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Physical modelling and
Port-Hamiltonian systems
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Hamiltonian dynamics vs network modelling

e Hamiltonian mechanics: origins in analytical mechanics: prin-
ciple of least action — Euler-Lagrange equations — Legendre
transform — Hamiltonian equations of motion

analysis of physical systems

e Network modelling: origins in electrical engineering, describes
complex networks as interconnection of basic elements, corner-
stone of systems theory

modelling and simulation of physical systems
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Port-Hamiltonian systems try to combine both points of view:

e total energy of basic elements < Hamiltonian

e interconnection structure < geometric structure, i.e. symplec-
tic, Poisson, or Dirac structure
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Modelling

Basic principles of macroscopic physics:

e energy conservation

e posSitive entropy production

e power continuity
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The concept of a power port
Port: Point of interaction of a physical system with its environment

Power port: Port of physical interaction that involves exchange of
energy (power)

Mathematically, a power port consists of

a vector space V and its dual V*, and
two variables f € V and e € V* such that

the dual product (e, f) denotes power.

f is called flow, and e is called effort
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Examples of physical power ports are

e Mmechanical: velocities and forces

e electrical: currents and voltages

e thermal: entropy flow and temperature

e hydraulic: volume flow and pressure

e chemical: molar flow and chemical potential
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Five types of physical behaviour

e storage (energy conservation)

e supply and demand (boundary conditions)

e irreversible transformations (positive entropy production)

e reversible transformations (power continuity)

e distribution, topology (power continuity)
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Elementary energy storing elements

are defined by a power port and an energy function H of the energy
variable x:

T =u
dH
Yy — %(ZU)
power port: (u,y) = (f,e) (C-type) or (e, f) (I-type)

u rate of change of energy variable z

y differential of energy function, co-energy variable
o7 — dH N -
Note: H = (7, z) = (u,y), i.e.

t
H(()) — H(@(0)) = [ (u,y)dr



Examples (mechanical)

e Spring: potential energy H(z) = % elongation z

218 &

T
’y pr—
flow f = u is velocity, effort e = y is force

2
e Mass: kinetic energy H(p) = 54—, momentum p

p=u
__ b
y__

m

flow f =y is velocity, effort e = u is force
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Examples (electrical)

2
e Capacitor: electrical energy H(q) = g—c, charge ¢

q'z
y =

Ql= &

flow f = u is current, effort e = y is voltage

2
e Inductor: magnetic energy H(¢) %J magnetic flux ¢

¢=u
_9
YT

flow f =y is current, effort e = u is voltage
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Examples (thermal)

e Heat capacitor: internal energy H(S) (e.g. of gas), entropy S
S=u
dH
= —(S
Y dS( )

flow f = u is entropy flow, effort e = y is temperature

Note: There is only one type of storage element.
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Supply and demand: boundaries

A set of power ports

(fb7 Gb)

through which the system can interact with its environment.

By definition, power towards the system, i.e. into the system’s
boundaries, is counted positive.
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These could be

e flow sources, providing a (fixed) flow, e.g. current source, fluid-
flow source

e cffort sources, providing a (fixed) effort, e.g. voltage source,
pressure source

i.e. fixed " boundary conditions”, or

e any open set of ports, connectable to the environment (possibly
other (yet) unmodelled systems, e.g. control systems!)

I.e. open boundaries
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Irreversible transformations (positive entropy production)

Irreversible transducer:

power-continuous two-port which (irreversibly) transforms en-
ergy from one domain (e.g. electrical, mechanical) into the thermal
domain

Assume difference in time scales, i.e. temperature is considered
constant

e energy — free energy

e power continuous two-port transducer — power discontinuous
one-port (" dissipator”)
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The (non-termal) power port of the one port dissipator is denoted
by (fr,er).

By definition, power towards the non-thermal port (i.e. "outside”
of the system) is counted positive.

Linear dissipators: e, = Rfr, R > 0 such that

/Ot<er, frydr = /Ot<Rfr, frydr >0

i.e. (free) energy is "dissipated” or lost.

E.g. resistor, damper
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Reversible transformations (power continuity)

Reversible transducer: power-continuous two-port which (reversibly)
transforms energy from one domain into another domain

e Non-mixing, transformer:

() =5 1) (2)

e.g. electric transformer, lever, gear box

()= (0 o) (2)

Power continuity: (e, f1) = {e2, f2)

e Mixing, gyrator:

e.g. electric gyrator
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Distribution, topology (power continuity)

describes how the power ports of all the elements (i.e. storage,
boundaries, (ir)reversible transformations) are interconnected

Two types of " junctions”

e Generalized Kirchhoff Current Law & effort identity

n
Z:I:fz-zo, e1=---=¢ep
)

e Generalized Kirchhoff VVoltage Law & flow identity

n
Z:I:eizo, f1==fn
)

Power continuity: Y% £(e;, f;) = O
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T he model

The model now consists of the following power ports and their
interconnections

e ng storage elements: (fs,es) (oriented towards the storage el-
ements)

e ny sources: (fp,ep) (oriented outwards of the sources, i.e. to-
wards the system)

e n, dissipators: (fr,er) with e, = Rf, (oriented towards the dis-
sipators)

e power continuous interconnection: transformers, gyrators

e power continuous interconnection: junctions
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Power balance

The power ports satisfy

<€83f8> - <eb7fb> + <e7“7f7“> =0

That is, for a dissipative structure

<€87f8> + <_eb7fb> — _<Rf7“7f7“> <0

Or, for a lossless structure (no dissipation)

(€s, fs) + (—€p, fo) =0
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The interconnection structure

Eliminating the dissipative ports, the power continuous intercon-
nections define a relation between the storage and source ports of
the form:

fs €s | _
P r() =

F FE € R(ns+np)x(ns+np) and  rank [ E] = ns+ ng.
This is called the interconnection structure.

Lossless: FEL + EFT =0
Dissipative: FE! + EFT <0
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Dirac structure

A constant Dirac structure on an m-dimensional linear space W is
an m-dimensional linear subspace D C W x W* such that

(w*,w)y =0, V(w,w") € D.

Proposition The interconnection structure

L={(f87fb7687_€b)E%X%X‘/js*x‘/b*|F<§Z>+E<68)ZO}

with rank [ E] = ns+ ng, is a Dirac structure if and only if the
interconnection structure is lossless (that is FET + EFT = 0).
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Port-Hamiltonian systems (with dissipation)

subdividing the storage ports into (uc,yc) (C-type) and (uy,yr)
(I-type) yields the interconnection structure

uc yc
Alur|+B| yr | =0
fo —ey

A, B € R(nstmp)x(nstm) and rank [A  B] = ns + n,.

Again ABT 4+ BAT = 0 (lossless), or ABL 4+ BAT < 0 (dissipative).
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The constitutive relations of the storage elements then yield

i (4H2 (26))
Alz; |+ B %(xl) =0
Tt \ e

— a set of ordinary differential equations, or
— a set of differential and algebraic equations (in case of dependent
states)

This is called a port-Hamiltonian system
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Dissipative Port-Hamiltonian system

In case the interconnection structure is dissipative, ABT 4+ BAT < 0:

dH . dH :
~C(we) i) + (o (e ir) + (~ep fy) <O
o drg

<

which yields the energy inequality

Ho () + Hy(@() ~ Ho(2(0)) — Hy(@(0)) < [ ey, fi)dr

This is called a Port-Hamiltonian system with dissipation.
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Lossless Port-Hamiltonian system

In case the interconnection structure is lossless, ABT + BAT = 0O:

d d
O we), ko) + {5 @), ) + (e fi) = O
o 7

<

which yields the energy balance

He () + Hy@(9) ~ Ho(2(0)) — Hy@(0)) = [ {ey, fy)dr

This is called a lossless Port-Hamiltonian system.
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Theorem A lossless Port-Hamiltonian system is defined by a total
energy function H(x) and a Dirac structure D (i.e. the lossless
interconnection structure)

(dz, fb,cfi—lj(x), —eb) €D

Conservative systems. If there are no sources, then

(d;,‘fl—f(x)) €D

and the system is conservative:

H = <C;—IZ(:1:),:1:> =0
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Examples of Dirac structures
and Port-Hamiltonian systems
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Mass-spring-damper-force system

Junction: fo = fr = fr = fi (velocity identity),
ec +er+ e —e, =0 (force balance)

Interconnection structure: (recall (ug,yc) = (fo,ec) and (ur,yr) =

(er, f1))

1 0 0)\ (uc 0 -1 0\ [yo
01 0 ||wu|+]|1 a 1|y |=0
10 1)\ f 0 0 0/ \—¢

Dynamics:

(5)=1(50)-(6 3

(5/m) (5 e
h= 1) ()
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Total energy

H(z,p) = 2+

and energy balance

H=—-d (%)2 + (e, fo) < {ep; fo)
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An LC circuit of order 3

Interconnection structure:

L 1 . C L 2 1C O 1 -1 O Vo
v1|] _|-1 0 O -1 11

wl|l |1 0 0 ol i

V T ’ib 0 1 0 0 —Vp

The circuit is lossless (no resistors), hence the interconnection
structure is a Dirac structure.
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Dynamics:

q O 1 -1 q/C 0

Pp1|=|-10 O ||P1/Li|+|1]w

¢2 1 0 0/ \¢2/L> 0
iy, = ¢1/L1 (= i1)

Note: (0,1,0)L ¢ ImJ, no interaction potential function

If vp = 0 then

e T he dynamics is defined w.r.t. a Poisson structure

e rankJ] = 2, i.e. ¢1 + ¢ is a conserved quantity (inductor loop!)
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Total energy

2
H(q7¢17¢2)——+ ¢ +2€;22

and energy balance

H = <vb7 ib>
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A study of general LC circuits
Note: no resistors, no sources

Consider a simply connected network N and write N =T U X
e [ : maximal tree
e > : set of links, co-tree

Standard network analysis yields:

’I:r — P’iz, Uy — —PTUr

The interconnection structure is lossless (Dirac structure):

(vr,ir) + (vs,ix) = (vr, Pix) + (—PTor,ix) = 0

This is Tellegen’'s theorem
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Divide into capacitor and inductor branches:

. C L~ - C . 1’ . I
i = (7’?7’”_)7 1y — (Zg722)7 ur — (’Ugafvl_)7 Uy — (Ug7UZ)

Then
ir = (¢r,0H/0¢r), ix = (¢x,0H/0¢y),
vr = (0H/dqr,¢r), vy = (0H/dqs, dy),

where total energy function (Hamiltonian)

2 2 2 2
_ . 4r 4 d5 4+ PF 4+ P35
2Cr 2Cy 2Lr 2Ly
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The interconnection structure becomes
ar _ (P11 P12 qx
OH /0o P>1 Py ) \OH/0¢5x |’

<3H_/3qz> _ (—PlTl —P%i) <8H_/aqr>

o5 —P{, —Pi, Pr

which can be rewritten as

OH/9qs (o -pPh -Pf; 0) I
P>

OH/0¢r | _ 1 O 0 Py or
ar P;; O O Pip| | O0H/Ogr
D \ 0 —Pj, —P{, 0 ) \0H/0¢5
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Define x1 = (g, ¢r) and zo = (qr, ¢ ) the system becomes
OH/0x1 _ J11 J1o 1
T Jo1 Jop ) \OH/Ox>
e Assume x1 void, i.e. maximal capacitor tree, inductor co-tree:

xp = JopO0H/0x>

IS a Poisson dynamical system. Capacitor cutsets or inductor
loops correspond to conserved quantities.

e Assume x» Vvoid, i.e. maximal inductor tree, capacitor co-tree:
OH/0x1 = J1111

If Jq1 singular, this is a pre-symplectic dynamical system.
Capacitor loops or inductor cutsets correspond to algebraic con-
straints.
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Define y = x> — Jo1z1 and z =z and H(y,z) = H(x1,x5):

y = Jo00H /8y, J112=0H/0z

Choose coordinates v = (y11,y12,v2) and z = (z11,212,22) such
that

O I, O O —-I; O
Joo=|—-1I», 0 0|, Jy1=\|1I7; O O],
O 0 O O O O

Then, with a = (y11,211) and 8 = (y12, z12) and H(y,z) = H(«, 3,y2,22)
the dynamical equations become

. OH .
x = —, Y2 — 0,
op
. H H
,_ om  _om
oo 0z>
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Theorem A lossless Port-Hamiltonian system defined by a total
energy function H and a constant Dirac structure D can, after a
change of coordinates, always be written as

. OH . .
a=—, = 0,
EE Y2
. OH OH
B = ——, O = —

oo 0z>

These are called canonical coordinates.
This is a set of differential and algebraic equations.

Note (1): Port-Hamiltonian systems encompass symplectic, pre-
symplectic and Poisson dynamical systems.

Note (2): If D is not constant, integrability conditions are necessary.
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Two gases in thermal interaction

through a heat conducting wall, and in thermal interaction with two
heat sources.

Total internal energy H1(S1)+H>(S3), with S; entropy and dH;/dS; =
T; temperature. u; is entropy flow delivered by the heat sources.

Heat flow balances:

T1581 = o(T1 — T) + Tyuq,
1585 = o(Th — T1) + Thouy

Port-Hamiltonian system

(g;) =o(1/1T> - 1/Ty) (_01 é) (%) + (é) u1 + <(1)> u2,

y1 =11, yr=71>
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Port-Hamiltonian systems as basic building blocks

Example: modelling multibody systems

The rigid body element:

d [(Q) _ 0 Q dv(Q) 0
() = (or 20) (5% )+(7)w

dH(Q,P)
_ dV(Q)
- o n(%Q)
Q € SE(3): spatial displacement of body
P € se*(3) : momentum in body frame
W € se*(3) : external wrench (force) in body frame
T € se(3) : external twist (velocity) in body frame
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The total energy of the rigid body element is

1 _

H(Q,P)=(P,M'P)+  V(Q)
S— o potential energy
kinetic energy

Energy balance:

H(Q,P) = (W,T)

HQW, P(W) ~ HQO), PO) = [ (W(s),T())ds

increase in total ene‘rrgy of the rigid body ~ : ~~ -
energy supplied trough the port (W, T)
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The rigid body element can be written as the Port-Hamiltonian
system

Q 0 Q@ 0\ [dV(Q)
Pl=|-QF —-Px —-I1||M-1P
T 0 I 0 —W

The skew-symmetric matrix defines a Dirac structure, depending
on the state @, P of the system (i.e. non-constant).
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Links — Spring

The spring element:

|
Q
|

QT
w = Qldv(Q)

Q € SE(3): spatial displacement of the spring

T € se(3) : twist in body frame
W € se*(3) : wrench in body frame

Total energy = potential energy of the spring: H(Q) = V(Q)

Energy balance:

HQW) ~HEQO) = [ (W(),T()ds

A\ >4

increase in potentialvenergy of the spring : ~~
energy supplied trough the port (W, T)
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The spring can be written as the Port-Hamiltonian system

(o ) (7)=[er ) (52)

>4

A B

The matrices A and B define a Dirac structure, i.e. ABT'+BAT = 0,
depending on the state Q.
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Joints — kinematic pairs

A kinematic pair is an energy conserving interconnection between:

— two links (e.g. a revolute joint), or
— a link and the environment (e.g. a (non-)holonomic constraint)

(Unactuated) kinematic pairs are described by a multi-port Dg p:

Dxp={(T,W)|T € FT,W € CW = FT+}

FT . space of freedom twists (twists allowed by joint)
CWV : space of constraint wrenches (constraint forces)

A kinematic pair produces no work: (W, T) =0

i.e. energy balance:  [§(W(s),T(s))ds =0
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. _ t ol — t Wil
Examples: Tiink = (Tiipp Tiink " )s Wiink = Wiing Wiing®)

e revolute joint: T = (Tlinkl ) W = ( Wiink1 )

Tiink2 Wiink2
w 0 0 &1 & 0 0 O
B 0 0 I3 B 0 0 0 0 I3
FT =1Im 0w 0 | CW =1Im 0 0 ¢1 ¢ O
0 0 I3 0 0 0 0 —I3

where w is the axis of rotation allowed by the joint, and w,(1,{(>
form an orthonormal basis of R3.

e sliding surface (holonomic constraint): T = T}, W = Wik

_(n O O [ a1 ax O
fT_(O a1 a2>’cw_<0 0 n)

where a1,ap are the tangents of the surface and n the normal.
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The interconnected system

The multibody system is defined by:

(Qr|g|d7 r|g|d7 dHFIgId7 r|g|d7 |g|d) S Dr|g|d7 1= 17 tt ]jrigid bodies
(Qsprmgv ngpr|ng7 Ts]prmg7 _ngrmg) S Dspr|n97 ] — 17 Tt ]jsprings
(Tkp,Wkp) € DKP, ¢=1,..., tkinematic pairs

(Trigids Tsprings Thps Ty, —Wrigids —Wspring, Wiy, =Wp) € Dropology, (inCl. sources)

The first two equations are dynamic equations. The third is a set
of algebraic equations. The last equation defines the topology of
the network.
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The multibody system is a Port-Hamiltonian system
(@ P, Ty, dH, W) € D(Q, P)
with @ = (QYgiq» Qlpring) @and P = (P,4) and total energy

. . . / /
H(Q,P) = Z Hrzigid(quigida Przigid) + Hspring(Qspring)
1,0

and non-constant Dirac structure D defined by the Dirac structures

i J 4
rigids Dspringa DKPa Dtopology
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Interconnected Port-Hamiltonian systems

Theorem The power continuous interconnection of two (or n)
Port-Hamiltonian systems is again a Port-Hamiltonian system.

The Hamiltonian is the total energy Hqi + Ho.

In case both Port-Hamiltonian systems are lossless, the intercon-
nected system is lossless too, and the Dirac structure is defined
only by the two Dirac structures Dy and D-.
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Interdomain Port-Hamiltonian systems
Example: a magnetically levitated ball

Energy variables: z = (¢, z,p) € R3, i.e. magnetic flux, altitude ball,
momentum ball

Total magnetic plus mechanical energy

1

H(¢,z,p) = 2L(2)

1
¢2 + %PQ + mgz

with L(z) = ZOLEZ for z < 2.
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Co-energy variable dH/dx = (i, F,v), where

e i = ¢/L(z) current through the inductor

e gravity force minus magnetic force

e v = p/m velocity ball

This yields the Port-Hamiltonian system

0 —R 0O O\ [0H/0¢ 1
5l=]10 0 1||o0H/oz|+|0|V
P 0 —1 0/ \OH/dp 0

i = 0H/0¢ = ¢/L(2)

with voltage source V and resistor R
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