsLs;xLs
ðsÞÞ, for any s 2 S, where Ls is

the symplectic leaf of ðM; f�; �gÞ that contains s 2 S;

(ii) TsSþ TsLs ¼ TsM, for any s 2 S.

9.2. THE DIRAC CONSTRAINTS FORMULA

Next, we show that the classical formula of Dirac [10] for constrained brackets

generalizes to the Poisson context if the constraint is a cosymplectic submanifold.

Let ðM; f�; �gÞ be a n-dimensional Poisson manifold and let S be a k-dimensional

cosymplectic submanifold of M. Let z0 be an arbitrary point in S and ðU; jÞ a

submanifold chart around z0 such that j ¼ ðu;wÞ: U ! V1 � V2. V1 and V2 are two

open neighborhoods of the origin in two Euclidean spaces such that

jðz0Þ ¼ uðz0Þ;wðz0Þ
� �

¼ ð0; 0Þ and

jðU \ SÞ ¼ V1 � f0g: ð9:6Þ
Let u ¼: ðu1; . . . ;ukÞ be the components of u and define bu1 :¼ u1jU\S;

. . . ; buk :¼ ukjU\S. Use now Lemma 8.9 to extend bu1; . . . ; buk to D-invariant functions

u1; . . . ;uk on U. Since the differentials dbu1ðsÞ; . . . ; dbukðsÞ are linearly independent

for any s 2 U \ S, we can assume (by shrinking U if necessary) that

du1ðzÞ; . . . ; dukðzÞ are also linearly independent for any z 2 U. Consequently, ðU; jÞ
with j :¼ ðu1; . . . ;uk;w1; . . . ;wn�kÞ, is a submanifold chart for M around z0 with

respect to S such that, by construction,

du1ðsÞjB]ðsÞððTsSÞ�Þ ¼ � � � ¼ dukðsÞjB]ðsÞððTsSÞ�Þ ¼ 0;

for any s 2 U \ S. This implies that for any i 2 f1; . . . ; kg, j 2 f1; . . . ; n� kg, and
s 2 S

fui;wjgðsÞ ¼ duiðsÞ � XwjðsÞ ¼ 0

since dwjðsÞ 2 TsSð Þ� (by (9.6)) and, hence,

XwjðsÞ 2 B]ðsÞððTsSÞ�Þ: ð9:7Þ

Additionally, since the functions u1; . . . ;uk are D-invariant we have, by (9.2), that

Xu1ðsÞ ¼ Xbu1ðsÞ 2 TsS; . . . ;XukðsÞ ¼ XbukðsÞ 2 TsS;

for any s 2 S. Consequently, fXu1ðsÞ; . . . ;XukðsÞ;Xw1ðsÞ; . . . ;Xwn�kðsÞg spans TsLs

with

fXu1ðsÞ; . . . ;XukðsÞg � TsS \ TsLs
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and

fXw1ðsÞ; . . . ;Xwn�kðsÞg � B]ðsÞððTsSÞ�Þ:

By Proposition 9.1(i),

spanfXu1ðsÞ; . . . ;XukðsÞg ¼ TsS \ TsLs

and

spanfXw1ðsÞ; . . . ;Xwn�kðsÞg ¼ B]ðsÞððTsSÞ�Þ:

Since dim B]ðsÞððTsSÞ�Þ
� �

¼ n� k by Proposition (9.1)(iii), it follows that

fXw1ðsÞ; . . . ;Xwn�kðsÞg is a basis of B]ðsÞððTsSÞ�Þ.
By Theorem (9.2)(vi), B]ðsÞððTsSÞ�Þ is a symplectic subspace of TsLs, so there

exists some r 2 N such that n� k ¼ 2r and, additionally, the matrix CðsÞ with

entries

CijðsÞ :¼ fwi;wjgðsÞ; i; j 2 f1; . . . ; n� kg
is invertible. Therefore, in the coordinates ðu1; . . . ;uk;w1; . . . ;wn�kÞ the matrix

associated to the Poisson tensor BðsÞ is
BS 0
0 C

� �
:

Let CijðsÞ be the entries of the matrix C�1ðsÞ.

PROPOSITION 9.4 (Dirac formulas). In the coordinate neighborhood ðu1; . . . ;uk;

w1; . . . ;wn�kÞ constructed above and for s 2 S we have, for any f; g 2 C1
S;MðVÞ:

XfðsÞ ¼ XFðsÞ �
Xn�k

i;j¼1

fF;wigðsÞCijðsÞXwjðsÞ ð9:8Þ

and

ff; ggSðsÞ ¼ fF;GgðsÞ �
Xn�k

i;j¼1

fF;wigðsÞCijðsÞfwj;GgðsÞ; ð9:9Þ

where F;G 2 C1
MðUÞ are arbitrary local extensions of f and g, respectively, around s 2 S .

The proof proceeds along the same lines as in the symplectic case (see, for example,

[29]). Here is a sketch. By Theorem 9.2(iv), we have XfðsÞ ¼ pS XFðsÞð Þ. Therefore,
the equality (9.8) is equivalent to

Id� pSð ÞXFðsÞ ¼
Xn�k

i;j¼1

fF;wigðsÞCijðsÞXwjðsÞ: ð9:10Þ

By Proposition 9.1(ii) this amounts to showing that the right-hand side of (9.10) is

the projection of XFðsÞ onto B]ðsÞððTsSÞ�Þ. This is achieved by proving that this term

(i) is an element of B]ðsÞððTsSÞ�Þ;
(ii) equals XFðsÞ if XFðsÞ 2 B]ðsÞððTsSÞ�Þ;
(iii) equals 0 if XFðsÞ 2 TsS.
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Part (i) follows from (9.7). To prove (ii) assume that XFðsÞ 2 B]ðsÞððTsSÞ�Þ. Since the
set fXw1ðsÞ; . . . ;Xwn�kðsÞg is a basis of B]ðsÞððTsSÞ�Þ, there exist constants fa1; . . . ; akg
such that

XFðsÞ ¼
Xn�k

l¼1

alXwlðsÞ:

A direct verification shows thatXn�k

i;j¼1

fF;wigðsÞCijðsÞXwjðsÞ ¼ XFðsÞ:

Finally, to show (iii) let XFðsÞ 2 TsS. Since, by construction, dwiðsÞ 2 TsSð Þ�, for any
i 2 f1; . . . ; n� kg, we get fF;wigðsÞ ¼ �dwiðsÞ � XFðsÞ ¼ 0. This proves (9.10) and

hence the proposition.

Dirac’s formula (9.9) provides an explicit local expression for the transverse

Poisson structure of a Poisson manifold ðM; f�; �gÞ at any of its points since the local

transverse slice given by the points of the form ð0; 0; zÞ is a local cosymplectic sub-

manifold of M. In particular, applying this formula to the Lie–Poisson structure on

g� at a point l satisfying the condition g ¼ gl � k, with k a linear subspace such that

½gl; k
 � k, it follows that the transverse Poisson structure is the Lie–Poisson structure

of g�l, a result due to Weinstein [51], Molino [35], and Givental. If gl has a com-

plement that is a Lie subalgebra, then the transverse structure as expressed by the

Dirac formula, is at most quadratic, a result due to Oh [36].
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