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1. Introduction

The use of symmetries in the quantitative and qualitative study of dynamical systems
has a long history that goes back to the founders of mechanics. In most cases, the
symmetries of a system are used to implement a procedure generically known under
the name of reduction that restricts the study of its dynamics to a system of smaller
dimension. This procedure is also used in a purely geometric context to construct
new nontrivial symplectic or Poisson manifolds.

Most of the reduction methods presented in this paper can be seen as a general-
ization systematizing the techniques of elimination of variables found in classical
mechanics. These procedures consist basically of two steps. First, one restricts the
dynamics to flow invariant submanifolds of the system in question. Sometimes, these
invariant manifolds appear as the level sets of a momentum map induced by the
symmetry of the system. The construction of these momentum maps and the
interplay between symmetry and conservation laws is one of the main topics of this
presentation. The second step consists in projecting the restricted dynamics onto the
symmetry orbit quotients of the spaces constructed in the first step. This passage to
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the quotient generally yields spaces that are not smooth manifolds, which explains
why this procedure is sometimes called singular reduction.

Here we provide a self-contained, quick, and general overview of some of the
reduction techniques found in the literature. The results presented here are not
original, even though many of them cannot be found in journals; they appear for the
first time in [44]. The proofs are omitted to keep the size of this review within a
reasonable length. This allows the reader to gain a panoramic overview of these
methods without being distracted by technical details. These are extremely important
when a deeper understanding is desired but are avoidable in a first contact with the
subject. All the proofs can be found in the original papers cited in the text or in our
monograph [44].

2. Symmetry Reduction

The word reduction appears in the mathematics and physics literature in a variety of
contexts.

2.1. THE CASE OF GENERAL VECTOR FIELDS

Let M be a smooth manifold and G be a Lie group acting properly on M. Let
X € X(M)? be a G-equivariant vector field on M and F, be the corresponding
(necessarily equivariant) flow. For any isotropy subgroup H of the G-action on M,
the H-isotropy type submanifold My defined by

My:={meM|G, =H} (2.1)

is preserved by the flow F,. The symbol G,, denotes the isotropy subgroup of the
element m € M. This property is known as the law of conservation of isotropy. The
properness of the action guarantees that G,, is compact and that the (connected
components of) My are embedded submanifolds of M for any closed subgroup H of
G. The manifolds My are, in general, not closed in M. Moreover, the quotient group
N(H)/H (where N(H) denotes the normalizer of H in G) acts freely and properly on
My. Hence, if ny: My — My/(N(H)/H) denotes the projection onto orbit space
and iy: My—M is the injection, the vector field X induces a unique vector field X*/
on the quotient My/(N(H)/H) defined by the expression

H .
X' onyg=TngoXoiy,

whose flow F,H is given by Ff’ ony=mnygoF,oiyg. We will refer to
X1 € X(My/(N(H)/H)) as the H-isotropy type reduced vector field corresponding to
X.

This reduction technique has been widely exploited in specific examples (see [6, 13,
14]). When the symmetry group G is compact and we are dealing with a linear action
the construction of the quotient My/(N(H)/H) can be implemented in a very
explicit and convenient manner by using the invariant polynomials of the action and
the theorems of Hilbert, Schwarz, and Mather. Apart from the already cited works,
the papers [7, 17-19] all use this method in concrete examples.
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2.2. THE HAMILTONIAN CASE

Let (M, ®) be a symplectic manifold and G a connected Lie group, with Lie algebra
g, acting freely and properly by symplectomorphisms on (M, w). Assume that this
action admits an associated equivariant momentum map J: M — g*. If G is compact
or semisimple this always holds. Recall that J is defined by the condition that for any
element ¢ € g, the Hamiltonian vector field Xj: associated to the function
Jo = (J, &) satisfies Xj: = &y, where &, is the infinitesimal generator vector field
given by ¢ € g.

The Marsden—Weinstein reduction theorem [30] states that for any regular value
ueJ(M) C g* of J, the quotient M, := J’l(u)/GH is a symplectic manifold with
symplectic form w, uniquely determined by the equality 7w, = i;,», where G, is the
isotropy subgroup of the element u € g* with respect to the coadjoint action of G on
g%, iy: J7' ()= M the canonical injection, and 7,: J~' (1) — J~'(1)/G, the projec-
tion onto the orbit space.

In terms of dynamics, the interest of this construction is given by the fact that for
any G-invariant Hamiltonian 7 € C>°(M), the corresponding Hamiltonian flow F,
leaves the connected components of J~! (u) invariant (Noether’s Theorem) and
commutes with the G-action, so it induces a flow F}' on M, uniquely determined by
the identity m, o F;0i, = F{ om,. The flow F/ is Hamiltonian on (M, w,), with
Hamiltonian function /s, € C>*(M,) defined by the relation A, om, =hoi, The
function #,, is called the reduced Hamiltonian.

Symplectic reduction is a very powerful tool that has been involved in many
developments in symplectic geometry and in the study of Hamiltonian dynamical
systems with symmetry [1]. Nevertheless, there are situations in which the just
described reduction procedure does not work or is not efficient enough. For instance,
the following situations can occur:

e The symmetry of the system does not admit a momentum map. This problem has
been solved in some situations with the introduction of other types of momentum
maps [2, 8§, 12, 15, 32].

o The action is not free and therefore the symplectic quotient M, is not a smooth
manifold. In the presence of a momentum map this situation has been treated in
[4, 5,9, 37, 46].

e The symmetry group is discrete and therefore the momentum map does not
provide any conservation law.

e The phase space the system is not a symplectic but a Poisson manifold [28, 42].

3. Conservation Laws via Generalized Distributions

The optimal momentum map has been introduced in [43] as an approach, based on
generalized distributions, to the problem of finding and describing the conservation
laws associated to a canonical symmetry.
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Unlike the standard momentum map, this object is related to global rather than to
infinitesimal symmetries. One of the main goals behind its study consists in capturing
the conservation laws that cannot be detected by the previously described momen-
tum map. Even the generalized momentum maps alluded to above become trivial
when the Lie algebra of the symmetry group is zero. This eliminates discrete sym-
metries from the general reduction scheme, a case that is very important in appli-
cations.

Another particularly convenient feature of the optimal momentum map is its
generality. The construction presented previously (and other similar methods) is very
symplectic in nature. This can be generalized to the Poisson setting, but there the
existence of the momentum map becomes even more problematic. As will be shown
in this section, the optimal momentum map always exists for any canonical group
action on a Poisson manifold.

The use of the term ‘optimal’ is justified by the following property: the level sets of
this map are the smallest possible submanifolds of phase space that are preserved by
the flows of Hamiltonian vector fields of G-invariant functions. To be more specific,
recall that the Hamiltonian vector field associated to an invariant Hamiltonian is
automatically equivariant and therefore satisfies the law of conservation of the
isotropy, discussed in Section 2. Thus, the isotropy type manifolds are invariant
under its flow. This conservation law cannot be detected either by the standard
momentum map discussed previously, or by its various generalizations mentioned
above.

3.1. GENERALIZED FOLIATIONS AND DISTRIBUTIONS

To explain all of this, we quickly review generalized foliations and distributions. We
begin with the notion of initial submanifold that naturally appears in this context. Let
M and N be smooth manifolds and assume that N C M as sets. Then N is called an
initial submanifold of M if the inclusion map i: N — M is an immersion satisfying the
following condition: for any smooth manifold P and any map g: P — N, gis smooth if
and only if iog: P — M is smooth. By its very definition, the smooth manifold
structure that makes N into an initial submanifold of M is unique. As we shall see
below, initial submanifolds are very much relevant for generalized foliations.

A generalized foliation on M is a partition ® = {£,} ., of this manifold into
disjoint connected sets, called leaves, such that each point z € M has a generalized
foliated chart, defined as a pair (U, ¢ : U — W C R™) with z € U and such that for
each leaf £, there is a natural number n < m, called the dimension of L,, and a subset
A, C R"™" such that

o(UNLy) ={(z1,..-,zm) € W| (Zus1s---2Zm) € Au}-
Each element (2, ,,...,2)) € A, determines a connected component (UN L,)" of
UNL,, that is, o(UNL,)") = {(z1,-++,Zn 21, ,2,) € W}. Notice that, unlike
in the case of standard foliations, the number » may change from leaf to leaf. The
generalized foliated charts induce on the leaves a smooth manifold structure relative
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to which they are initial submanifolds of M. Recall that even in the case of the usual
foliations, that is, the dimension 7 is constant on M, the leaves are rarely embedded;
they are, however, initial manifolds.

A generalized distribution D on M is a subset of the tangent bundle 7M such that,
for any point m € M, the fiber D(m) := D N T,,M is a vector subspace of T, M. The
dimension of D(m) is called the rank or the dimension of the distribution D at the
point m. A differentiable section of D is a differentiable vector field X defined on an
open subset U of M, such that for any point m € U, X(m) € D(m). An immersed
connected submanifold N of M is said to be an integral manifold of the distribution D
if, for every z € N, T.i(T.N) C D(z), where i: N — M is the injection. The integral
submanifold N is said to be of maximal dimension at a point z€ N if
T.i(T.N) = D(z). The generalized distribution D is differentiable if, for every point
m € M and for every vector v € D(m), there exists a differentiable section X of D,
defined on an open neighborhood U of m, such that X(m) = v. The generalized
distribution D is completely integrable if, for every point m € M, there exists an
integral manifold of D everywhere of maximal dimension which contains m. The
generalized distribution D is involutive if it is invariant under the (local) flows
associated to differentiable sections of D. This definition of involutivity is more
general than the usual one encountered in the Frobenius theorem and it only
coincides with it when the dimension of D(m) is the same for any m € M, that is,
precisely when D is a vector subbundle of 7M. There are various characterizations of
the complete integrability of a distribution, the most common being the Stefan—
Sussmann Theorem: D is completely integrable if and only if it is involutive.

Let D be an integrable generalized distribution. Then for every point m € M there
exists a unique connected integral manifold £,, of D that contains m and which is
maximal in the following sense: it is everywhere of maximal dimension and if there is
any other connected integral manifold £’ of maximal dimension that intersects £,,,
then £’ is an open submanifold of £,,. The submanifold £,, is called the maximal
integral manifold or the accessible set of D containing m. The maximal integral
manifolds of D are always initial submanifolds of M and constitute a generalized
foliation @ of M. We shall denote by M/D := M/®p, the leaf space of ®@p. The term
‘accessible set’ is justified by the fact that the maximal integral manifold £, of D
containing the point m coincides with the set of points that can be reached by
applying to m finite compositions of flows of the (locally defined) differentiable
sections that span D. This immediately leads to the concept of pseudogroups of
transformations to which we turn next.

3.2. PSEUDOGROUPS AND THE EXTENSION PROPERTY

Recall that a monoid is a set with an associative operation which contains a two-sided
identity element (which is hence unique). A pseudogroup is a submonoid A of a given
monoid such that each element has an inverse in 4. In particular, the set of all local
diffeomorphisms of a manifold is not just a monoid but a pseudogroup. A useful
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property of pseudogroups of local diffeomorphisms of M is that they have orbits that
partition the manifold. The orbit through m € M of the pseudogroup of transfor-
mations A4 is defined by

A-m:={p(m)| ¢ € A,m is in the domain of ¢}.

Endowing the space of orbits M/A of a pseudogroup A of local diffeomorphisms
with the quotient topology, makes the canonical projection M — M/A both con-
tinuous and open. A pseudogroup A of local diffeomorphisms of the manifold M is
called integrable if its orbits form a generalized foliation of M. In particular, the
orbits of an integrable pseudogroup are initial submanifolds of M. The generalized
distribution D, associated to the pseudogroup A is defined by the condition that
D ,(m) equals the tangent space to the A-orbit through m € M at m.

The pseudogroup A of local diffeomorphisms of M is said to have the extension
property if any A-invariant function f € COC(U)A defined on any A-invariant open
subset U has the following feature: for any z € U, there is an A4-invariant open
neighborhood ¥ € U of z and an A-invariant smooth function F e C>(M)" such
that f, = F|,.

The group of (global) diffeomorphisms associated to a proper Lie group action has
the extension property.

3.3. POLAR PSEUDOGROUPS

If (M,{-,-}) is a Poisson manifold, denote by P.(M) the pseudogroup of all local
Poisson diffeomorphisms of M and by P(M) the group of Poisson diffeomorphisms
of M. It turns out that the optimal momentum map presented later on in this section
has much to do with the notion of polarity introduced in [38].

If A C P (M) is a pseudogroup of local Poisson diffeomorphisms of M, denote by
F4 the set of Hamiltonian vector fields associated to all the elements of C>(U)* (4-
invariant functions in C>*(U)), for all open A4-invariant subsets U of M, that is,

Fy= {Xf‘ | fe C*(U)*,with U C M open and A-invariant}.
The distribution Dp, associated to the family F, that is,

Dg,(m) := {Xf(m) | fe C=(U)*, with U C M open and A-invariant, m € U}
for every m € U, is called the polar distribution defined by 4. Any generating family

of vector fields for Dy, is called a polar family of A. The family F, is the standard
polar family of A. The polar pseudogroup of A4 is defined by

A,::{F}IO"'OFZ, |neNandF’,‘k is a local flow of some X, € Fy, 1 <k <n}.

Forexample,if 4 C P (M) apseudogroup of local Poisson diffeomorphisms of M that
has the extension property, then the family {X; | f € C*(M )A} is a polar family.

A very important property of the polar distribution of a group of Poisson diffe-
omorphisms is that it is automatically Poisson and integrable.
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PROPOSITION 3.1. Let (M,{-,-}) be a Poisson manifold and A C P(M) a group of
Poisson diffeomorphisms of M. Then the following hold.

(i) The polar pseudogroup A’ acts canonically and is integrable.

(ii) Any element of A commutes with any element of A'.

(ill) Any element ¢ € A" induces a local diffeomorphism @ of the presheaf space
(M/ A, C%/A), uniquely determined by the relation p omny =140 @, where T 4:
M — M/ A is the projection. In other words, the standard polar pseudogroup A’
acts on the presheaf space (M/A,Cy ,).

(iv) The group A acts naturally on the orbit space M/ A'. More specifically, for any
¢ € A, there is a diffeomorphism ¢ of the quotient space (M/A', CE/A,) uniquely
determined by the relation ¢ oy = ny o ¢, where ngy: M — M/ A is the pro-
Jection.

3.4. PRESHEAF SPACES

We elaborate now on the meaning of the smoothness statements in parts (iii) and
(iv).

Let F be a presheaf of functions defined on the topological space P. The pair
(P, F) is called a presheaf space. In all that follows it is assumed that F(U) is an
algebra of continuous real valued functions on U for every open set U C P.

Let (P;,F:) and (P2, F>) be two presheaf spaces. The continuous map f:
(P1,F1) — (P2, F>) is said to be smooth if for any open set U C P, we have
fF(U) € Fi(f~(U)), where f*s := s o f for any s € F»(U). A bijective smooth map
between presheaf spaces whose inverse is also smooth is called a diffeomorphism.

Let R be an equivalence relation on the presheaf space (M, Fy) and n: M — M /R
the canonical projection. The presheaf Fj; on M naturally induces the quotient
presheaf F % on M /R by

Fuyw(U) = {ffunction on U|fon| iy € Fu(n ' (U))}.

If 7y is a sheaf, then so is Fy/x.

If M is a smooth manifold, the map that assigns to each open set the smooth
functions on it is a sheaf denoted by C3;. If A4 is a pseudogroup of local diffeo-
morphisms acting on M, then it defines an equivalence relation on M whose classes
are the A4-orbits. Thus the previous construction yields the quotient presheaf C35 /4
on M/A given on any open set U C M by

34(0) = {f€ C(U) | forly € Cy(a ' (U)},

where n: M — M /A is the canonical projection. The words ‘smooth’ and ‘diffeo-
morphism’ in parts (iii) and (iv) of Proposition 3.1 need to be understood in terms of
these definitions.

Let M be a topological space and F ), a presheaf of functions on M. Let S C M be
a subset of M endowed with a given topology 7 that does not necessarily coincide
with the subspace topology. The presheaf F,, induces naturally the presheaf Fs 5s of
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Whitney smooth functions on (S,7) which is defined in the following way: for each
open subset V of S the set of functions F (V) equals all functions on ¥ having the
property that for any z € V there is a open neighborhood U, of z in M and a function
F € Fu(U:) such that f|;; ,, = F|y - The function Fis called a local extension of f
at z. _ _

Let /i (M, Fy) — (N,Fy) be a smooth function and S and T two topological
subspaces of M and N, respectively, such that f(S) C 7. Then the map f
(S, Fsm) — (T, Frn) constructed by restricting the domain and range of fto S and
T, respectively, is also smooth.

If R is a regular equivalence relation on the smooth manifold M then the quotient
topological space M/R is a smooth manifold and the canonical projection m:
M — M/R is a surjective submersion. Let Ciiyw denote the presheaf of smooth
functions on the manifold M/9R. At the same time, the presheaf C3; of smooth
functions on M induces a quotient presheaf of functions on M/R, denoted by

Oy 9 The fact that = is a submersion implies that

Chiym = Chiysn (3.1)
An equivalence relation R on the topological space M with a presheaf of functions
Fu can be used to define another presheaf on the topological space of saturated
open sets. An open subset of M is said to be R-invariant or R-saturated if it is the
union of R-equivalence classes. The R-saturated sets of M form a topology for M, in
general strictly weaker than the original topology. The presheaf F ?‘} of R-invariant
or R-saturated functions associates to each R-invariant open subset U the set

FR(U) := {f € Fu(U) | fis constant on the equivalence classes of R}.

Let S C M be a subset of M endowed with a given topology 7 and restrict the
equivalence relation R to S. Consider the presheaf (F, M)gR of M-invariant functions
on S and the restriction (F}y)g,, to S of the presheaf F} on R-invariant functions
of M. A presheaf of much importance later on is the intersection of these two,
denoted by fng, that is,

f?,M = (~7:S,M)gq N (-7:?54)5,/14-

The presheaf (F )" limits the domain of F ? » to R-invariant open sets of (S, 7). To
be more explicit, for any such set V, F ? (V) consists of R-invariant functions fdefined
on V with the property that for any z € V there exists an open R-saturated neigh-
borhood U. of z in M and a function F € F3}(U.) such that /]y = Fly.ny- We will
refer to F ? w as the presheaf of Whitney invariant functions on S induced by F Z.

PROPOSITION 3.2.  Let M be a topological space with a presheaf F y of functions
on it. Let R be an equivalence relation on M and S an R-invariant subset of M endowed
with a given topology T. If Fsjwyw is the presheaf of Whitney smooth functions on
S/ considered as a subset of M/R, then Fg/qm/m C .F?/m, where ]:?/9% is the
quotient presheaf on S/R corresponding to }'?M. If the projection m: M — M /R is an
open map then F g yvim = }'?/m. '
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3.5. THE OPTIMAL MOMENTUM MAP

If ®: Gx M — M is a canonical Lie group action on the Poisson manifold
(M, {-,-}), denote by Ag :={D,|g € G} C P(M) the associated group of Poisson
diffeomorphisms and by A¢; the polar pseudogroup. The optimal momentum map J:
M — M/ Ay is defined as the projection of M onto the orbit space M/Ay; of the
pseudogroup A'-, polar to A that, by Proposition 3.1, is integrable. We will refer to
the quotient M/ Ay, as the momentum space of J.

Notation. To simplify the notation, we shall use in the sequel interchangeably the
symbol Ay to denote both the standard polar pseudogroup to A and the polar
distribution. It will be always clear from the context which notion is used. Moreover,
we will denote by A(; - m the orbit of the polar pseudogroup through m € M and by
Al (m) the polar distribution evaluated at m.

3.6. THE OPTIMAL MOMENTUM MAP FOR PROPER ACTIONS

If the G-action on M is proper, the subgroup A has the extension property. In this
case, it can be shown that the optimal momentum map can be defined as the pro-
jection J: M — M /Dr onto the leaf space of the integrable distribution spanned by
the family of vector fields

F={x| fe c=(m)%} (3.2)

and that the polar pseudogroup A is a subgroup of the global diffeomorphisms
group of M.

A particular case of the situation presented above is the case of a compact Lie
group G acting canonically and linearly on a Poisson vector space (V,{-,-}). Let
B:={o1,...,0,} be a Hilbert basis for this action. By the Schwarz-Mather Theo-

rem, any G-invariant function can be written as f{ay,...,q,), for some /'€ C*(R"),
so the chain rule guarantees that the distribution spanned by the family Fin (3.2) is
the same as the one spanned by the finite family {X,,,..., X, }.

Let us compute a few examples of optimal momentum maps.

EXAMPLE 1. As already remarked, a canonical Lie group action on a Poisson
manifold does not necessarily preserve its symplectic leaves. Here is a simple
example. Endow (R?, {-,-}) with the Poisson bracket defined by the Poisson tensor
whose matrix in standard Euclidean coordinates is

0 1 0
B=|-1 0 1
0 -1 0

If f € C*(R?), the associated Hamiltonian vector field is given by

oo (of of\o ofo
—@a+( )————. (3.3)

Xi(x,p,2) % Dx
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This shows that the Casimir functions are all of the form f(x,y, z) := g(x + z), with
g € C*(R) and that the symplectic leaves are hence given by the planes
X + z = constant.

Let the additive group (R,+) act on R® by A-(x,y,z) := (x + 4,,2), for any
/€ Rand any (x,y,z) € R®. It is clear that this action preserves the Poisson bracket
but, obviously, the symplectic leaves x + z = constant are not invariant under this
group action. In spite of this, we shall compute below the optimal momentum map
which produces a conservation law associated to this symmetry.

As the (R, +)-action is proper, we can use the distribution in (3.2) to define the
corresponding optimal momentum map. Notice first that the invariant functions
fe Cc=(M)¥ in this case are all of the form f(x,y,z) = f(y,z), with /e C*(R?)
arbitrary. The expression (3.3) of the Hamiltonian vector fields defined by this
bracket shows that the A-orbits on R* coincide with those of the R?-action on R?
given by (u,v)-(x,p,2):=(x+puy+v,z—pu), for any (u,v)€R> and any
(x,¥,2) € R®. Therefore, M/A/; can be identified with R and the associated optimal
momentum map J: R* — R is given by J(x,y,z) = x + z. A straightforward veri-
fication shows that the Hamiltonian flow associated to any invariant function
f(x,v,z) = f(y, z) preserves the level sets of 7. Note that 7 is a Casimir function of
the Poisson manifold (R?, {-,-}).

EXAMPLE 2. The following example is classical: a free and canonical action of a
compact Lie group on a compact symplectic manifold that does not admit a stan-
dard momentum map. Consider the two torus T? = {(e’', ¢/2)} with the symplectic
form :=d0, Adf,. The circle S'={e”} acts canonically on T> by
e . (el &) := (e"1*?) e2) but does not admit a standard momentum map J:
T? — R. We shall compute below the optimal momentum map for this action.

The properness of the action allows us to use again the leaf space of the distri-
bution (3.2). It is easy to see that in this case, every S'-invariant function
fe Cc=(T?)?" can be written as f(e!, e’2) = g(e”) for some arbitrary g € C(S").
The Hamiltonian vector field associated to any of these invariant functions is given
by Xy = 0g/00, 0/00,. Since g is an arbitrary function on the circle, we can identify
the quotient M/ A}, with the second circle S! in the torus T?. The optimal momentum
map J: T> — S' is therefore given by J(e”',e®2) = e, In this case, the optimal
momentum map is S'-valued and coincides with the Lie group valued momentum
map defined in [2].

3.7. THE MOMENTUM SPACE

In both examples the momentum space M/ A is a smooth manifold. This is a very rare
occurrence. The quotient space M /A, carries, in general, a rather complicated
topology that has not yet been fully explored. Even if the canonical G-action on the
Poisson manifold M is such that the quotient topological space M/G = M/Ag is a
smooth manifold with the projection n: M — M/G a surjective submersion, the
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associated momentum space M/A}; could be an extremely nonsmooth topological
space with very unpleasant properties. The only general statements known today about
the optimal momentum map J: M — M/ Ay, is that it is a continuous and open map.

EXAMPLE 3. Endow M :=T? x T? with the symplectic form o :=d0; A df,+
V2dy, Ad,, where (e, e e¥1 e¥2) € M, and consider the canonical free circle
action given by

it . (e o gt gib) . (i) gils ilhitd) citay

Thus M/Ag is a smooth manifold and the projection m4,:M — M/Ag is a surjective
submersion. The polar distribution A’Sl does not behave the same way. Indeed,

CH (M) = € CM) e ¢, e, ) = e e, 00
for some g € C*(T%)},

so by looking at the flows of Hamiltonian vector fields of functions in C*(M )Sl, one

immediately sees that the leaves of A, fill densely the manifold M and that the leaf
space M /A, can be identified with the leaf space T?/R of a Kronecker (irrational)
foliation of a two-torus T,

EXAMPLE 4. Consider on C? the standard symplectic form

60((21, 22, 23)7 (lev 2127 Zl%)) = —Im <(Zl’ 22, 23)7 (lev lev Zl%)>
and let SU(3) act naturally on C>. This action is canonical and linear and therefore
has a standard associated momentum map. The polar distribution Alsu(3) is spanned
by the Hamiltonian vector fields associated to the elements of a Hilbert basis of
invariant polynomials. In this case, the polynomial

Azt 22, z) =311 + |22l + =)

constitutes such a basis. The Hamiltonian flow of X/ is given by
Fi(z1, 22, 23) = (17", z22e7", z3e™").

Therefore, the momentum space C*/ Agy o) coincides with C*/S', where S acts on

C?, by

Ci(b . (217 Z2, Z3) = (eid’zl, €i¢22, Ci¢Z3). (34)
This quotient space can be identified with (CP(2) x R") U {x}, where {x} denotes a
singleton or, said differently, with the cone C(CP(2)) based on CP(2). Indeed, if m:
C* — C*/S" is the canonical projection and z = (z, z3, z3), then the mapping that
assigns n(z1, z2, z3) to ([z/||z]]], ||z]]) if z # 0, and to = if z = 0, provides the needed
identification (the symbol [z/||z|] denotes the element =(z/||z||) € CP(2)). The
optimal momentum map J: C* — (CP(2) x R*) U {*} has the expression

I(z) = { ([]1an), ifzro,

*, if z=0.
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3.8. THE MOMENTUM SPACE AS A G-TOPOLOGICAL SPACE

By Proposition 3.1(iv) there is a smooth G-action on M /Ay, (smooth in the sense of
presheaf spaces) given by

g-Jm):=TJ(g-m), foranyge G, me M. (3.5)

This is the unique G-action on M/A, that makes the optimal momentum map G-
equivariant and it coincides with the usual smooth G-action on the leaf space of any
distribution spanned by G-equivariant vector fields.

3.9. THE UNIVERSALITY PROPERTY

The optimal momentum map J: M — M /A, associated to a canonical G-action on
a Poisson manifold (M, {-,-}) satisfies Noether’s condition, that is, J is constant
along the flow of any Hamiltonian vector field defined by a G-invariant function.
Indeed, due to the integrability of the polar distribution A, (see Proposition 3.1), the
Stefan—Sussmann Theorem implies that the level sets of the optimal momentum
map, that is, the leaves of the polar distribution, coincide with the orbits of the polar
pseudogroup. More specifically, if m € M is such that J(m) = p € M/A, then
J ! (p) = Al - m. As the polar pseudogroup consists of finite compositions of flows
of Hamiltonian vector fields associated to all the possible invariant Hamiltonians,
Noether’s condition for 7 follows immediately.

In addition, 7 has the following universality property. Below, by ‘momentum
map’ on M we mean any map K: M — S whose target space is some set S such that J
satisfies the Noether condition stated above. If S has additional topological or
smooth structure, one requires that K is a map in the same category.

THEOREM 3.3 (Universality of the optimal momentum map). The optimal
momentum map is a universal object in the category of Hamiltonian symmetric systems
with a momentum map. More specifically, if (M, {-,-},G,K: M — P) is any Hamil-
tonian G-space with momentum map K: M — P and J: M — M/ Ay, is the optimal
momentum map defined using the canonical G-action on M, then there exists a unique
map ¢: M/A; — P such that the following diagram commutes:

K
M P

M/Ay,

If K is smooth and G-equivariant with respect to some presheaf of functions on P and
some G-action on P, then ¢ is also smooth and G-equivariant.
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3.10. COMPARISON BETWEEN THE OPTIMAL AND STANDARD MOMENTUM MAPS

Let G be a Lie group acting properly and canonically on the symplectic manifold
(M, ®). The polar distribution A{; can be explicitly determined in this case.

THEOREM 3.4. Let G be a Lie group acting properly and canonically on the sym-
plectic manifold (M, ®). Then for any m € M

Ag(m) = (g-m)” N T,, M, , (3.6)

where Mg is the connected component of the isotropy type submanifold Mg, that
contains the point m.

Using this information one can compare J: M — M /A, and a given standard
momentum map J: M — g*. We shall return to the relationships below when dis-
cussing singular reduction. In the next corollary it is assumed that the symplectic
group action has an associated standard momentum map J: M — g* with nonequi-
variance one-cocycle o: G — g, that is, o(g) := J(g-m) — Ad,1J(m) for any g € G
and m € M. The fact that ¢ does not depend on m € M is a consequence of the
connectivity of M. Denote by ®: G x g* — g the affine action of G on g* defined by
o, thatis, ©(g,v) :== Ad,1v+ a(g) forany g € Gand v € g". Let u € g" be a value of
J; G, will denote the isotropy subgroup of u with respect to the affine action ©.

COROLLARY 3.5. Let G be a Lie group acting properly and canonically on the con-
nected symplectic manifold (M, w) and admitting a standard momentummap J: M — g
with nonequivariance one-cocycle o: G — g*. Let J: M — M/A};, be the optimal
momentum map. Then, for any m € M such that J(m) = pand J(m) = p, we have

T p) = " (wnmg ), (3.7)

where (J71() N Mg )" denotes the connected component of J N (wn MG that con-
tains the point m.

The isotropy subgroup G, of the point p € M/ Ay, with respect to the action (3.5)
equals G, = NGH(Gm)"(m), where NGH(G,W)C('") is the closed subgroup of
N¢,(Gp) == N(G,) NG, consisting of the elements in Ng, (G,,) that leave the con-
nected component (J~'(n) NME )" of I (p) N M = invariant; N(Gy) denotes the
normalizer of G, in G.

The standard momentum map has the following remarkable property. Let (M, )
be a connected symplectic manifold and G a Lie group acting on M in a canonical
and proper fashion. Suppose that this action has an associated (not necessarily
equivariant) momentum map J: M — g*. Then for any m € M, the intersection
J7'(JI(m))n Mg is an embedded submanifold of M.

Even though, in general, the level sets of the optimal momentum map are just
initial submanifolds of M, Corollary 3.5 and the result above imply that in the
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symplectic case and if a standard momentum map exists, the level sets 7~ !(p) are
embedded submanifolds of M.

4. The Optimal Momentum Map and Groupoids

In this short section we show that, in some sense, the optimal momentum map can be
interpreted as the moment map of a natural groupoid action. The results in this
section are admittedly incomplete because the investigation of the relationship be-
tween the optimal momentum map and groupoids begun in [33] and [52] has not
been yet totally clarified and is the subject of ongoing research.

4.1. GROUPOIDS

We recall here the minimal necessary background on groupoids for our develop-
ments. We refer to [3, 23, 34] and references therein for further information.

A groupoid G=X over the set X, the base, is a set G, the total space, together with
the following structure maps:

(i) o,p: G— X; ais the target and f is the source map. An element g € G is
thought of as an arrow from f(g) to a(g) in X.
(i) The set of composable pairs is defined as

G® = {(g.h) € Gx G | f(g) = a(h)}.
There is a product map m: G? — G that satisfies
a(m(g, h)) = a(g), B(m(g, h)) = B(h),

and

m(m(g, h),k) = m(g,m(h,k)),for any g, h,k € G.
One writes usually gh for m(g, h).

(ili) An injection e: X — G, called the identity section, such that e(a(g))g =
g = ge(B(g)). In particular, x o e = ff o e is the identity map on X.

(iv) An inversion map i G — G, also denoted by i(g) =g~', g € G, such that
g 'g=e(B(g)) and gg~" = e(a(g)).

If the total space and the base of a groupoid G=X are smooth manifolds, the target
and source maps are surjective submersions, the multiplication, the inversion, and
the identity section are smooth maps, then G=X is a called a Lie groupoid.

Given the groupoid G=X, a subset H C G is a subgroupoid of G when it is
closed under multiplication and inversion. Under those circumstances H is a
groupoid over a(H)=p(H) C X. If a(H)=p(H)=X, H=X is called a wide
subgroupoid of G.

Any group is a groupoid over a set with just one element. Any set X can be
endowed with a frivial groupoid structure over itself by taking for the source and
target maps the identity. The Cartesian product X x X of any set X is a groupoid
over X by taking as target and source maps the projection on the first and second
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factors, respectively. The product is given by (x,»)(y,z) = (x,z), x,y,z € X, the
identity section is e(x) = (x, x), and (x,)”" = (y,x). This is usually called the pair or
coarse groupoid. Let us give a few examples that are not trivial. Several of them will
be important in the ensuing discussion on the optimal momentum map.

EXAMPLE 1 Given two groupoids G| and G, over the sets X; and X, respectively,
there is a naturally defined product groupoid G, x G,=X; x X, by taking the
Cartesian product of the target and the source maps.

EXAMPLE 2 (The groupoid associated to a pseudogroup of transformations). Let
M be a smooth manifold and A4 a pseudogroup of local diffeomorphisms of M.
Define 4 by

A={p:M— M| ¢pc A, p(x):= ¢(x) for x in the domain of ¢ and @(x)
:= x if not}

The product M x A4 is a groupoid over M if one defines the structure maps a, f:
MxA—M by oax,p)=ap(x) and PB(x,p)=x, the product by
m((x,®), »,¥)) := (y,p o), the identity section by e(x) = (x,idy), and the
inversion by ()@(Z))f1 = ((Z)(x),F), where @,y € A. This groupoid M x A=M is
called the transformation groupoid associated to the pseudogroup 4. Note that if 4
consists of global diffeomorphisms of M, then 4 = 4.

EXAMPLE 3 (The action groupoid). An important particular case of the pre-
vious example is obtained when one takes 4 = Ag = {®, | g € G}, where @:
G x M — M is a smooth Lie group action. The resulting groupoid G x M=M is
called the action groupoid . Since this example is crucial later on, we specify now
the structure maps:

[X(g7 m) =g-m, ﬁ(g7 m) =m, e(m) = (ev m)a

m((g,h-n), (h,n)) := (gh,n), and (g,m)"":= (¢, g-m),
for any g,h € G and m,n € M.
EXAMPLE 4 (The cotangent bundle of a Lie group as a groupoid). Let G be a Lie
group, T*G its cotangent bundle, g its Lie algebra, and g* the dual of g. If we identify
TG with G x g* using right translations we can use the previous example to endow

T*G with a groupoid structure over g* by taking the following structure maps: for
any (g, ) € G x g* let

O((g, /,l,) = Ad;*hua ﬁ(ga :u) =M, 6(:“) = (8, ,u)v
m((g, Adjp), (h, ) = (gh ), and  (g,1)" = (¢7', Ady 1p).

T*G=g"* is a symplectic groupoid.
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EXAMPLE 5 (The Baer groupoid). Let G be a group and S(G) be the set of
subgroups of G. Let B(G) be the set of cosets of elements in S(G). It is not necessary
to specify if B(G) is the set of right or left cosets since they coincide: indeed, for any
g € G and any H € S(G) we have gH = (gHg ')g.
The set B(G) is a groupoid over S(G), called the Baer groupoid, by choosing
a(D) = Dg', B(D) = g~' Dforg € D.Thesetof composable pairs (B(G))? is given by
(B(G))? == {(D1,D2) € B(G) x B(G) | &' D1 = Dagy ',
for any g, € Dy, g, € D,}.
The groupoid product defined on (QS(G))(z> is given by m(Dy,D;) := DD, =
{gh|g € Di,h € Dy}. If D€ B(G) define D' :=g 'Dg~!, for any g€ D. The
identity section is given by the inclusion map.

4.2. GROUPOID ACTIONS

Let G=X be a groupoid over X, M a set, and J: M — X a map. Define the fiber
product
G xy M= {(g,m) € G x M| B(g) = J(m)}.

A (left) groupoid action of G on M with moment map J:. M — X is a mapping V:
G x; M — M, denoted also by W(g,m) = g - m, that satisfies the following proper-
ties:

() Jg-m) = alg),
Gi) gh-m=g-(h-m),
(i) (e(J(m))) - m = m,

for any g, € G and m € M. Notice that (i) guarantees that in (ii) each side of the
equality is defined if the other is.

Two immediate examples are the following. A groupoid G=X acts on G by left
multiplication with moment map «. G also acts on X with moment map idy, where
g p(g) := a(g). We shall give below two nontrivial examples.

EXAMPLE 6 (The G-action groupoid acts on G-spaces). Let G be a group acting on
two sets M and N and let J: M — N be any equivariant map with respect to these
two actions. The map J naturally induces an action of the product groupoid
G x N=N on the set M. Indeed,

(GxN)x;M={((g,J(m)),m)|ge Gime M} C (GxN)x M.

The action ¥: (G x N) x; M — M with moment J is defined by J(((g, J(m)),m) :=
g-m.

EXAMPLE 7 (The Baer groupoid acts on G-spaces) ([52]). Let G be a Lie group, M
a G-space, and B: M — €(G) the map that assigns to each point m € M its isotropy
subgroup G, € €(G). Define B(G) xp M := {(gG,,m) € B(G) x M | m € M}. The
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map B(G) xgM — M given by (gG,,,m)+— g-m defines an action of the
Baer groupoid B(G)=E(G) on the G-space M with moment map B. Notice that the
level sets of the moment map are the isotropy type subsets My of of the G-action
on M.

EXAMPLE 8 (Action groupoids and momentum maps). Let (M, w) be a connected
symplectic manifold acted canonically upon by a Lie group G. Suppose that this
action admits a standard momentum map J: M — g* with nonequivariance one-
cocycle o: G — g*. Let ©: G x g* — ¢* be the affine action on g* constructed with
this cocycle, that is, g - 1 := Ad, -1t + o(g) for g € G and p € g*, and G x g*=g" the
associated action groupoid. Since the momentum map J is equivariant with respect
to the G-action on M and the affine G-action on g*, it naturally induces an action of
the groupoid TG ~ G x g* (Example 4) on M whose associated moment map is J
itself (see Example 6).

The same remark can be made regarding the optimal momentum map J:
M — M/ Ay, associated to a G-canonical action on the Poisson manifold (M, {-,-}).
In this case the groupoid in question is the action groupoid G x M/A=M/Aj
associated to the G-action on M /Ay, (see Proposition 3.1). This groupoid acts nat-
urally on M with associated moment map 7.

4.3. A GROUPOID MODEL FOR THE OPTIMAL MOMENTUM MAP

With this background we can now link the concept of optimal momentum map to
groupoid moments. The expression (3.7) suggests that if the given G-action admits a
standard momentum map, the level sets of the optimal momentum map can be
‘parametrized’, up to connected components, by the isotropy subgroups of the group
action and the momentum values.

Let (M, ) be a connected symplectic manifold acted canonically upon by a Lie
group G and suppose that this action admits a standard momentum map J: M — g*
with nonequivariance one-cocycle a: G — g*. Let TG ~ G x g*=g* be the action
groupoid associated to the affine action of G on g* and B(G)=ES(G) the Baer
groupoid of G (Example 5). Let T°G x B(G)=g" x S(G) be the product groupoid
and ['=3g* x S(G) the wide subgroupoid defined by

={((g,n),gH) | g€ G, neg’, He S(G)}.

It can be easily verified that '=g* x &(G) acts naturally on M with moment map J:
M — g* x S(G) given by J(m) = (J(m), G,).

The moment map J has the Noether property and encodes through its two
components the conservation of the standard momentum and the law of conserva-
tion of the isotropy which was one of the guiding principles behind the introduction
of the optimal momentum map. Indeed, both objects are closely related since the
universality property of the optimal momentum map (Theorem 3.3) implies that
there exists a unique map ¢: M/A; — g* x S(G) such that the diagram
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M/A,
commutes. Recall that the map ¢ is defined by the equality

(P(j(m)) = S(m) = (J(m), Gn), meM.
This expression, together with (3.7), allows us to injectively embed the quotient space
M/ Ay into g* x S(G) provided that both the isotropy orbit type manifolds M, as well

as the intersections J~' (i) N Mg, are connected. Indeed, let m,m’ € M be such that
o(J(m)) = (T (m')) or, equivalently, (J(m), G,,) = (J(m'), G,v). Expression (3.7) in
Corollary 3.5 together with the connectedness hypotheses implies that there is a unique

element p € M/ A/ such that m,m’ € J~'(p), which establishes that ¢ is injective.

5. Optimal Reduction

In this section we present and comment on the reduction procedure using the
optimal momentum map. As it will be seen, this approach overcomes the difficulties
posed by the use of the standard momentum map raised at the end of Section 2 and
unifies the different approaches to reduction discussed in that section. The reader
interested in the proofs of the following results is encouraged to check with the
original papers [39, 40] or with [44].

5.1. OPTIMAL POINT REDUCTION

The analogue of the Marsden—Weinstein reduction theorem in the optimal mo-
mentum setting is the following.

THEOREM 5.1 (Optimal point reduction by Poisson actions). Let (M, {-,-}) be a
smooth Poisson manifold and G a Lie group acting canonically and properly on M. Let
J: M — M/Ay be the optimal momentum map associated to this action. For any
p € M/ Ay, whose isotropy subgroup G, acts properly on J “Yp) (which is an initial
submanifold of M as the leaf of the integrable generalized distribution defined by the
pseudogroup Ag), we have

(i) The orbit space M,:= T '(p)/G, is a smooth symplectic regular quotient
manifold with symplectic form w, defined by

m,@p(m)(Xy(m), Xy(m)) = {f, h}(m), (5.1)
for any m e T\ (p) and any f,h € C*(M)®, where n,: J ' (p) = M, is the
canonical projection. The pair (M,,w,) is the optimal reduced space of
(Ma {'7 }) arp.
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(i) Lethe C°(M)°. The flow F, of X, leaves J~"(p) invariant, commutes with the
G-action, and therefore induces a flow F? on M, uniquely determined by the
relation m, 0 F, 01, = Ff om,, where i, : j’l(p)(—>M is the inclusion.

(i) The flow F? in (M, w,) is Hamiltonian with the Hamiltonian function
h, € C*(M,) given by the equality h,omn, =hoi,.

(iv) Letke COO(M)G be another G-invariant function on M and {-,-},, the Poisson
bracket associated to the symplectic form o, on M,. Then {h, k}p =

Ups k-

Note that the hypotheses of this theorem do not require the existence of a standard
momentum map associated to the action. The theorem is general enough to include
the Poisson case. Moreover, there are no assumptions on the freeness of the action
and the theorem still provides valuable information when the symmetry group is
discrete, even {e}. Indeed, in this case the distribution A4j; coincides with the char-
acteristic distribution of the Poisson manifold. The level sets of the optimal
momentum map, and thereby the symplectic quotients M, are exactly the symplectic
leaves of the Poisson manifold (M,{-,-}). Thus, applying Theorem 5.1(i) for
G = {e}, one obtains the structure theorem for Poisson manifolds, that is, its
stratification into symplectic leaves.

The very definition of the polar distribution implies that for any p € M/ A}, there is
a unique symplectic leaf £, of the Poisson manifold (M,{-,-}) such that
J'(p) C L, Let ic,: J'(p) — L, be the inclusion of J~'(p) into the symplectic
leaf (£,, wg,) of (M, {-,-}) that contains it. As £, is an initial submanifold of M, the
injection iz, is a smooth map. The form w, can also be written in terms of the
symplectic structure of the leaf £, as myw, = i or,. However, this does not imply
that the previous theorem could be obtained by just performing symplectic optimal
reduction on each symplectic leaf of the Poisson manifold, because these leaves are
not G-manifolds, in general. As we already noted, Poisson actions are not necessarily
leaf preserving.

Let us apply optimal reduction to the case of a proper G-action on a connected
symplectic manifold (M,®) admitting a not necessarily equivariant momentum
map J: M — g*. Corollary 3.5 relates the level sets of J and of the optimal
momentum map J, namely, if J(m)=pecg*, JT(m)=pec M/A,, then
T Hp)= I (w)n Mz )", where (J7'(u) N My )" denotes the connected com-
ponent of J~'(u) N M7 that contains the point m. In addition, if NGH(Gm)"(m) is
the closed subgroup of NG“(Gm) that leaves the connected component
(I~ () N M )™ of I (u) N MY invariant, then the isotropy subgroup G, of the
point p € M /Ay, with respect to the action (3.5) equals G, :NG“(G,,?)"W) and
NG“(Gm)‘(m) /G acts freely and properly on (J~'(u) N M )". Thus the optimal
reduced space at p equals

s (o) (52)

GP NG,, (Gm)(?(M)/Gm
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This shows the following:

e If there is a Lie group acting freely, properly, canonically, and this action has an
associated momentum map, then the optimal reduced spaces coincide (up to
connected components) with the Marsden—Weinstein reduced spaces discussed in
Section 2.

e If in the previous setup we drop the freeness hypothesis, the optimal reduced
spaces coincide with the singular reduced spaces of [5, 37, 44, 46], a topic that will
be discussed in the next section.

e If the group G is discrete, the optimal reduced spaces are (up to connected
components) the quotient manifolds My /(N(H)/H) which, by the theorem, are
symplectic.

Regarding the last point notice that, as we mentioned in Section 2, the quotients
My /(N(H)/H) are the spaces traditionally involved in the reduction of symmetric
vector fields on manifolds. That reduction scheme can actually be obtained by fol-
lowing an approach identical to the one presented in Theorem 5.1 by replacing the
distribution A4}; by the object that naturally generalizes it in the category of G-
manifolds. Indeed, let M be a smooth manifold acted properly upon by a Lie group
G and let %(M)G be the set of G-equivariant vector fields on M. It can be proved
(see [41, 44]) that the generalized distribution defined by

D(m) = {X(m) | X € X(M)°}, me M,

is integrable. Moreover, if J: M — M/ D is the projection onto the leaf space of the
distribution D, we have for any p € M/D

T (0)/Gp = MG,/ (N(G) ™ /G ).

where m € 77! (p) and G, is the isotropy subgroup of p € M/D with respect to the
unique G-action on M/D that makes J equivariant. This expression shows that the
distribution theoretical approach to reduction unifies the apparently disconnected
procedures introduced in Section 2.

Theorem 5.1 has a properness hypothesis on the G,-action on J ~!(p), something
that was not present in the classical Marsden—Weinstein reduction theorem. In that
case, the properness of the G-action automatically implies the properness of the
restricted coadjoint isotropy group action on the level set of the momentum map. In
the case of optimal reduction, the properness of the G,-action on J ~!(p) is a real
hypothesis. From the reduction point of view the existence of a standard momentum
map could be interpreted as an extra integrability property of the polar distribution
that makes its integrable leaves imbedded (and not just initial) submanifolds of M
and their isotropy subgroups automatically closed.

Here is an example due to Montaldi and Tokieda of a proper G-action with a
nonproper G,-action on J’l(p). Consider Example 3 in Section 3, that is,
M :=T? x T? with the symplectic form w := df; A d6, + ﬁdzpl Ady,. Let T? act
canonically on M by
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Since the two-torus is compact this action is necessarily proper. Moreover, as T? acts
freely, the corresponding orbit space M/Ap is a smooth manifold such that the
projection my,: M — M/Ap is a surjective submersion. As 2in Example 3 of
Section 3, the polar distribution behaves badly. Indeed, C>(M)" consists of all the
functions f of the form f= f(e/(®=¥1) ¢/®>=¥2)) An inspection of the Hamiltonian
flows associated to such functions readily shows that the leaves of Agrz, that is, the
level sets of the optimal momentum map 7, are the products of two leaves of an
irrational foliation in a two-torus. Moreover, it can be checked that for any
peM/ A;l,z, the isotropy subgroup TIZJ is the product of two discrete subgroups of S',
each of which fill densely the circle. This density property immediately implies that
the T,-action on J ' (p) is not proper.

Let J: M — M/ A}, be the optimal momentum map corresponding to a proper G-
action on (M,w). Fix p € M/A[; a momentum value of J and let H C G be the
unique G-isotropy subgroup such that 7~ '(p) C My and G, C H. The normalizer
N(H) of H in G acts naturally on Mpy. This action induces a free action of the
quotient group L := N(H)/H on My. Let MY, be the unique connected component
of My that contains 7 '(p) and let L* be the closed subgroup of L that leaves it
invariant. Obviously, L” can be written as L’ = N(H)” /H for some closed subgroup
N(H)" of N(H).

The subset MY, is a symplectic embedded submanifold of M on which the group L?
acts freely and canonically. Denote by J,: M4, — M%;/ A, the associated optimal
momentum map.

PROPOSITION 5.2 (Optimal Sjamaar’s Principle). With the notation just intro-
duced, we have the following:

(i) Let iy : MY — M be the inclusion. Then T.it;(A},(2)) = Ag(z) for any z € MY,
(i) Letz€ J '(p) be such that J1,(z) =: 0 € My A,,. Then T '(p) = T} (o).
(iii) L. =G,/H.
() (M), = T3 0)/L8 = T\ (9)/(G,/H) = T~ (9)/G, = M,. Moreover, if G,
acts properly on J~'(p) this equality is true when we consider M, and (M%,), as
symplectic spaces, that is, (M,,®,) = (M%), (w\M/H)J)

5.2. OPTIMAL ORBIT REDUCTION

We next turn to another reduction procedure involving the optimal momentum map.
If p € M/ Ay, denote by O, := G - p the G-orbit of the action (3.5) on M/A,. Assume
that G, acts properly on J! (p). It can be shown that J! (0,) has a unique smooth
structure relative to which it is an initial submanifold of M. This structure coincides
with the one that makes it diffeomorphic to G xg, J! (p). Consequently, the quo-
tient manifold 7~'(0,)/G is naturally diffeomorphic to the symplectic point reduced
space because of the sequence of diffeomorphisms
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T H0y)/G =G xg, T (p)/G =T (p)/G,
The composed diffeomorphism 7 '(0,)/G ~ J~'(p)/G, can be explicitly imple-
mented as follows. Let f,: J~'(p) — J'(O,) be the inclusion. Since the inclusion
J'(p) — M is smooth and J~'(O,) is initial in M, the map f, is smooth. Also,
since f,, is (G,, G)-equivariant, it drops to a unique smooth map F,: J '(p)/G, —
J1(0,)/G that makes the following diagram

TN L g0,

W"l lwop (5.3)
_ F, _
Hp) /Gy ——= T H0)/G
commutative. It is easy to see that F), is a diffeomorphism. The orbit reduced space
J _I(Op) /G can be therefore trivially endowed with a symplectic structure wo, by
defining wo, := (F,")"w,. These remarks are summarized in the first points of the

p
following theorem which is the orbit counterpart of Theorem 5.1.

THEOREM 5.3 (Optimal orbit reduction by Poisson actions). Suppose that G, acts
properly on J~'(p) and let O, := G - p.

(1) There is a unique smooth structure on J _1((9,,) that makes it into an initial
submanifold of M.

(i) The restricted G-action on J _1((’)p) is smooth and proper and all its isotropy
subgroups are conjugate to a given compact isotropy subgroup of the G-action on
M.

(iii)  The quotient Mo,: = J (0,)/G admits a unique smooth structure that makes
the projection mo,: J o, - J70,)/Ga surjective submersion.

(iv) The optimal orbit reduced space Mo, :=J~ 10,)/G admits a unique sym-
plectic structure wo, that makes it symplectomorphic to the point reduced
space M ,.

(V) Lethe C°(M)°. The flow F, of X}, leaves 7' (O o) invariant, commutes with the
G-action, and therefore induces a flow FOP on M@ uniquely determined by the
relation o, o Fy 0 ip, = FO/ omp,, where io,: J~ ( »)—M is the inclusion.

(vi) The flow FO” on (Mo,,wo,) is Hamzltoman with the Hamiltonian function
ho, € C*(Mo, ) given by the equality ho, o mo, = hoio,.

(vii) Let k € C°(M)° be another G-invar lanlfunctlon on M and{ }O the Poisson
bracket associated to the symplectic form wo, on Mo,. Then {h, k}op =

{ho, ko,}o,-
The counterpart of Proposition 5.2 for orbit reduction is the following statement.
PROPOSITION 5.4. Assume the notations and hypotheses of Theorem 5.3. Let

H C G be the unique G-isotropy subgroup such that J '(p) C My and G,CH.
Assume that G, acts properly on T (p). Let M?, be the connected component of My
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that contains J~'(p), N(H)" the closed subgroup of the normalizer N(H) of H that
leaves MY, invariant, and L := N(H)" /H.

(i) Let z€ J '(p) be such that Jp.(z)=: o€ My/A,, and N,:= N(H)"
p C M/A,. The set TN (L -0)=J "(N,) is an embedded submanifold of

T HO,).

(i) The initial submanifold j’l(Op) can be written as a disjoint union of its
embedded submanifolds.
TNO)= I T 'Wep (54)

[sleG/N(H)
(iii)y The symplectic quotient (J;) (L’ -a)/L?, (w|M/;l)Lp,a) is naturally symplecto-
morphic to the orbit reduced space (j_l(O,,)/G,wop). We will say that
(T NP -0)/L”, (w|M¢1)L,,‘J) is an orbit regularization of (J'(0,)/G, wo,).

In Theorem 5.3 we showed that the optimal orbit reduced spaces J~'(0,)/G are
symplectic manifolds with the form that makes them symplectomorphic to the point
reduced spaces. We now show that the symplectic form wp, can be put in relation
with the presymplectic structure that one can define on some homogeneous spaces
that naturally arise in this context. These are the so called polar reduced spaces that
we introduce in the next proposition.

PROPOSITION 5.5. Let (M, {-,-}) be a smooth Poisson manifold and G a Lie group
acting canonically and properly on M. Let J: M — M/ A{; be the optimal momentum
map associated to this action and p € M/ Ay,. Suppose that G, is closed in G. Then the
polar distribution Ay, restricts to a smooth integrable regular distribution on J -1 (0,),
that we will also denote by Ag,. The leaf space M/O,, =T N0,) /AL admits a unique
smooth structure that makes it into a regular quotient manifold and diffeomorphic to
the homogeneous manifold G/G,. With this smooth structure the projection Jo,:
JN0,) — J71(0,)] Ay is a smooth surjective submersion. We will refer to M/O,, as
the polar reduced space.

The relation of the polar reduced spaces with orbit reduction is given in the next
theorem. For simplicity we formulate this result in the symplectic context. We refer
to [40] and [44] for the general Poisson case and examples.

THEOREM 5.6 (Polar reduction of a symplectic manifold). Let (M, ) be a smooth
symplectic manifold and G a Lie group acting canonically and properly on M. Let
J: M — M/Ay be the optimal momentum map associated to this action and let
p € M/ Ay, be such that G, is closed in G. There is a unique presymplectic form a’,q, on
the polar reduced space M, G/G, that satisfies

P ok * /
ip, =T, 0o, + T o,Wo,- (5.5)

The form w’oﬂ is symplectic if and only if for one point z € J~! (O,) (and, hence, for
all) we have
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g-zN(g-2)” C T.Mg, . (5.6)

The characterization (5.6) of the symplecticity of a)’op admits a particularly conve-
nient formulation when the G-action on the symplectic manifold (M, w) admits a
standard momentum map J: M — g*. Indeed, assume that M is connected and let
z € M be such that J(z) = u € g* and G. = H. Then, if the symbol G, denotes the
isotropy subgroup of u with respect to the affine G-action on g* defined with the
nonequivariance one-cocycle of J, we have that (5.6) is equivalent to

g, = Lie(Ng,(H)). (5.7)

6. Singular Point Reduction

After this review of some of the main results on optimal momentum maps and
reduction we turn our attention to the classical reduction procedure when the
freeness hypothesis on the group action as well as the regularity assumption on the
momentum value are dropped. In this section we present a summary of the results on
point reduction, that is, the generalization to the singular case of the classical
Marsden—Weinstein theorem. We shall also connect this reduction procedure to the
optimal reduction theorem.

6.1. THE SINGULAR SYMPLECTIC STRATA

Throughout this section the following notations and conventions will be in force.
Let (M,w) be a connected symplectic manifold acted canonically and properly
upon by a Lie group G. It is assumed that this action has an associated standard
momentum map J: M — g* with nonequivariance one-cocycle o: G — g*, that is,
o(g) =J(g-m)—Ad,.J(m) for any g€G and me M. Denote by ©:
Gxg"— g* the affine action of G on ¢ defined by o, that is,
O(g,v) := Ad,1v+0o(g) for any g € G and v € g*. Let u € g* be a value of J, G,
the isotropy subgroup of u with respect to the affine action ®, and H C G an
isotropy subgroup of the G-action on M. Denote by M3, the connected compo-
nent of the H-isotropy type manifold My that contains a given element z € M
such that J(z) = p and let G, M7, be its G,-saturation, that is, the union of all G-
orbits through all points of M7,.

THEOREM 6.1 (Singular symplectic point strata). The following hold:

(i) The set 7' (u) N G, M3, is an embedded submanifold of M.

(il) The set MELH) =[N (w) NG, M3]/G, has a unique quotient differentiable
structure such that the canonical projection nglmz J'(WNGM;y — MEtH) isa
surjective submersion.

(i) There is a unique symplectic structure w,(lm on MLH) characterized by

iE,H)*w = n,(,H>*w,(,H>7 where iElH) :J7N(w) NG, M3, —~M is the natural inclusion.

The pairs (MftH ), a),(,H >) are called singular symplectic point strata.
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(iv) Lethe C*® (M)G be a G-invariant Hamiltonian. Then the flow F; of X, leaves the
connected components of I~ () N G M3, invariant and commutes with the G-
action, so it induces a flow F' on M,(LH) that is characterized by
o Foilf) = Flonlh

(v) The flow F' is Hamiltonian on M&m, with reduced Hamiltonian function h,(,m:
MELH) — R defined by hELH) o nLH> =ho iLH>. The vector fields X, and X, are
nELH )_related. !

(vi) Let k: M — R be another G-invariant function. Then {h,k} is also G-invariant

and {h,k}l(tH) = {hle),k,(lH)} yin, where {- -} a denotes the Poisson bracket

induced by the symplectic structure on MLH). '

For the next theorem we need a few preparatory remarks. For any z € M denote
by N(H)" the set of elements in the normalizer N(H) of H that leaves the subman-
ifold M3, invariant. Note that H# C N(H). The subgroup N(H)" is open and hence
closed in N(H). The Lie group L := N(H)"/H acts freely and canonically on M3,
with associated momentum map J;-: M3, — (Lie(L?))" given by

() = AUy () =), 7 € My, (6.1)
where 1 := J(z) € g*. In this expression, A: (g°)” — (Lie(L?))* denotes the natural

L#-equivariant isomorphism given by

(nog| (@wiem) = 0. 62)

for any f € (g2)" and ¢ € Lie(N(H)®) = Lie(N(H)); g° denotes the annihilator of g,
in g and (g2)" are the H-fixed points in the vector space g°. The nonequivariance
one-cocycle t: M3, — (Lie(L?))" of the momentum map J: is given by

©(l)=A(o(n) +n-u—u), forany /=nHeL’, neNH). (6.3)
Since N(H)® is open in N(H), it follows that
Lie(N(H)"/H) = Lie(N(H)/H) =: L.

Sjamaar’s principle takes the form of a structure theorem for the singular strata.

THEOREM 6.2 (Structure theorem for the singular point strata). In the setup de-
scribed above the following statements hold.:

(1) The canonical projection

) 37 (W) N GuMyy — MY = 17 (1) N GuM7)/ G,
defines a smooth fiber bundle with fiber G,/ H and structure group Ng, (H)"/H.
(i) Consider the free, proper, and canonical action of L := N(H)*/H on M3, and let
Ji- : M5, = " be the associated momentum map given by (6.1). Then the
Marsden—Weinstein reduced space (M%), at the zero value of this momentum

map is given by

(M3 = 372 (0)/Li = 37" (1) N M)/ (Ng, (H)"/H).
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Note that Lj is, in general, different from L7 because the action is affine and not
linear.

(ili) The projection my: J;}(0) — (M3,), defines a smooth principal Li-bundle.
Regarding G,/H as a right (Ng,(H)"/H)-space and J' (W) N M, as a left
(Ng,(H)"/H)-space, consider the bundle with fiber G,/H and structure group G,
associated with ny, that is,

G/ H Xy, ryyn (37" (1) 0 M3y) — (37 () 0 M)/ (NG, (H)"/ H).
This bundle is G-symplectomorphic to n,(lms Jwn G.M; — MELH), that is,
G./H X Ney (HY [ H (J’l(,u) N M‘H) is Gﬂ-diﬁeam?rphic to I (w) N G M3, and
(M3), = I (0)/L; = (37" (u) N M3;)/(Ng,(H)"/H) is symplectomorphic  to
M,(tH . We will say that (M%), is a regularization of the singular symplectic point
stratum M,<1H .

This last part of the theorem and Proposition 5.2 show that, up to connected
components, singular symplectic point strata are symplectomorphic to the corre-
sponding optimal reduced spaces. In other words, optimal reduction, which we have
already seen that it is always regular, directly yields the strata of the singular reduced
spaces.

It turns out that both the level sets and the quotients form a specific kind of
stratification that we make precise in the discussion below.

6.2. STRATIFIED SPACES

In this subsection we shall adopt the definitions, notations, and conventions in [45].
For the proofs of the statements reviewed here, we also refer to this work.

Recall that the subset 4 of a topological space P is said to be locally closed if each
of its points has an open neighborhood U in P such that UN 4 is closed in U. An
injectively immersed submanifold is embedded if and only if it its image is locally
closed in the ambient manifold.

Let P be a topological space and Z a locally finite partition of P into smooth
manifolds S; C P, i € I, that are locally closed topological subspaces of P (hence,
their manifold topology is the relative one induced by P). The pair (P, Z) is called a
decomposition of P with pieces in Z, or a decomposed space, if the following frontier
condition holds:

(DS) If R,S € Z are such that RN S # (), then R C S. In this case we write R < S.
If, in addition, R # S we say that R is incident to S or that it is a boundary
piece of S and write R < S.

The dimension of P is defined as dim P = sup{dim S; | S; € Z}. The depth dp(z) of
any point z € P relative to the decomposition Z is defined by

dp(z) :=sup{k e N |3 Sy, S1,...,Sr € Zwithze€ Sy < S <... < Sk}
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Note that dp(x) = dp(y) for any x,y € S, S € Z. Thus the depth dp(S) of the piece
S € Z is well defined by dp(S) := dp(x), x € S. The depth dp(P) of (P, Z) is defined
by dp(P) :=sup{dp(S) | S € Z}.

A continuous mapping f: P — Q between the decomposed spaces (P, Z) and
(0,Y) is a morphism of decomposed spaces if for every piece S € Z, there is a piece
T € Y such that f(S) C T and the restriction f|g: S — T is smooth. If (P, Z) and
(P, T) are two decompositions of the same topological space we say that Z is coarser
than 7 or that 7 is finer than Z if the identity mapping (P,7) — (P, Z) is a mor-
phism of decomposed spaces. A topological subspace Q C P is a decomposed sub-
space of (P, Z) if for all pieces S € Z, the intersection SN Q is a submanifold of S
and the corresponding partition Z N Q forms a decomposition of Q.

Two subsets 4 and B of P are said to be equivalent at z € P if there is an open
neighborhood U of z such that A N U = BN U. The equivalence class of 4 C P atzis
denoted by [A4], and called the set germ of A at z.

A stratification (Definition 1.2.2 in [45]) of the topological space P is a map S that
associates to any z € P the set germ S(z) of a closed subset of P such that the
following condition is satisfied:

(ST) For every z € P there is a neighborhood U of z and a decomposition Z of U
such that for all y € U the germ S(y) coincides with the set germ of the piece
of Z that contains y.

The pair (P,S) is called a stratified space (see Definition 1.2.2 in [45]). Any
decomposition of P defines a stratification of P by associating to each of its points
the set germ of the piece containing it. The converse is, by definition, locally true.

Two decompositions Z; and Z;, of P are said to be equivalent if they induce the
same stratification of P. Any stratified space (P,S) has a unique associated
decomposition Zs with the following maximality property: for any open subset
U C P and any decomposition Z of P inducing S on U, the restriction of Zs to U is
coarser than the restriction of Z to U. The decomposition Zg is called the canonical
decomposition associated to the stratification (P,S) and its pieces are called the
strata. The local finiteness of the decomposition Zg implies that for any stratum .S of
(P, S) there are only finitely many strata R with S < R. In what follows the symbol S
in the stratification (P, S) denotes both the map that sends each point to a set germ
and the set of pieces associated to the canonical decomposition Zg induced by the
stratification of P.

Let (P,S) be a stratified space. A singular or stratified chart of P is a homeo-
morphism ¢: U — ¢(U) C R” from an open set U C P to a subset of R” such that for
every stratum S € S the image ¢(U N S) is a submanifold of R” and the restriction
dluynst UNS—¢(UNS) is a diffeomorphism. Two singular charts ¢:
U— ¢(U) CR" and ¢@: V — (V) C R™ are Ck-compatible if for any z€ UNV
there exist an open neighborhood W C UNV of z, a natural number
N > max{n,m}, open neighborhoods 0,0 C RY of ¢(U) x {0} and (V) x {0},
respectively, and a C-diffeomorphism : O — O’ such that i, 0 @[, = ¥ 0 iy 0 G|y,
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where i, and i,, denote the natural embeddings of R” and R” into R" by using the
first n and m coordinates, respectively. A singular or stratified atlas is defined as for
manifolds by using stratified charts. The same is true for compatible and maximal
stratified atlases. A maximal atlas on the stratified space (P,S) determines a C*-
differentiable structure on P and (P,S) is called a C¥-stratified space. If k = oo, (P,S)
is called a smooth stratified space.

Stratified spaces with smooth structure are naturally presheaf spaces. Let (P, S) be
a stratified space with smooth structure. The presheaf C3’ of smooth functions on P is
defined by assigning to any open set U C P the algebra C¥(U) of real-valued
functions on U consisting of all continuous functions /i U — R with the following
property: for all z € U and any stratified chart ¢: V' — R" such that z € V, there
exists an open neighborhood W of z and a smooth function £ R” — R such that
WcUNVandfly=fod|y.

Since the stratified space with smooth structure (P, S) can be considered as the
presheaf space (P, C%) the notion of smooth map between stratified spaces with
smooth structure can be defined by working in the category of presheaf spaces. Note
that smooth maps between stratified spaces are not, in general, stratified maps and,
conversely, stratified maps need not be smooth. These remarks allow the introduc-
tion of certain particularly well-behaved smooth stratified spaces.

Let P be a smooth stratified space and R, S C M two strata. Let ¢: U — R" be a
smooth stratified chart of M around the point z. The Whitney condition (B) at the
point z € R with respect to the chart (U, ¢) is given by the following statement:

(B) Let {x4},ex C RNU and {y,},cy C SNU be two sequences with the same
limit z = lim x, = lim y, and such that x, # y,, for all n € N. Suppose that
the set ofn&)orolnectin’gficnes d(xn)p(yn) C R" converges in projective space to a
line L and that the sequence of tangent spaces {7,,S},.y converges in the
Grassmann bundle of dim S-dimensional subspaces of TP to © C T.P. Then,
(T.6) (L) C =.

This condition does not depend on the chart used to formulate it. If condition (B)
is verified for every point z € R, the pair (R,S) is said to satisfy the Whitney
condition (B) or that S is (B)-regular over R. A stratified space with smooth
structure such that for every pair of strata Whitney’s condition (B) holds, is
called a Whitney (B)-space.

There is also a weaker Whitney condition (A). We shall not elaborate on this
condition because it is not needed later.

6.3. LOCAL TRIVIALITY AND CONE SPACES

Let P be a topological space. Define the equivalence relation ~ in the product
P x [0,00) by (z,a) ~ (Z/,d') if and only if a = @’ = 0. The cone CP on P is defined as
the quotient topological space P x [0,00)/ ~. If P is a smooth manifold then the
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cone CP is a decomposed space with two pieces, namely, P x (0,00) and the vertex
which is the class corresponding to any element of the form (z,0), z € P, that is,
P x {0}. Analogously, if (P, Z) is a decomposed (stratified) space then the associated
cone CP is also a decomposed (stratified) space whose pieces (strata) are the vertex
and the sets of the form S x (0,00), with S € Z.

A stratified space (P,S) is said to be locally trivial if for any z € P there exist a
neighborhood U of z, a stratified space (F, St ), a distinguished point 0 € F, and an
isomorphism of stratified spaces ¥: U — (SN U) x F, where S is the stratum that
contains z and s satisfies tpfl(y, 0)=y,forallye SNU. If Fis a cone CL over a
compact stratified space L, then L is called the link of z.

An important corollary of Thom’s first isotopy lemma guarantees that every
Whitney (B) stratified space is locally trivial (see [31, 50]). A converse to this
implication needs the introduction of the so called cone spaces which will be
discussed next.

Let m € NU{oco,w}. A cone space of class C" and depth 0 is the union of
countably many C” manifolds together with the stratification whose strata are the
unions of the connected components of equal dimension. A cone space of class C”
and depth d+ 1, d € N, is a stratified space (P, S) with a C" differentiable structure
such that for any z € P there exists a connected neighborhood U of z, a compact
cone space L of class C" and depth d called the /ink, and a stratified isomorphism :
U— (SNU) x CL, where S is the stratum that contains the point z, the map
satisfies that ' (y,0) = y, for all y € SN U, and 0 is the vertex of the cone CL.

If m # 0 then L is required to be embedded into a sphere via a fixed smooth global
singular chart ¢: L — S’ that determines the smooth structure of CL. More spe-
cifically, the smooth structure of CL is generated by the global chart =
[z,1] € CL—>tg(z) € R The maps y: U — (SNU) x CL and ¢: L — S are re-
ferred to as a cone chart and a link chart respectively. Moreover, if m # 0 then y and
! are required to be differentiable of class C” as maps between stratified spaces
with a smooth structure.

The cone charts and the link charts in the definition of a cone space imply that it is
a stratified space with smooth structure. It is proved in [45] that any cone space of
class C"™ with m > 2 is a Whitney (B) stratified space.

Whitney stratified spaces are, in general, not cone spaces. A counterexample is
given by Neil’s parabola (see [45]). However, Mather’s theory of control data (see
[31] and page 410 of [46] for an outline of the construction of the link) implies that
Whitney (B) stratified subsets of Euclidean space are cone spaces. We caution that
the terminology in this area is not uniformly accepted; some authors (for instance
[46]) use cone spaces as the definition of stratified spaces.

6.4. THE STRATIFICATION THEOREMS

With this quick review of stratified and cone spaces the structure of the level sets of
the momentum map and that of the reduced spaces can be rigorously stated.
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THEOREM 6.3. Consider the closed subset J~' (i) C M as a topological subspace of
M. Then the submanifolds of the type J~'(u) N G, M3, with M3, the connected com-
ponent of the H-isotropy type submanifold that contains a point z such that J(z) = p,
form a Whitney (B) stratification of J~'(u).

THEOREM 6.4. (Stratification Theorem). The symplectic strata MLH) introduced in
Theorem 6.1 form a symplectic Whitney (B) stratification of the quotient topological
space M, := J~'(0)/G,. In addition, the quotient M, is a cone space when considered
as a stratified space with strata M, HH).

Unlike the orbit type stratification of any orbit space of a proper Lie group action
on a manifold, the symplectic stratification described in Theorem 6.4 is, in general,
not minimal among all the Whitney stratifications of the quotient J~'(1)/G, when
the value u € g* is not zero. As a corollary of M, being a cone space one obtains the
following result (see Theorem 5.9 in [46]).

THEOREM 6.5 (Maximal Stratum Theorem). Each connected component of M,
contains a unique open stratum that is connected, open, and dense in the connected
component of M, that contains it.

7. Singular Orbit Reduction

With the same notations and conventions employed till now, consider the orbit
O, C g* of the affine action ® through p. It is important to remark that O, is only
an initial submanifold of g*, in general. If the group G is algebraic, semisimple, or
compact then it is an embedded submanifold. It is straightforward to verify that
the natural inclusion J~!(x)—J~'(0,) induces a bijective map between J~'(u)/G,
and J’I(OH) /G. Even if p is a regular value of J and G, acts freely and properly
on J7'(y) it is not clear what the manifold structure on the quotient J='(0,)/G
should be. If, moreover, the orbit O, is an embedded submanifold, then it is easy
to show that J is transverse to it and hence J~'(O,) is also an embedded sub-
manifold of M. So if the G-action on M is free and proper and pu is a regular value
of J, both quotients J~'()/G, and J~'(0,)/G are smooth manifolds with their
respective projections surjective submersions and are, in addition, diffeomorphic. It
turns out that they are symplectomorphic if we endow J’l((’)ﬂ) /G with a sym-
plectic structure intimately connected to the symplectic structure on the orbit O,
that we study next.

Let g be a Lie algebra acting canonically on the connected symplectic manifold
(M, ®) with momentum map J: M — ¢" having nonequivariance one-cocycle o:
G — g*. Define the infinitesimal nonequivariance two-cocycle of J as the element
T € A%(g) given by

(&) =000 — {J50Mz), zeM, Eneg, (7.1)
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where J¢(z) := (J(2), &), for any z € M. As the definition implies, the left-hand side
of this equation does not depend on z € M. As was the case for the nonequivariance
one-cocycle, this independence on z follows from the connectedness of M. The
relationship between ¢: G — g* and X: g x g — R is given by Z(¢, ) = dg,(e) - ¢,
where G,: G — R is defined by 7, (g) := (o(g),#), for any &, € g.

The affine Lie—Poisson space determined by the two-cocycle ¥ € Z%(g; R) is defined
as the vector space g* endowed with the Poisson bracket

i =(u L) w2(L.35). (72)

for f,g € C*(g*) and pu € g*. The brackets (7.2) are also called the £X-Lie—Poisson
structures. In this formula, the functional derivative Jdf/du is defined as the unique
element of g satisfying

<v, j—’;> — D)

for any u,v € g*, where Df(p) € g™ denotes the Fréchet derivative of f at u. The
leaves of the Poisson structure 7.2 are the orbits O, of the affine action ® endowed
with the G-invariant orbit (or Kirillov—Kostant—Souriau) symplectic form

@, (V) (&g V), ng (v) = £(v, [&, 1)) F (&, n), (7.3)

for arbitrary v € Oy, and ¢, n € g. In this formula ;. denotes the infinitesimal
generator vector field relative to the action ® given by ¢ €g, that is,
Cgr(v) i= —adiv + Z(&, +).

7.1. REGULAR ORBIT REDUCTION

With these preparatory remarks, if O, is an embedded submanifold of g* and if the
action is free, proper, and Hamiltonian, we can state the following result [16, 24, 25].
The set Mo, := J7'(0,)/G is a regular quotient symplectic manifold with the
symplectic form we, uniquely characterized by the relation

ok %k * +
lp,® = Ty, 0o, +Jp, 00, (7.4)

where Jo, is the restriction of J to J ~1(0,) and wal is the +-symplectic structure on
the affine orbit O, (see (7.3)). The maps ip,: J’l((’)#) — M and 7o, : J’l((’)u) — Mo,
are the natural injection and the projection, respectively. The pair (Mo,, wp,) is
called the symplectic orbit reduced space. This result can be used to reduce Hamil-
tonian G-equivariant dynamics. We will not discuss this here because that result will
be stated below in total generality for the singular case. We emphasize the similarity
between the orbit reduction formula (7.4) and its counterpart (5.5) in the optimal
context.

What if the orbit O, is not embedded or, equivalently, not locally closed in g*? One
proceeds in the following way ([44]). The freeness of the G-action guarantees that J is
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a submersion onto some open subset of g*. Since O, is an initial submanifold, this
implies that J is transverse to O, and hence, by the transversality theorem for initial
manifolds, J7'(0,) is an initial submanifold of M whose tangent space at z is
T.(J7Y(0,)) = g -z + A%(z), where g - z denotes the tangent space at z to the orbit
G-z C M. The free and proper G-action on M restricts to a free proper smooth
G-action on the G-invariant initial submanifold J’I(Oﬂ) and, consequently, the
quotient Mo, := J7'(0,)/G s a regular quotient manifold with no,: J70,) — Mo,
a surjective submersion. The proof of these statements uses various properties of
initial submanifolds. From this point, the proof of the statement proceeds as in the
case when O, was an embedded submanifold. In other words, in the orbit reduction
theorem quoted above, one can drop the assumption that the orbit O, is embedded.

The final result is that if G acts freely and properly on M and p € g* is a regular
value of J, the point reduced space (M, w,) and the orbit reduced space (Mo,, wo, )
are symplectomorphic.

7.2. THE SINGULAR ORBIT REDUCTION THEOREMS

Based on the model of the manifold structure on the orbit reduced space discussed
previously, we turn now to the singular case. A very important technical point is the
choice of the topology for the set J~!(0,)/G. In the point reduction approach J~! (u)
was thought of as a topological subspace of M and of J’l(,u)/Gu was the resulting
topological quotient. This is not the right way to proceed when dealing with orbit
reduction; in this situation J='(0,) needs to be endowed not with the relative
topology but with the initial topology induced by the map Jo, :=J] (0,
J7(0,) — O,, where the orbit O, comes with its own smooth structure diffeo-
morphic to G/G,,. This topology on J! (O,) is called the initial topology. Recall that
the initial topology induced by the map Jo,: J’I(OH) — O, is characterized by the
fact that for any topological space Z and any map ¢: Z — J~! (O,) we have that ¢ is
continuous if and only if Jp,o¢ is continuous. Additionally, the set
B= {J(};(U) | U open in O,} is a subbase of this topology. In particular, this im-
plies that J='(0,) is first countable.

The following proposition shows that the initial topology of J’l((’)u) generalizes
to the singular case the smooth structure for this set considered in the regular sit-
uation discussed above.

PROPOSITION 7.1. Endowing J’I(OH) with its initial topology, the map f:
G xg, I () — J1(0,) given by [g,2] — g - z is a homeomorphism.

At this point all the necessary background for orbit reduction has been ex-
plained and we can state the following result. We are using all notations in force
till now.

THEOREM 7.2 (Singular symplectic orbit strata). Let u = J(z). The following hold:
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(i) The set G(I~'(w) N M3,) is an initial submanifold of M whose tangent space is
given by
T (G~ (1) N M3)))
= span{&y(m) + Xy(m) | £ € g, f € C*(M)} (75)
=g-m+ Ag(m),
with Ay the polar distribution associated to the G-action on M.
(i) The set Mg? =[G (W) N M5)]/G has a unique quotient differentiable
structure such that the canonical projection
H _ . H
mg) G () N M) — M)
is a surjective submersion.

(iil) There is a unique symplectic structure wgi) on Mgi) characterized by
(H) * H) * H H)
l((’)u) o= n:ED“) wggﬂ) + JE%) wa‘, (7.6)

where igi): G(I (1) N M3,)— M is the inclusion, Jgi): GI (W) N M;) — O, is
obtained by restriction of the momentum map J, and a)g is the +-symplectic
Sform on O, defined in (7.3). The pairs (ng),wg?) are called the singular
symplectic orbit strata.

(iv) Lethe COO(M)G be a G-invariant Hamiltonian. Then the flow F, of X}, leaves the
connected components of G(J~'(u) N M3,;) invariant and commutes with the G-

action, so it induces a flow F? * on ng) that is characterized by
H (H , H
TEE?,H) °© F[ ° l§9ﬂ> = Pf)‘ °© TCEDM) :

(v) The flow F? * is Hamiltonian on M(H), ™Y relative to the reduced Hamilto-
0, %o,
nian hgj): Mgi) — R defined by

hg{) o ngj) =ho igﬂ

H I3

The vector fields X, and X L are ngj)—relaled.

(vi) Let k: M — R be another G-ihvariant function. Then {h, k} is also G-invariant and
(H) _ pH) 1 (H)
{h’k}o/t B {hou ’kol‘ }Mg:)’
where {-,-} ym denotes the Poisson bracket induced by the symplectic structure

O,
(H) "
on M, 0,

As for singular point reduced strata, there is a structure theorem for the singular
orbit strata or, equivalently, an orbit form of Sjamaar’s principle.

THEOREM 7.3 (Structure theorem for the singular orbit strata). The following hold:

(i) The canonical projection ng?: G (W) N M3) — g:) =[G(I ' (wN
M3))/G defines a smooth fiber bundle with fiber G/H and structure group
N(H)*/H. We recall that N(H)® is the open and hence closed subgroup of N(H)
that leaves M7, invariant.



44 JUAN-PABLO ORTEGA AND TUDOR S. RATIU

(i) Consider the free, proper, and canonical action of L7 := N(H)*/H on M3, and let
Ji-2 M5, — 1" be the associated momentum map given by Ji-(m)=
A(J|Mi1(m) — W), for any m € M3, Then the regular orbit reduced space (M7;) o,
at the affine orbit corresponding to 0 € I* is given by

(M3, = I (00) /L7 = [I7H(N(H) - ) 0 M3;] /(N(H)"/H) (7.7)

(iii)y The projection me,: I;}(O) — (M%) o, defines a smooth principal L*-bundle.

Regarding G/H as a right (N(H)*/H)-space and J™'(N(H)" - 1) 0 M3, as a left
(N(H)*/H)-space, consider the bundle with fiber G/H and structure group G
associated to mp,, that is,
G/H %y (3 (N(H) - ) 0 M3;) — [JT(N(H)™ - ) 0 M3, ] /(N(H)"/H).
This bundle is G-symplectomorphic to ng:): G (w) N M3) — Mgi), that is,
G/H X nry (J"UN(H) - p) N M3) is G-diffeomorphic to G(J™' (1) N M3)
and the orbit reduced space

(Mip)o, = I (00) /L7 = [I7 (N(H) - ) 0 M| /(N(H)"/H)

is symplectomorphic to Mgll) We say that (M%) e, is a regularization of the

singular symplectic orbit stratum M, g?.

The singular symplectic orbit strata form a stratification in the same sense as the
singular point strata.

THEOREM 7.4 (Orbit reduction stratification theorem and the singular reduction
diagram). Let 1,: I~ (1)—J ' (O,) be the inclusion and L,: 3™ (1)/G, — I~ 1(0,)/G
the map defined by the commutative diagram

) s 30

71—“ l l ﬂ-C)I”L

I W) /Gy —"— T710,)/G.

Consider J! (u)/ Gy as a smooth symplectically stratified topological space with the
stratification introduced in Theorem 6.4. Then

(1) The submanifolds in Theorem 7.2 induce a smooth symplectic stratification of
J’l((’)ﬂ)/G that makes it into a cone (and, hence, Whitney (B)) space.
(i) The map L, is a homeomorphism of cone spaces.

The Structure Theorem, Sjamaar’s Principle, and the singular reduction diagram
are illustrated in the following commutative diagram:
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Ty 7o,
Lﬂf
I /G, IH0,)/G
I
I (W) NG My (GG - (37N () N M) /G
£ &0
I 0)/L JJ(@K
(I w) N ME) / (Ng, (H)*/H) [JN(H)? - p)NME] /(N(H)*/H)

In this diagram, the symplectomorphisms f LH> and f g{) are the explicit implemen-
tation of Sjamaar’s Principle (see Theorems 6.2 and 7.33. We recall that Ly and LLH)
are also symplectomorphisms and that L, is a homeomorphism of smooth sym-
plectic Whitney (B) stratified spaces.

8. Poisson Reduction

This section reviews the main theorems in the theory of Poisson reduction. The
hypotheses of the first theorem are strong and are rarely verified in physical appli-
cations. Nevertheless, this theorem serves as a model for the type of results that one
would like to have. The subsequent theorems will weaken and eliminate various
assumptions.

Let (M, {-,-}) be a Poisson manifold and G a Lie group acting canonically on M.
If the G-action ®: G x M — M is free and proper, the orbit space M/G is a smooth
manifold and the canonical projection n: M — M/G is a smooth surjective sub-
mersion.

THEOREM 8.1 (Regular Poisson reduction). Assume the hypotheses above. Let J:
M — M/ Ay, be the corresponding optimal momentum map. Then

(1) The orbit space M/G is a Poisson manifold with the Poisson bracket {-, ~}M/G,

uniquely characterized by the relation
{1, "' (n(m)) = {fom, gon}(m), (8.1)

for any m € M and f, g € C*°(M/G).
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(i) The Poisson structure induced by the bracket {-, '}M/G on M/G is the only one
for which the projection w: (M, {-,-}) — (M/G,{-,- Y/} is a Poisson map.
(iii)) Lethe C® (M)G be a G-invariant smooth function on M. The Hamiltonian flow
F; of X commutes with the G-action, so it induces a flow FfWG on M/G char-
acterized by wo F, = Fi‘/I/G om. The flow FfWG is  Hamiltonian on
(MG, {-,- Y9), for the reduced Hamiltonian function [h] € C*(M/G) defined
by [h] o = h. The vector fields X, and Xy, are m-related.

(iv)  The symplectic leaves of (M/G,{-, ~}M/G) are given by the optimal orbit reduced
spaces (J'(0,)/G, wo,). p € M/ Ay, introduced in Theorem 5.3.

(V) If the Poisson manifold (M, {-,-}) is symplectic with form w and the G-action has
an associated standard momentum map J: M — gq*, then the symplectic leaves of
(M)G,{-,- Y% are given by the spaces Mo, =G J’l(/,t)c/G,a)fgu), where
J’l(,u)c is a connected component of the fiber 3! () and wfoﬂ the restriction to
M COH of the symplectic form wo, of the orbit reduced space Mo, defined in (7.4).
If, additionally, G is compact, M is connected, and the momentum map J is
proper, then ME?;( = Mo,.

8.1. POISSON REDUCTION BY PSEUDOGROUPS

The reduction theorem just presented is valid under very strong regularity hypoth-
eses that insure the smoothness of the orbit space onto which the Poisson bracket
and the corresponding equivariant dynamics can be projected. When these
hypotheses are not present, the orbit space is not smooth anymore and one needs to
work with presheaves of Poisson algebras.

Let M be a topological space with a presheaf F of smooth functions. A presheaf of
Poisson algebras on (M, F) is a map {-,-} that assigns to each open set U C M a
bilinear operation {-,-},: F(U) x F(U) — F(U) such that the pair (F(U), {-,-}) is
a Poisson algebra. A presheaf of Poisson algebras will be usually denoted as a triple
(M, F,{-,-}). The presheaf of Poisson algebras (M, F,{-,-}) is nondegenerate if the
following condition holds: if f € F(U) is such that {f, g}, =0, for any g € F(V)
and any open set of V, then fis constant on the connected components of U.

Any Poisson manifold (M, {-,-}) has a natural presheaf of Poisson algebras on its
presheaf of smooth functions C3; that associates to any open subset U of M the
restriction {-, -}|,, of the bracket {-, -} to C*(U) x C>(U). We shall formulate below
a result that fully characterizes the situations in which the presheaf C3; of Poisson
algebras on (M, {-,-}) behaves properly under restrictions to subsets and projections
to the orbit spaces of pseudogroups of local Poisson diffeomorphisms of (M, {-,-}).
To do this, we return to the discussion on pseudogroups in Section 3.

Let M be a smooth manifold and 4 a pseudogroup of local diffeomorphisms of M.
Let S C M be a subset of M endowed with a topology 7 that, in general, does not
coincide with the relative or subspace topology. The presheaf C3; of smooth func-
tions on M induces a quotient presheaf C3; /4 0N the orbit space M/A. Consider now
the subset
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As:={a€ A|a(s) € S for any s € S, s in the domain of a}.

Throughout this section we will assume that Ag is a subpseudogroup of A. This
hypothesis allows the formation of the quotients S/As and M/ Ag. Since the quotient
S/As can be seen as a subset of M/Ag, there is a well defined presheaf of Whitney
smooth functions Cgo/AS,M/AS on S/Ag induced by Cﬁ/AS. The openness of the pro-
jection M — M/As guarantees, by Proposition 3.2, that

Cgc/AS,M/A,g = CLO?C/AS(')AS

where Cg AS(-)AS is the quotient presheaf on S/Ag associated to the presheaf
Cg‘fM(-)AS of Whitney Ag-invariant functions on S induced by C33(-)**. In order to

simplify notation, define

)

00 00 A
W?/AS = CS/AS.,M/AS = CS/AS(') *
We recall that for any open set V' C S/4s, the elements f'€ W), (V) are charac-
terized by the fact that if ng: S — S/Ag is the projection onto orbit space then for
any m € ng!(V) there exists an open As-invariant neighborhood of m in M and
F e C5(U,,)™ such that

fO 7":~5‘|n§‘(V)ﬁU,7, - F|n§'(V)ﬁU,,,' (8'2)

The function F is called a local extension of fo ng at the point m.

Now assume that the given topology 7 on S is stronger than or equal to the
relative topology on S. The presheaf W) 4 18 said to have the (A4, As)-local extension
property if Ag is a subpseudogroup of 4 and for any f'€ W@AS(V) and m € ng!'(V)
there exist an open A-invariant neighborhood U, of m in M and F € C33(U,,)" such
that

Sonslnnu, = Fla (mnu,-
The function Fis called an A-invariant local extension of fo ng at m.
Finally, let (M, {-,-}) be a smooth Poisson manifold, 4 C P, (M) a pseudogroup
of local Poisson diffeomorphisms of M, and S C M a subset of M such that Wgo/ As

has the (A4, Ag)-local extension property. Then (M, {-,-}, 4,S) is said to be Poisson
reducible if (S/AS, W§A57 { -}S/ASS is a well defined presheaf of Poisson algebras

where, for = any open  set V' C S/As, the bracket {- ,}i/AS: W3, (V)x
W 4,(V) = Wy, (V) is given by
{84/ (rs(m)) = {F, G}(m) (8.3)

for any m € ng'(V) and where F,G are A-invariant local extensions at m of fo g
and g o wg, respectively.

Using the concepts just introduced we formulate now a Poisson reduction theorem
for actions of pseudogroups of local Poisson diffeomorphisms. The following
notations are used below. If B e A*(M) is the Poisson tensor associated to
(M, {-,-}), that is, B(m)(df(m),dg(m)) := {f,g}(m), for any smooth locally defined
functions f, g in a neighborhood of m € M, then B* : T*M — TM denotes the bundle
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map given by B*(dg):={-,g}. If V.C T,,M is a subspace, then its annihilator
Ve C Ti M is defined by V° :={a € T} M | (a,v) =0 for all v € V}.

m

THEOREM 8.2 ([42)). Let (M,{-,-}) be a smooth Poisson manifold, A C Pr(M) a
pseudogroup of local Poisson diffeomorphisms of M, and S C M a subset of M such
that W?/AS has the (A, As)-local extension property. Let B*: T*M — TM be the bundle
map associated to the Poisson tensor B of (M, {-,-}). Then (M,{-,-}, A, S) is Poisson

reducible if and only if for any m € S we have
BY(Ay,) C [AS], (8.4)

where A, := {dF(m) | F € Cﬁ(Um)A,for any open A-invariant neighborhood U,, of m
in M}, and where AS = {dF(m) € A, | F| v,nv, 1S constant, for an open A-invariant
neighborhood U,, of m in M and an open As-invariant neighborhood V,, of m in S}.

Even though in this theorem only the subpseudogroup A4s is needed in the con-
struction of the quotient space S/ A4, the full pseudogroup A4 is used in the definition
of the Poisson bracket on this quotient when (M, {-,-}, 4,S) is Poisson reducible.
Actually, in spite of the fact that the reduction of (M,{-,-},4,S) and
(M, {-,-},As,S) gives the same quotient manifold S/Ay it does not yield the same
Poisson brackets on this quotient since different sets of functions are involved. There
are even instances in which (M,{-,-},4,S) is Poisson reducible whereas
(M, {-,-},A4s,S) is not, as will be shown explicitly later on.

Theorem 8.2 has several useful corollaries which we now state.

COROLLARY 8.3. Let S be an embedded submanifold of the Poisson manifold
(M, {-,-}). The triple (M, {-,-},S) is Poisson reducible if and only if

B(T:,M) C T,,S, forany m¢c S, (8.5)
or, equivalently, whenever
TwLly C T,,S, for any m € S, (8.6)

where Ly, is the symplectic leaf of (M, {-,-}) containing the point m € S. If S is only an
immersed submanifold of M then the conditions (8.5) or (8.6) are sufficient but, in
general, not necessary conditions for the Poisson reducibility of (M, {-,-},S). In both
cases, the Poisson reducibility of (M,{-,-},S) implies that (S,{-,-}|s) is a Poisson
manifold.

COROLLARY 8.4. Let (M,{-,-}) be a smooth Poisson manifold, B € A*(M) the
associated Poisson tensor, and D a smooth, integrable, and regular distribution on M
generated by a family of local infinitesimal Poisson automorphisms of M. Then there is
a unique Poisson bracket {-, -}M/D on the quotient manifold M /D for which the pro-
Jjection mp: M — M/D is a Poisson map.

If M is symplectic with form o then the rank of the Poisson structure {-, -}M/D at the
point mp(m) is
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rank (BL/D(nD(m))) = dim M — dim D(m) — dim[(D(m))®” N D(m)], (8.7)

where By/p € AX(T*(M/D)) is the Poisson tensor associated to the bracket {-,-}""/”

on M/D.

COROLLARY 8.5. Let G be a Lie group acting freely, properly, and canonically on
the Poisson manifold (M,{-,-}) via the map ®: Gx M — M. Let A:= A=
{®, | g € G} C P(M) and let S be an embedded G-invariant submanifold of M. Then
(M, {-,-},A,S) is Poisson reducible if and only if

B ((g-m)°) C T,,S, forany m¢S. (8.8)

If the G-action on M is not free, the inclusion
B’i(((g . m)")G”’) Cc T,,S, forany meS, (8.9)

implies that (M, {-,-}, A, S) is Poisson reducible.

8.2. POISSON REDUCTION BY DISTRIBUTIONS

Next, we want to analyze the Poisson reduction procedure by generalized distribu-
tions. The existence of a pseudogroup of global Poisson diffeomorphisms will not be
required anymore in the following theorems. We begin by extending the notion of
integrability of generalized distributions to decomposed subsets.

Let M be a differentiable manifold and S C M a decomposed subset of M. Let
{Si}c; be the pieces of this decomposition. The topology of S is not necessarily the
relative topology as a subset of M. We say that D C TM| is a smooth distribution on
S adapted to the decomposition {S;},.;, if D N TS; is a smooth distribution on each S;
for all 7 € I. The distribution D is said to be integrable if D N TS; is integrable for
eachie L

The integrability of the distributions Dg, := D N TS; on S; allows the partitioning
of each §; into the corresponding maximal integral manifolds. Thus, there is an
equivalence relation on S; whose equivalence classes are precisely these maximal
integral manifolds. Doing this on each S;, gives an equivalence relation Dg on the
whole set S by taking the union of the different equivalence classes corresponding to
all the Dg,. The quotient space S/Dg is defined by S/Ds :=J..;Si/Ds, and npy:
S — S/Dg denotes the natural projection.

Let (M, {-,-}) be a Poisson manifold and D C TM a smooth distribution on M.
The distribution D is called Poisson or canonical , if the condition df|, = dg|, =0,
for any f, g € C3;(U) and any open subset U C P, implies that d{f; g}|, = 0. Note
that if D is spanned by a family of infinitesimal Poisson automorphisms then D is a
Poisson distribution. The converse is not necessarily true.

We shall define now a presheaf of smooth functions on S/Dg that requires less
invariance properties than those that appeared in the context of quotients by

iel
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pseudogroups of transformations. Define the presheaf of smooth functions Cg; pg ON
S/Ds by associating to any open subset ¥ of S/Dg the set of functions CgC/DS(V)
characterized by the following property: f € Cgo/ DS(V) if and only if for any z € V'
there exists m € mp! (), an open neighborhood U, of min M, and F € C33(U,,) such

that

Sfo nDs‘n[’J}s(V)ﬁUm = F|n;,1S(V)mU,,,~ (8.10)

The function F is called, as before, a local extension of fomnp, at the point
me nl’);(V).

The presheaf g, is said to have the (D, Ds)-local extension property if the
topology of S is stronger than the relative topology and the local extensions of
fomnp, defined in (8.10) can always be chosen to satisfy

dF(n)|piy =0, foranyne mpe (V) 0 U

The function F is called a local D-invariant extension of fomp, at the point
me nBi,(V).

PROPOSITION 8.6. Suppose that S is a smooth embedded submanifold of M and that
Dg is a smooth, integrable, and regular distribution on S. Then the presheaf CgC/DS
coincides with the presheaf of smooth functions on S/Dgs when considered as a regular
quotient manifold.

Let (M, {-,-}) be a Poisson manifold, S a decomposed subset of M, and D C TM|g
a Poisson integrable generalized distribution adapted to the decomposition of S.
Assume that quo/ps has the (D, Dgs)-local extension property. We say that
(M,{-,-},D,S) is Poisson reducible if (S/Ds, Cg‘;DS,{-,-}S/DS) is a well defined
presheaf of Poisson algebras where, for any open set V' C S/Dg, the bracket
{15 Cp (V) X €3 (V) = € (V) s given by

{1,375 (npy(m) == {F, G}(m),

for any m € nl‘);( V). In this formula, the maps F, G are local D-invariant extensions
at m of fonp, and g o mp,, respectively.

THEOREM 8.7. Let (M,{-,-}) be a Poisson manifold with associated Poisson
tensor B € Az(M), S a decomposed space, and D C TM|g a Poisson integrable
generalized distribution adapted to the decomposition of S. Assume that C?/DS has
the (D, Ds)-local extension property. Then (M,{-,-},D,S) is Poisson reducible if
for any me S

B (An) C [AS], (8.11)
where

A = {dF(m) | F e C(Un), dF(2)| py = 0, for all z € Up NS,

and for any open neighborhood U,, of m in M}
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and

Ai = {dF(m) € A | Fly y, is constant for an open neighborhood U,

m

of min M and an open neighborhood V,, of m in S}.
Note that if S is endowed with the relative topology then

AS = {dF(m) € A, | F| u,nv, 1S constant for an open neighborhood U,
of min M}.

As opposed to the situation in Theorem 8.2, condition (8.11) is sufficient for
Poisson reducibility but, in general, is not necessary. The reason behind this is that
the functions that define the spaces A,, and A;i are not defined on saturated open
sets. As we will see in Theorem 8.8, an alternative hypothesis that makes this con-
dition necessary and sufficient is, roughly speaking, the regularity of the distribution
Ds:=DNTS.

8.3. THE REGULAR CASE

Next, we investigate the consequences of this theorem if the distribution D is regular.
Let (M,{:,-}) be a Poisson manifold and S an embedded submanifold of M. Let
D C TM|g be a subbundle of the tangent bundle of M restricted to S such that
Dg := DN TS is a smooth, integrable, regular distribution on S and D is canonical.

THEOREM 8.8 ([28]). Let (M, {-,-}) be a Poisson manifold with associated Poisson
tensor B € A (M) and S an embedded smooth submanifold of M. Let D C TM|g be a
canonical subbundle of the tangent bundle of M restricted to S such that Ds := DN TS
is a smooth, integrable, and regular distribution on S. Then (M, {-,-}, D, S) is Poisson
reducible if and only if

BY(D°) C TS + D. (8.12)

One of the key technical difficulties in proving this theorem is given by the fol-
lowing statement that is useful also in other contexts when carrying out Poisson
reduction.

LEMMA 8.9. Let M be a smooth manifold and S an embedded submanifold of M. Let
D C TM|g be a subbundle of the tangent bundle of M restricted to S such that
Dg:=DNTS is a smooth, integrable, regular distribution on S. Then the presheaf
Cgo/DS has the (D, Ds)-local extension property.

Remark 8.10. Even though in the previous theorem only the distribution Dg
intervenes in the construction of the quotient manifold S/Dg, the full distribution
D is used in the definition of the Poisson bracket on this quotient when
(M, {-,-},D,S) is Poisson reducible. Actually, in spite of the fact that the



52 JUAN-PABLO ORTEGA AND TUDOR S. RATIU

reduction of (M,{-,-},D,S) and (M, {:,}, Ds,S) gives the same quotient mani-
fold S/Ds it does not yield the same Poisson brackets on this quotient since
different sets of functions are involved. This is particularly evident in the fol-
lowing example in which we show, using Theorem 8.8, that (M,{-,-},D,S) is
reducible whereas (M, {-,-}, Ds,S) is not.

Let (M, ®) be a connected symplectic manifold acted freely and canonically upon
by a connected and compact Lie group G. Let J: M — g* be a coadjoint equivariant
standard momentum map associated to this action, p € g* one of its values, and
G, C G its coadjoint isotropy subgroup. Let D be the distribution on M given by the
tangent spaces to the orbits of the G-action and S :=J~'(u), which is a smooth
closed submanifold of M because of the freeness of the action. In this case Dg is the
distribution given by the tangent spaces to the orbits of the G,-action. The com-
pactness and connectedness of G implies that G, is connected (see Theorem 3.3.1 in
[11]) and, hence, S/Ds = J~'(1)/G,.

The quadruple (M, w, D,J’l(,u)) satisfies (8.12) and is hence Poisson reducible.
Indeed, in this case the expression (8.12) is (g-m)” C ker T,,J + g - m, for any
m € J~(u), which amounts to ker T, J C ker T,,,J + g - m (since (g - m)” = ker T,,J),
which is an obvious inclusion.

On the other hand, the quadruple (M, w, Ds, J~! (1)) is not Poisson reducible even
though the corresponding quotient manifold is the same as for (M, w, D,J ' (u)).
Indeed, condition (8.12) reads in this case

(g,-m)” CkerT,J+g, -m=kerT,J, foranyme A )

However,
(g,-m)” = (ker T, Ng-m)” = (ker T,,0)” + (g-m)” = g-m+ker T,,J

which is, in general, not a subset of ker 7},,J.

A useful consequence of Theorems 8.7 and 8.8 is given by the following statement:

PROPOSITION 8.11. Let (M, {-,-}) be a Poisson manifold with associated Poisson
tensor B€ A*(M). Let S be an embedded submanifold of M and D := B*((TS)°) C
TM|g. Assume that the characteristic distribution Dg := D N TS of S relative to the
Poisson bracket {-,-} is a smooth and integrable generalized distribution on S such that
CgO/DS has the (D, Dg)-local extension property. Then (M,{-,-},D,S) is Poisson
reducible.

The next topic in this section is the reduction of coisotropic submanifolds. Let
(M, {-,-}) be a Poisson manifold with associated Poisson tensor B € A*(M) and S an
immersed smooth submanifold of M. Denote by (7S)° := {a, € T M | (o, v5) = 0,
for all s € S, v, € T,S} C T*M the conormal bundle of the manifold S; it is a vector
subbundle of 7*M|s. The manifold S is called coisotropic if B*((TS)°) C TS. Note
that this is the straightforward generalization of the definition of a coisotropic
submanifold of a symplectic manifold. Indeed, if the Poisson bracket on M is defined
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by a symplectic form » € Q*(M), then B*((TS)°) = (TS)” and the condition given
above becomes (7'S)” C TS, that is, S is coisotropic in (M, ). In the symplectic
case, coisotropic submanifolds appear sometimes in the physics literature under the
name of first class constraints. The main properties of coisotropic submanifolds are
summarized in the following proposition.

PROPOSITION 8.12. Let (M, {-,-}) be a Poisson manifold with associated Poisson
tensor B € A*(M) and S an embedded smooth submanifold of M. The following are
equivalent:

(1) S is coisotropic;

(i) if fe C®(M) satisfies flg = 0 then X/|g € X(S);

(i) for any s € S, any open neighborhood U of s in M, and any function g € C*(Uy)
such that X,(s) € TS, if fe C°(U;) satisfies {f,g}(s) =0, it follows that
Xi(s) € TS,

(iv) the subalgebra {f € C>*(M) | flg¢ = 0} is a Poisson subalgebra of (C*(M),{-,-}).

Coisotropic submanifolds naturally induce distributions with good properties
relative to reduction.

PROPOSITION 8.13. Let (M, {-,-}) be a Poisson manifold with associated Poisson
tensor BEAZ(M). Let S be an embedded coisotropic submanifold of M and
D := B((TS)°). Then:

(i) D=DNTS = Dg is a smooth generalized distribution on S.
(i1) D is integrable.
(iii) Ing‘}DS has the (D, Ds)-local extension property then (M, {-,-}, D, S) is Poisson
reducible.

Remark 8.14. Let (M,{-,-}) be a Poisson manifold and B € A*(M) the corre-
sponding Poisson tensor. Let S be an embedded submanifold such that the charac-
teristic distribution Dg:= B*((TS)°)N TS is a smooth, integrable, Poisson, and
regular distribution on S. Even though the quotient manifolds associated to the qua-
druples (M,{-,-},D,S) and (M,{,-}, Ds,S) are the same and (M,{-,-},D,S) is
reducible by Proposition (8.11), the quadruplet (M,{-,-},Ds,S) is, in general,
not reducible. Actually, its reducibility is, by Theorem 8.8, equivalent to S being a
coisotropic submanifold of M. Indeed, by Proposition 8.13 and Lemma 8.9 if S is
coisotropic then (M,{-,-}, Ds,S) is reducible. Conversely, if (M,{:,-},Ds,S) is
reducible then by Theorem 8.8 we have B*(D%) C TS+ Ds = TS since Ds C TS.
Additionally,

B(TS)°) € B(TS)°) + B(B(TS))]°) = B(TS)° + [BA((TS)°)]")
— B([B(TS)°) N TS]°) = B(D5)

Thus (M, {-,-}, Ds, S) is Poisson reducible relative to the characteristic distribution if
and only if S is coisotropic.
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The difference in terms of reducibility between (M,{:,-},D,S) and
(M, {-,-},Ds,S) is the same as that between the systems (M,w,D,J”'(u)) and
(M,w, Ds,J~' (1)) that we considered in Remark 8.10.

EXAMPLE. Coisotropic submanifolds appear naturally when one has integrals in
involution. Let (M, {-,-}) be a Poisson manifold with Poisson tensor B and let
S5+ 5fx € C®(M) be k smooth functions in involution, that is,

{fi.f;i} =0, forany ije{l,... k}.
Assume that 0 € R¥ is a regular value of the function F:= (fi,...,f;) : M — R and
let S:= F1(0). Since for any s€ S, span{dfi(s),...,dfk(s)} C (7:S)° and the
dimensions of both sides of this inclusion are equal we get

span{dfi(s),...,dfk(s)} = (TxS)°.
Hence,

B (s)((T,5)°) = span{ Xy (s),..., X5 (s)},

and B*(s)((T,S)°) C T,S by the involutivity of the components of F. Consequently, S
is a coisotropic submanifold of (M, {-,-}) and Proposition 8.13 can be applied to it.

9. Cosymplectic Submanifolds and Dirac’s Formula

The main goal of this section is to study certain submanifolds of a Poisson sub-
manifold that are not Poisson themselves but to which the Poisson reduction method
in Theorem 8.8 can be applied. As we shall see, these manifolds are intimately
related to constraints and, in particular, to Dirac’s formula for constrained Poisson
brackets.

9.1. COSYMPLECTIC SUBMANIFOLDS

Let (M, {-,-}) be a Poisson manifold and B € A*(M) its associated Poisson tensor.
An embedded submanifold S C M is called cosymplectic if

() B((TS)°)NTS = {0}.
(H) TVS + TY£S =TM,

for any s € S and £, the symplectic leaf of (M, {-,-}) containing s € S.

The cosymplectic submanifolds of a symplectic manifold (M, w) are its symplectic
submanifolds. In the physics literature, if the phase space is given by a symplectic (as
opposed to a Poisson) manifold, coisotropic submanifolds appear often under the
name of second-class constraints. The main properties of cosymplectic submanifolds
are summarized in the following proposition.

PROPOSITION 9.1. Let (M,{-,-}) be a Poisson manifold, B € A*(M) the corre-
sponding Poisson tensor, and S a cosymplectic submanifold of M. Then for any s € S,
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() T,Ly= (TSN TLy) @ B (s)((T,S)°), where L is the symplectic leaf of
(M, {-,-}) that contains s € S.
() (TsS)° Nker B*(s) = {0}.
(i) TsM = B*(s)((T,S)°) & T,S.
(iv) BY((TS)°) is a subbundle of TM|g and, hence, TM|gy = B*((TS)°) @ TS.
(V) The symplectic leaves of (M, {-,-}) intersect S transversely and hence SN L is an
initial submanifold of S, for any symplectic leaf L of (M,{,-}).

The following theorem is due to Weinstein [51].

THEOREM 9.2 (The Poisson structure of a cosymplectic submanifold). Let
(M, {-,-}) be a Poisson manifold, B € A*(M) the corresponding Poisson tensor, and S
a cosymplectic submanifold of M. Let D := B*((TS)°) C TM|g. Then

1 (M,{,},D,S) is Poisson reducible.
(ii) The corresponding quotient manifold equals S and the reduced bracket {-, -}S is
given by

{£,8}°(s) = {F, G}(s), ©-1)
where f,g € C$y(V) are arbitrary and F,G € Cy(U) are local D-invariant
extensions of f and g around s € S, respectively.

(iii)  The Hamiltonian vector field Xy of an arbitrary function f € CZ),(V) is given by

TioXy= Xroi, (9.2)
where F € C3(U) is a local D-invariant extension of f and i: S—M is the
inclusion.

(iv) The Hamiltonian vector field Xy of an arbitrary function f'€ C3)(V) can be
written as

TioX;=mgoXpol, (9.3)

where F € C5;(U) is an arbitrary local extension of f and ns: TM|g — TS is the
projection induced by the Whitney sum decomposition TM|s = B*((TS)°) @ TS of
™.

(V) The symplectic leaves of (S,{-,-}°) are the connected components of the inter-
sections SN L, with L a symplectic leaf of (M,{-,-}). Any symplectic leaf of
(S,{-,-}%) is a symplectic submanifold of the symplectic leaf of (M, {-,-}) that
contains it.

(vi) Let Ly and LS be the symplectic leaves of (M, {-,-}) and (S, {-,-}*), respectively,
that contain the point s € S. Let wg, and w s be the corresponding symplectic
forms. Then B*(s)((T,S)°) is a symplectic subspace of TyLy and

B(s)(T,8)°) = (T,L5) ™", (9.4)
(vii) Let Bs € A*(S) be the Poisson tensor associated to (S,{-,-}°). Then
Bﬁg = ngo B|gon, (9.5)

where g T*S — T*M|g is the dual of ng: TM|g — TS.
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Note that this theorem provides presheaves of Poisson algebras on (S, C3,) and
on (S, CY). When S is paracompact both presheaves coincide.

COROLLARY 9.3. Let (M,{-,-}) be a Poisson manifold and S C M an embedded
submanifold. Then S is a cosymplectic submanifold of (M,{-,-}) if and only if it
satisfies the following two properties.

(i) T,SNTLyis asymplectic subspace of (T Ly, we (s)), for any s € S, where Ly is
the symplectic leaf of (M, {-,-}) that contains s € S;
(i) TS+ T,L,=T,M, for any s € S.

9.2. THE DIRAC CONSTRAINTS FORMULA

Next, we show that the classical formula of Dirac [10] for constrained brackets
generalizes to the Poisson context if the constraint is a cosymplectic submanifold.
Let (M,{-,-}) be a n-dimensional Poisson manifold and let S be a k-dimensional
cosymplectic submanifold of M. Let zy be an arbitrary point in S and (U,X) a
submanifold chart around zy such that © = (¢, ): U — V| x V5. V; and V, are two
open neighborhoods of the origin in two Euclidean spaces such that

®(z0) = (@(20),¥(20)) = (0,0) and

“UNS) = V1 x {0} (9.6)

Let o= (@',...,9") be the components of ¢ and define §':=79'|,s,
-, 9° == 9| 5. Use now Lemma 8.9 to extend ', ..., ¢* to D-invariant functions
@',...,¢" on U. Since the differentials d¢'(s),...,d®"(s) are linearly independent

for any s€ UNS, we can assume (by shrinking U if necessary) that
de'(z),...,d¢*(z) are also linearly independent for any z € U. Consequently, (U, )

with k= ((pl,...,(pk,w'7...,¢”_k), is a submanifold chart for M around z, with
respect to S such that, by construction,
k
do' gy = = 40 Oz osr) = 0,

for any s € UN S. This implies that for any i € {1,...,k}, j€{l,...,n—k}, and
sesS

{0", W/} (s) = dg'(s) - Xpy(s) = 0
since dy/(s) € (T,S)° (by (9.6)) and, hence,

X, () € Bs)((T.S)). 7)
Additionally, since the functions @', ..., ¢* are D-invariant we have, by (9.2), that

X(pl (S) = X/(;l (S) e TS, .. .,Xq,/:(s) = Xa,\,(s) e T,S,

for any s € S. Consequently, {X,i(s),..., X (s), Xi(s),..., X x(s)} spans T,L,
with

(X1 (5), -, Xpe(s)} C TSN TLLy



SYMMETRY REDUCTION IN GEOMETRY 57

and

X (5)- o, Xys (9} € B)(TS)).
By Proposition 9.1(i),

span{X,i(s),..., Xy (s)} = TSN T L

and

pan{Xys(s), ... Xyra(5)} = BS)(T,S)°).
Since d1m(Bj( )((TyS)°)) =n—k by Proposition (9.1)(iii), it follows that
{Xyi1(5), .., Xyt (s)} is a basis of B(s)((T,S)°).

By Theorem (9.2)(vi), B*(s)((T,S)°) is a symplectic subspace of TLy, so there
exists some r € N such that n — k = 2r and, additionally, the matrix C(s) with
entries

Cl(s) =W ¥}s),  ije{l,...,n—k}
is invertible. Therefore, in the coordinates (qol,...,(pk,lpl,...,lp”*k) the matrix
associated to the Poisson tensor B(s) is

Bs 0
0 C)°
Let C;(s) be the entries of the matrix C~!(s).

PROPOSITION 9.4 (Dirac formulas). In the coordinate neighborhood (o', ..., ¢*,
A lﬁ’”‘) constructed above and for s € S we have, for any f,g € C(V):

Xy(s Z{F W (s)Ci() X,y (5) (9.8)

and ok
{f,8}°(s) = {F,G}(s) = > _{F. Y} s)Cy(s){W/, G}(s), (9.9)

ij=1

where F, G € C35(U) are arbitrary local extensions of fand g, respectively, around s € S .

The proof proceeds along the same lines as in the symplectic case (see, for example,
[29]). Here is a sketch. By Theorem 9.2(iv), we have X(s) = ns(Xr(s)). Therefore,
the equality (9.8) is equivalent to

n—k

(Id — 75) Xp(s) Z{F YH(s)Cii(8) Xy (s). (9.10)

By Proposition 9.1(ii) this amounts to showing that the right-hand side of (9.10) is
the projection of Xr(s) onto B*(s)((T5S)°). This is achieved by proving that this term

(i) is an element of B*(s)((T,S)°);

(ii) equals Xg(s) if Xr(s) € Bj(s)((’TSS)O);
(i) equals 0 if Xg(s) € TsS.
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Part (i) follows from (9.7). To prove (ii) assume that Xz(s) € B*(s)((7,S)°). Since the
set {X1(s),..., Xx(s)} is a basis of B*(s)((T,S)"), there exist constants {ay, ..., a}
such that

n—k
Xr(s) = arX,(s).
=1
A direct verification shows that
n—k
> {F Y (5)Cii(5) X,y (5) = X(s).
ij=1

Finally, to show (iii) let X#(s) € T.S. Since, by construction, dy/'(s) € (T,S)°, for any
ie{l,...,n—k}, we get {F,y/'}(s) = —dy/'(s) - X#(s) = 0. This proves (9.10) and
hence the proposition.

Dirac’s formula (9.9) provides an explicit local expression for the transverse
Poisson structure of a Poisson manifold (M, {-,-}) at any of its points since the local
transverse slice given by the points of the form (0,0,z) is a local cosymplectic sub-
manifold of M. In particular, applying this formula to the Lie—Poisson structure on
g" at a point p satisfying the condition g = g, @ f, with  a linear subspace such that
g, T] C I, it follows that the transverse Poisson structure is the Lie-Poisson structure
of g, a result due to Weinstein [51], Molino [35], and Givental. If g, has a com-
plement that is a Lie subalgebra, then the transverse structure as expressed by the
Dirac formula, is at most quadratic, a result due to Oh [36].
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