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CHAPTER 1

Generalities on Poisson structures

1.1. Poisson brackets

Definition 1.1.1. A C∞-smooth Poisson structure on a C∞-smooth finite-
dimensional manifold M is an R-bilinear antisymmetric operation

(1.1) C∞(M)× C∞(M) → C∞(M), (f, g) 7−→ {f, g}
on the space C∞(M) of real-valued C∞-smooth functions on M , which verifies the
Jacobi identity

(1.2) {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

and the Leibniz identity

(1.3) {f, gh} = {f, g}h + g{f, h}, ∀f, g, h ∈ C∞(M).

In other words, C∞(M), equipped with {, }, is a Lie algebra whose Lie bracket
satisfies the Leibniz identity. This bracket {, } is called a Poisson bracket . A
manifold equipped with such a bracket is called a Poisson manifold .

Similarly, one can define real analytic, holomorphic, and formal Poisson man-
ifolds, if one replaces C∞(M) by the corresponding sheaf of local analytic (re-
spectively, holomorphic, formal) functions. In order to define Ck-smooth Poisson
structures (k ∈ N), we will have to express them in terms of 2-vector fields. This
will be done in the next section.

Remark 1.1.2. In this book, when we say that something is smooth without
making precise its smoothness class, we usually mean that it is C∞-smooth. How-
ever, most of the time, being C1-smooth or C2-smooth will also be good enough,
though we don’t want to go into these details. Analytic means either real analytic
or holomorphic. Though we will consider only finite-dimensional Poisson structures
in this book, let us mention that infinite-dimensional Poisson structures also appear
naturally (especially in problems of mathematical physics), see, e.g., [163, 164] and
references therein.

Example 1.1.3. One can define a trivial Poisson structure on any manifold by
putting {f, g} = 0 for all functions f and g.

Example 1.1.4. Take M = R2 with coordinates (x, y) and let p : R2 −→ R be
an arbitrary smooth function. One can define a smooth Poisson structure on R2

by putting

(1.4) {f, g} = (
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
)p .

1



2 1. GENERALITIES ON POISSON STRUCTURES

Exercise 1.1.5. Verify the Jacobi identity and the Leibniz identity for the
above bracket. Show that any smooth Poisson structure of R2 has the above form.

Definition 1.1.6. A symplectic manifold (M, ω) is a manifold M equipped
with a nondegenerate closed differential 2-form ω, called the symplectic form .

The nondegeneracy of a differential 2-form ω means that the corresponding
homomorphism ω[ : TM → T ∗M from the tangent space of M to its cotangent
space, which associates to each vector X the covector iXω, is an isomorphism. Here
iXω = Xyω is the contraction of ω by X and is defined by iXω(Y ) = ω(X,Y ).

If f : M → R is a function on a symplectic manifold (M,ω), then we can define
its Hamiltonian vector field , denoted by Xf , as follows:

(1.5) iXf
ω = −df .

We can also define on (M, ω) a natural bracket, called the Poisson bracket of ω, as
follows:

(1.6) {f, g} = ω(Xf , Xg) = −〈df,Xg〉 = −Xg(f) = Xf (g).

Proposition 1.1.7. If (M,ω) is a smooth symplectic manifold then the bracket
{f, g} = ω(Xf , Xg) is a smooth Poisson structure on M .

Proof. The Leibniz identity is obvious. Let us show the Jacobi identity. Recall
the following Cartan’s formula for the differential of a k-form η (see, e.g., [27]):

(1.7) dη(X1, . . . , Xk+1) =
k+1∑

i=1

(−1)i−1Xi

(
η(X1, . . . X̂i . . . , Xk+1)

)

+
∑

1≤i<j≤k+1

(−1)i+jη
(
[Xi, Xj ], X1, . . . X̂i . . . X̂j . . . , Xk+1

)
,

where X1, . . . , Xk+1 are vector fields, and the hat means that the corresponding
entry is omitted. Applying Cartan’s formula to ω and Xf , Xg, Xh, we get:

0 = dω(Xf , Xg, Xh)
= Xf (ω(Xg, Xh)) + Xg(ω(Xh, Xf )) + Xh(ω(Xf , Xg))

−ω([Xf , Xg], Xh)− ω([Xg, Xh], Xf )− ω([Xh, Xf ], Xg)
= Xf{g, h}+ Xg{h, f}+ Xh{f, g}

+[Xf , Xg](h) + [Xg, Xh](f) + [Xh, Xf ](g)
= {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}+ Xf (Xg(h))−Xg(Xf (h))

+Xg(Xh(f))−Xh(Xg(f)) + Xh(Xf (g))−Xf (Xh(g))
= 3({f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}).

¤

Thus, any symplectic manifold is also a Poisson manifold, though the inverse
is not true.

The classical Darboux theorem says that in the neighborhood of every point
of (M,ω) there is a local system of coordinates (p1, q1, . . . , pn, qn), where 2n =
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dim M , called Darboux coordinates or canonical coordinates, such that

(1.8) ω =
n∑

i=1

dpi ∧ dqi .

A proof of Darboux theorem will be given in Section 1.4. In such a Darboux
coordinate system one has the following expressions for the Poisson bracket and
the Hamiltonian vector fields:

{f, g} =
n∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
),(1.9)

Xh =
n∑

i=1

∂h

∂pi

∂

∂qi
−

n∑

i=1

∂h

∂qi

∂

∂pi
.(1.10)

The Hamiltonian equation of h (also called the Hamiltonian system of h), i.e.
the ordinary differential equation for the integral curves of Xh, has the following
form, which can be found in most textbooks on analytical mechanics:

(1.11) q̇i =
∂h

∂pi
, ṗi = − ∂h

∂qi
.

In fact, to define the Hamiltonian vector field of a function, what one really
needs is not a symplectic structure, but a Poisson structure: The Leibniz identity
means that, for a given function f on a Poisson manifold M , the map g 7−→
{f, g} is a derivation . Thus, there is a unique vector field Xf on M , called the
Hamiltonian vector field of f , such that for any g ∈ C∞(M) we have

(1.12) Xf (g) = {f, g} .

Exercise 1.1.8. Show that, in the case of a symplectic manifold, Equation
(1.5) and Equation (1.12) give the same vector field.

Example 1.1.9. If N is a manifold, then its cotangent bundle T ∗N has a
unique natural symplectic structure, hence T ∗N is a Poisson manifold with a nat-
ural Poisson bracket. The symplectic form on T ∗N can be constructed as follows.
Denote by π : T ∗N → N the projection which assigns to each covector p ∈ T ∗q N
its base point q. Define the so-called Liouville 1-form θ on T ∗N by

〈θ, X〉 = 〈p, π∗X〉 ∀ X ∈ Tp(T ∗N).

In other words, θ(p) = π∗(p), where on the left hand side p is considered as a
point of T ∗N and on the right hand side it is considered as a cotangent vector
to N . Then ω = dθ is a symplectic form on N : ω is obviously closed; to see
that it is nondegenerate take a local coordinate system (p1, . . . , pn, q1, . . . , qn) on
T ∗N , where (q1, . . . , qn) is a local coordinate system on N and (p1, . . . , pn) are the
coefficients of covectors

∑
pidqi(q) in this coordinate system. Then θ =

∑
pidqi

and ω = dθ =
∑

dpi ∧ dqi, i.e. (p1, . . . , pn, q1, . . . , qn) is a Darboux coordinate
system for ω. In classical mechanics, one often deals with Hamiltonian equations
on a cotangent bundle T ∗N equipped with the natural symplectic structure, where
N is the configuration space , i.e. the space of all possible configurations or
positions; T ∗N is called the phase space .

A function g is called a first integral of a vector field X if g is constant with
respect to X: X(g) = 0. Finding first integrals is an important step in the study of
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dynamical systems. Equation (1.12) means that a function g is a first integral of a
Hamiltonian vector field Xf if and only if {f, g} = 0. In particular, every function
h is a first integral of its own Hamiltonian vector field: Xh(h) = {h, h} = 0 due to
the anti-symmetricity of the Poisson bracket. This fact is known in physics as the
principle of conservation of energy (here h is the energy function).

The following classical theorem of Poisson [171] allows one sometimes to find
new first integrals from old ones:

Theorem 1.1.10 (Poisson). If g and h are first integrals of a Hamiltonian
vector field Xf on a Poisson manifold M then {g, h} also is.

Proof. Another way to formulate this theorem is

(1.13)
{g, f} = 0
{h, f} = 0

}
⇒ {{g, h}, f} = 0

But this is a corollary of the Jacobi identity. ¤

Another immediate consequence of the definition of Poisson brackets is the
following lemma:

Lemma 1.1.11. Given a smooth Poisson manifold (M, {, }), the map f 7→ Xf is
a homomorphism from the Lie algebra C∞(M) of smooth functions under the Pois-
son bracket to the Lie algebra of smooth vector fields under the usual Lie bracket.
In other words, we have the following formula:

(1.14) [Xf , Xg] = X{f,g}

Proof. For any f, g, h ∈ C∞(M) we have [Xf , Xg] h = Xf (Xgh)−Xg (Xfh) =
{f, {g, h}}−{g, {f, h}} = {{f, g}, h} = X{f,g}h. Since h is arbitrary, it means that
[Xf , Xg] = X{f,g}. ¤

1.2. Poisson tensors

In this section, we will express Poisson structures in terms of 2-vector fields
which satisfy some special conditions.

Let M be a smooth manifold and q a positive integer. We denote by ΛqTM the
space of tangent q-vectors of M : it is a vector bundle over M , whose fiber over each
point x ∈ M is the space ΛqTxM = Λq(TxM), which is the exterior (antisymmetric)
product of q copies of the tangent space TxM . In particular, Λ1TM = TM . If
(x1, . . . , xn) is a local system of coordinates at x, then ΛqTxM admits a linear basis

consisting of the elements
∂

∂xi1

∧ · · · ∧ ∂

∂xiq

(x) with i1 < i2 < · · · < iq. A smooth

q-vector field Π on M is, by definition, a smooth section of ΛqTV , i.e. a map Π
from V to ΛqTM , which associates to each point x of M a q-vector Π(x) ∈ ΛqTxM ,
in a smooth way. In local coordinates, Π will have a local expression

(1.15) Π(x) =
∑

i1<···<iq

Πi1...iq

∂

∂xi1

∧ · · · ∧ ∂

∂xiq

=
1
q!

∑

i1...iq

Πi1...iq

∂

∂xi1

∧ · · · ∧ ∂

∂xiq

,

where the components Πi1...iq , called the coefficients of Π, are smooth functions.
The coefficients Πi1...iq are antisymmetric with respect to the indices, i.e. if we
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permute two indices then the coefficient is multiplied by −1. For example, Πi1i2... =
−Πi2i1.... If Πi1...iq

are Ck-smooth, then we say that Π is Ck-smooth, and so on.

Smooth q-vector fields are dual objects to differential q-forms in a natural way.
If Π is a q-vector field and α is a differential q-form, which in some local system
of coordinates are written as Π(x) =

∑
i1<···<iq

Πi1...iq

∂
∂xi1

∧ · · · ∧ ∂
∂xiq

and α =∑
i1<···<iq

ai1...iq
dxi1 ∧· · ·∧dxiq

, then their pairing 〈α, Π〉 is a function defined by

(1.16) 〈α, Π〉 =
∑

i1<···<iq

Πi1...iq
ai1...iq

.

Exercise 1.2.1. Show that the above definition of 〈α, Π〉 does not depend on
the choice of local coordinates.

In particular, smooth q-vector fields on a smooth manifold M can be considered
as C∞(M)-linear operators from the space of smooth differential q-forms on M to
C∞(M), and vice versa.

A Ck-smooth q-vector field Π will define an R-multilinear skewsymmetric map
from C∞(M)× · · · × C∞(M) (q times) to C∞(M) by the following formula:

(1.17) Π(f1, . . . , fq) := 〈Π, df1 ∧ · · · ∧ dfq〉 .

Conversely, we have:

Lemma 1.2.2. A R-multilinear map Π : C∞(M)×· · ·×C∞(M) → Ck(M) arises
from a Ck-smooth q-vector field by Formula (1.17) if and only if Π is skewsymmetric
and satisfies the Leibniz rule (or condition):

(1.18) Π(fg, f2, . . . , fq) = fΠ(g, f2, . . . , fq) + gΠ(f, f2, . . . , fq).

A map Π which satisfies the above conditions is called a multi-derivation ,
and the above lemma says that multi-derivations can be identified with multi-vector
fields.

Proof (sketch). The “only if” part is straightforward. For the “if” part, we
have to check that the value of Π(f1, . . . , fq) at a point x depends only on the
value of df1, . . . , dfq at x. Equivalently, we have to check that if df1(x) = 0 then
Π(f1, . . . , fq)(x) = 0. If df1(x) = 0 then we can write f1 = c +

∑
i xigi where

c is a constant and xi and gi are smooth functions which vanish at x. Accord-
ing to the Leibniz rule we have Π(1 × 1, f2, . . . , fq) = 1 × Π(1, f2, . . . , fq) + 1 ×
Π(1, f2, . . . , fq) = 2Π(1, f2, . . . , fq), hence Π(1, f2, . . . , fq) = 0. Now according to
the linearity and the Leibniz rule we have Π(f1, . . . , fq)(x) = cΠ(1, f2, . . . , fq)(x)+∑

xi(x)Π(gi, f2, . . . , fq)(x) +
∑

gi(x)Π(xi, f2, . . . , fq)(x) = 0. ¤

In particular, if Π is a Poisson structure, then it is skewsymmetric and satisfies
the Leibniz condition, hence it arises from a 2-vector field, which we will also denote
by Π:

(1.19) {f, g} = Π(f, g) = 〈Π,df ∧ dg〉 .

A 2-vector field Π, such that the bracket {f, g} := 〈Π, df ∧ dg〉 is a Poisson
bracket (i.e. satisfies the Jacobi identity {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0
for any smooth functions f, g, h), is called a Poisson tensor , or also a Poisson
structure . The corresponding Poisson bracket is often denoted by {, }Π. If the
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Poisson tensor Π is a Ck-smooth 2-vector field, then we say that we have a Ck-
smooth Poisson structure, and so on.

In a local system of coordinates (x1, . . . , xn) we have

(1.20) Π =
∑

i<j

Πij
∂

∂xi
∧ ∂

∂xj
=

1
2

∑

i,j

Πij
∂

∂xi
∧ ∂

∂xj
,

where Πij = 〈Π,dxi ∧ dxj〉 = {xi, xj}, and

(1.21) {f, g} = 〈
∑

i<j

{xi, xj} ∂

∂xi
∧ ∂

∂xj
,
∑

i,j

∂f

∂xi

∂g

∂xj
dxi ∧ dxj〉 =

∑

i,j

Πij
∂f

∂xi

∂g

∂xj
.

Example 1.2.3. The Poisson tensor corresponding to the standard symplectic
structure ω =

∑n
j=1 dxj ∧ dyj on R2n is

∑n
j=1

∂
∂xj

∧ ∂
∂yj

.

Notation 1.2.4. : In this book, if functions f1, . . . , fp depend on variables
x1, . . . , xp, and maybe other variables, then we will denote by

(1.22)
∂(f1, . . . , fp)
∂(x1, . . . , xp)

:= det
(

∂fi

∂xj

)p

i,j=1

the Jacobian determinant of (f1, . . . , fp) with respect to (x1, . . . , xp). For ex-
ample,

(1.23)
∂(f, g)

∂(xi, xj)
:=

∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi
.

With the above notation, we have the following local expression for Poisson
brackets:

(1.24) {f, g} =
∑

i,j

{xi, xj} ∂f

∂xi

∂g

∂xj
=

∑

i<j

{xi, xj} ∂(f, g)
∂(xi, xj)

.

Due to the Jacobi condition, not every 2-vector field will be a Poisson tensor.

Exercise 1.2.5. Show that the 2-vector field ∂
∂x ∧ ( ∂

∂y + x ∂
∂z ) in R3 is not a

Poisson tensor.

Exercise 1.2.6. Show that if X1, . . . , Xm are pairwise commuting vector fields
and aij are constants then

∑
ij aijXi ∧Xj is a Poisson tensor.

To study the Jacobi identity, we will use the following lemma:

Lemma 1.2.7. For any C1-smooth 2-vector field Π, one can associate to it a
3-vector field Λ defined by

(1.25) Λ(f, g, h) = {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}
where {k, l} denotes 〈Π, dk ∧ dl〉 (i.e. the bracket of Π).

Proof. It is clear that the right-hand side of Formula (1.25) is R-multilinear
and antisymmetric. To show that it corresponds to a 3-vector field, one has to
verify that it satisfies the Leibniz rule with respect to f , i.e.

{{f1f2, g}, h}+ {{g, h}, f1f2}+ {{h, f1f2}, g} =

= f1({{f2, g}, h}+ {{g, h}, f2}+ {{h, f2}, g})+
+ f2({{f1, g}, h}+ {{g, h}, f1}+ {{h, f1}, g}).
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This is a simple direct verification, based on the Leibniz rule {ab, c} = a{b, c} +
b{a, c} for the bracket of the 2-vector field Π. It will be left to the reader as an
exercise. ¤

Direct calculations in local coordinates show that

(1.26) Λ(f, g, h) =
∑

ijk

( ∮

ijk

∑
s

∂Πij

∂xs
Πsk

) ∂f

∂xi

∂g

∂xj

∂h

∂xk
,

where
∮

ijk
aijk means the cyclic sum aijk + ajki + akij . In other words,

(1.27) Λ =
∑

i<j<k

(∮

ijk

∑
s

∂Πij

∂xs
Πsk

) ∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xk
.

Clearly, the Jacobi identity for Π is equivalent to the condition that Λ = 0.
Thus we have:

Proposition 1.2.8. A 2-vector field Π =
∑

i<j Πij
∂

∂xi
∧ ∂

∂xj
expressed in terms

of a given system of coordinates (x1, . . . , xn) is a Poisson tensor if and only if it
satisfies the following system of equations:

(1.28)
∮

ijk

∑
s

∂Πij

∂xs
Πsk = 0 (∀ i, j, k) .

¤

An obvious consequence of the above proposition is that the condition for a
2-vector field to be a Poisson structure is a local condition. In particular, the
restriction of a Poisson structure to an open subset of the manifold is again a
Poisson structure.

Example 1.2.9. Constant Poisson structures on Rn: Choose arbitrary con-
stants Πij . Then Equation (1.28) is obviously satisfied. The canonical Poisson
structure on R2n, associated to the canonical symplectic form ω =

∑
dqi ∧ dpi, is

of this type.

Example 1.2.10. Any 2-vector field on a 2-dimensional manifold is a Poisson
tensor. Indeed, the 3-vector field Λ in Lemma 1.2.7 is identically zero because there
are no non-trivial 3-vectors on a 2-dimensional manifold. Thus the Jacobi identity
is nontrivial only starting from dimension 3.

Example 1.2.11. Let V be a finite-dimensional vector space over R (or C).
A linear Poisson structure on V is a Poisson structure on V for which the
Poisson bracket of two linear functions is again a linear function. Equivalently, in
linear coordinates, the components of the corresponding Poisson tensor are linear
functions. In this case, by restriction to linear functions, the operation (f, g) 7→
{f, g} gives rise to an operation [ , ] : V ∗ × V ∗ −→ V ∗, which is a Lie algebra
structure on V ∗, where V ∗ is the dual linear space of V .

Conversely, any Lie algebra structure on V ∗ determines a linear Poisson struc-
ture on V . Indeed, consider a finite-dimensional Lie algebra (g, [ , ]). For each
linear function f : g∗ −→ R we denote by f̃ the element of g corresponding to it. If
f and g are two linear functions on g∗ then we put {f, g}(α) = 〈α, [f̃ , g̃]〉 for every
α in g∗. If we choose a linear basis e1, . . . , en of g, with [ei, ej ] =

∑
ck
ijek, then
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we have {xi, xj} =
∑

ck
ijxk where xl is the function such that x̃l = el. By tak-

ing (x1, . . . , xn) as a linear system of coordinates on g∗, it follows from the Jacobi
identity for [ , ] that the functions Πij = {xi, xj} verify Equation (1.28). Thus we
get a Poisson structure on g∗. This Poisson structure can be defined intrinsically
by the following formula:

(1.29) {f, g}(α) = 〈α, [df(α),dg(α)]〉 ,

where df(α) and dg(α) are considered as elements of g via the identification (g∗)∗ =
g. Thus, there is a natural bijection between finite-dimensional linear Poisson
structures and finite-dimensional Lie algebras. One can even try to study Lie
algebras by viewing them as linear Poisson structures (see, e.g., [38]).

Remark 1.2.12. Multi-vector fields are also known as antisymmetric con-
travariant tensors, because their coefficients change contravariantly under a
change of local coordinates. In particular, the local expression of a Poisson bracket
will change contravariantly under a change of local coordinates: Let x = (x1, . . . , xn)
and y = (y1, . . . , yn) be two local coordinate systems on a same open subset of a
Poisson manifold (M, {, }). Viewing yi as functions of (x1, . . . , xn), we have

(1.30) {yi, yj} =
∑
r<s

∂(yi, yj)
∂(xr, xs)

{xr, xs} .

Denote Πrs(x) = {xr, xs} (x),Π′ij(y) = {yi, yj} (y). Then the above equation can
be rewritten as

(1.31) Π′ij(y(x)) =
∑
r<s

∂(yi, yj)
∂(xr, xs)

(x)Πrs(x).

Exercise 1.2.13. Consider the Poisson structure on R2 defined by {x, y} = ex.
Show that in the new coordinates (u, v) = (x, ye−x) the Poisson tensor will have
the standard form ∂

∂u ∧ ∂
∂v .

Exercise 1.2.14. Let Π =
∑

Πij∂/∂xi∧∂/∂xj be a constant Poisson structure
on Rn, i.e. the coefficients Πij are constants. Show that there is a number p ≥ 0
and a linear coordinate system (y1, . . . , yn) in which the Poisson bracket has the
form

(1.32) {f, g} =
∂(f, g)

∂ (y1, y2)
+

∂(f, g)
∂ (y3, y4)

+ · · ·+ ∂(f, g)
∂ (y2p−1, y2p)

.

1.3. Poisson morphisms

Definition 1.3.1. If (M1, {, }1) and (M2, {, }2) are two smooth Poisson mani-
folds, then a smooth map φ from M1 to M2 is called a smooth Poisson morphism
or Poisson map if the associated pull-back map φ∗ : C∞(M2) → C∞(M1) is a Lie
algebra homomorphism with respect to the corresponding Poisson brackets.

In other words, φ : (M1, {, }1) → (M2, {, }2) is a Poisson morphism if

(1.33) {φ∗f, φ∗g}1 = φ∗{f, g}2 ∀ f, g ∈ C∞(M2) .

Of course, Poisson manifolds together with Poisson morphisms form a category:
the composition of two Poisson morphisms is again a Poisson morphism, and so on.
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Notice that a Poisson morphism which is a diffeomorphism will automatically be a
Poisson isomorphism : the inverse map is also a Poisson map.

Similarly, a map φ : (M1, ω1) → (M2, ω2) is called a symplectic morphism if
φ∗ω2 = ω1. Clearly, a symplectic isomorphism is also a Poisson isomorphism. How-
ever, a symplectic morphism is not a Poisson morphism in general. For example,
if M1 is a point with a trivial symplectic form, and M2 is a symplectic manifold of
positive dimension, then any map φ : M1 → M2 is a symplectic morphism but not
a Poisson morphism.

Example 1.3.2. If φ : h → g is a Lie algebra homomorphism, then the linear
dual map φ∗ : g∗ → h∗ is a Poisson map, where g∗ and h∗ are equipped with
their respective linear Poisson structures. The proof of this fact will be left to the
reader as an exercise. In particular, if h is a Lie subalgebra of g, then the canonical
projection g∗ → h∗ is Poisson.

Example 1.3.3. If φ is a diffeomorphism of a manifold N , then it can be
lifted naturally to a diffeomorphism φ∗ : T ∗N → T ∗N covering φ. By definition,
φ∗ preserves the Liouville 1-form θ (see Example 1.1.9), hence it preserves the
symplectic form dθ. Thus, φ∗ is a Poisson isomorphism.

Example 1.3.4. Direct product of Poisson manifolds. Let (M1, {, }1) and
(M2, {, }2) be two Poisson manifolds. Then their direct product M1 × M2 can
be equipped with the following natural bracket:

(1.34) {f (x1, x2) , g (x1, x2)} = {fx2 , gx2}1 (x1) + {fx1 , gx1}2 (x2)

where we use the notation hx1(x2) = hx2(x1) = h(x1, x2) for any function h on
M1 × M2, x1 ∈ M1 and x2 ∈ M2. Using Equation (1.28), one can verify easily
that this bracket is indeed a Poisson bracket on M1 ×M2. It is called the product
Poisson structure . With respect to this product Poisson structure, the projection
maps M1 ×M2 → M1 and M1 ×M2 → M2 are Poisson maps.

Exercise 1.3.5. Let M1 = M2 = Rn with trivial Poisson structure. Find
a nontrivial Poisson structure on M1 × M2 = R2n for which the two projections
M1 ×M2 → M1 and M1 ×M2 → M2 are Poisson maps.

Exercise 1.3.6. Show that any Poisson map from a Poisson manifold to a
symplectic manifold is a submersion.

A vector field X on a Poisson manifold (M, Π), is called a Poisson vector
field if it is an infinitesimal automorphism of the Poisson structure, i.e. the
Lie derivative of Π with respect to X vanishes:

(1.35) LXΠ = 0 .

Equivalently, the local flow (ϕt
X) of X, i.e. the 1-dimensional pseudo-group of local

diffeomorphisms of M generated by X, preserves the Poisson structure: ∀t ∈ R,
(ϕt

X) is a Poisson morphism wherever it is well-defined.

By the Leibniz rule we have LX({f, g}) = LX(〈Π, df∧dg〉) = 〈LXΠ,df∧dg〉+
〈Π, dLXf ∧ dg〉 + 〈Π, df ∧ dLXg〉 = 〈LXΠ, df ∧ dg〉 + {X(f), g} + {f,X(g)}. So
another equivalent condition for X to be a Poisson vector field is the following:

(1.36) {Xf, g}+ {f, Xg} = X{f, g} .
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When X = Xh is a Hamiltonian vector field, then Equation (1.36) is nothing but
the Jacobi identity. Thus any Hamiltonian vector field is a Poisson vector field. The
inverse is not true in general, even locally. For example, if the Poisson structure is
trivial, then any vector field is a Poisson vector field, while the only Hamiltonian
vector field is the trivial one.

Exercise 1.3.7. Show that on R2n with the standard Poisson structure
∑

∂
∂xi
∧

∂
∂yi

any Poisson vector field is also Hamiltonian.

Example 1.3.8. Infinitesimal version of Example 1.3.3. If X is a vector
field on a manifold N , then X admits a unique natural lifting to a vector field
X̂ on T ∗N which preserves the Liouville 1-form. In a local coordinate system
(p1, . . . , pn, q1, . . . , qn) on T ∗N , where (q1, . . . , qn) is a local coordinate system on
N and the Liouville 1-form is θ =

∑
i pidqi (see Example 1.1.9), we have the fol-

lowing expression for X̂:

If X =
∑

i

αi(q)
∂

∂qi
then X̂ =

∑

i

αi(q)
∂

∂qi
−

∑

i,j

∂αi(q)
∂qj

pi
∂

∂pj
.

The vector field X̂ is in fact the Hamiltonian vector field of the function

X (p1, . . . , pn, q1, . . . , qn) =
∑

i

αi(q)pi

on T ∗N . This function X is nothing else than X itself, considered as a fiber-wise
linear function on T ∗N .

Example 1.3.9. Let G be a connected Lie group, and denote by g the Lie
algebra of G. By definition, g is isomorphic to the Lie algebra of left-invariant tan-
gent vector fields of G (i.e. vector fields which are invariant under left translations
Lg : h 7→ gh on G). Denote by e the neutral element of G. For each Xe ∈ TeG, there
is a unique left-invariant vector field X on G whose value at e is Xe (X obtained
from Xe by left translations), so we may identify TeG with g via this association
Xe 7→ X. We will write TeG = g, and T ∗e G = g∗ by duality. Consider the left
translation map

(1.37) L : T ∗G → g∗ = T ∗e G, L(p) = (Lg)∗p = Lg−1p ∀ p ∈ T ∗g G,

where Lg−1p means the push-forward (Lg−1)∗p of p by Lg−1 (we will often omit the
subscript asterisk when writing push-forwards to simplify the notations).

Theorem 1.3.10. The above left translation map L : T ∗G → g∗ is a Pois-
son map, where T ∗G is equipped with the standard symplectic structure, and g∗ is
equipped with the standard linear Poisson structure (induced from the Lie algebra
structure of g).

Proof (sketch). It is enough to verify that, if x, y are two elements of g,
considered as linear functions on g∗, then we have

{L∗x, L∗y} = L∗([x, y]).

Notice that L∗x is nothing else than x itself, considered as a left-invariant vector
field on G and then as a left-invariant fiber-wise linear function on T ∗G. By the
formulas given in Example 1.3.8, the Hamiltonian vector field XL∗x of L∗x is the
natural lifting to T ∗G of x, considered as a left-invariant vector field on G. Since
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the process of lifting of vector fields from N to T ∗N preserves the Lie bracket for
any manifold N , we have

[XL∗x, XL∗y] = XL∗[x,y].

It follows from the above equation and Lemma 1.1.11 that {L∗x, L∗y} and L∗([x, y])
have the same Hamiltonian vector field on T ∗G. Hence these two functions differ by
a function which vanishes on the zero section of T ∗G and whose Hamiltonian vector
field is trivial on T ∗G. The only such function is 0, so {L∗x, L∗y} = L∗([x, y]). ¤

Exercise 1.3.11. Show that the right translation map R : T ∗G → g∗ = T ∗e G,
defined by L(p) = (Rg)∗p ∀ p ∈ T ∗g G, is an anti-Poisson map. A map φ : (M, Π) →
(N, Λ) is called an anti-Poisson map if φ : (M, Π) → (N,−Λ) is a Poisson map.

Given a subspace V ∈ TxM of a tangent space TxM of a symplectic manifold
(M, ω), we will denote by V ⊥ the symplectic orthogonal to V : V ⊥ = {X ∈
TxM | ω(X, Y ) = 0 ∀ Y ∈ V }. Clearly, V = (V ⊥)⊥. V is called Lagrangian
(resp. isotropic, coisotropic, symplectic) if V = V ⊥ (resp. V ⊂ V ⊥, V ⊃ V ⊥,
V ∩V ⊥ = 0). A submanifold of a symplectic manifold is called Lagrangian (resp.
isotropic, coisotropic, resp. symplectic) if its tangent spaces are so. Lagrangian
submanifolds play a central role in symplectic geometry, see, e.g., [204, 142]. In
particular, we have the following characterization of symplectic isomorphisms in
terms of Lagrangian submanifolds:

Proposition 1.3.12. A diffeomorphism φ : (M, ω1) → (M2, ω2) is a symplectic
isomorphism if and only if its graph ∆ = {(x, φ(x))} ⊂ M1 ×M2 is a Lagrangian
manifold of M1 ×M2, where M2 means M2 together with the opposite symplectic
form −ω2.

The proof is almost obvious and is left as an exercise. ¤

A subspace V ⊂ TxM of a Poisson manifold (M, Π) is called coisotropic if for
any α, β ∈ T ∗x M such that 〈α,X〉 = 〈β, X〉 = 0 ∀ X ∈ V we have 〈Π, α ∧ β〉 = 0.
In other words, V ◦ ⊂ (V ◦)⊥, where V ◦ = {α ∈ T ∗x M | 〈α, X〉 = 0 ∀ X ∈ V } is the
annulator of V and (V ◦)⊥ = {β ∈ T ∗x M | 〈Π, α∧ β〉 = 0 ∀ α ∈ V ◦} is the “Poisson
orthogonal” of V ◦. A submanifold N of a Poisson manifold is called coisotropic
if its tangent spaces are coisotropic.

Proposition 1.3.13. A map φ : (M1, Π1) → (M2, Π2) between two Poisson
manifolds is a Poisson map if and only if its graph Γ(φ) := {(x, y) ∈ M1×M2; y =
φ(x)} is a coisotropic submanifold of (M1, Π1)× (M2,−Π2).

Again, the proof will be left as an exercise. ¤

1.4. Local canonical coordinates

In this section, we will prove the splitting theorem of Alan Weinstein [205],
which says that locally a Poisson manifold is a direct product of a symplectic
manifold with another Poisson manifold whose Poisson tensor vanishes at a point.
This splitting theorem, together with Darboux theorem which will be proved at the
same time, will give us local canonical coordinates for Poisson manifolds.
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Given a Poisson structure Π (or more generally, an arbitrary 2-vector field) on
a manifold M , we can associate to it a natural homomorphism

(1.38) ] = ]Π : T ∗M −→ TM,

which maps each covector α ∈ T ∗x M over a point x to a unique vector ](α) ∈ TxM
such that

(1.39) 〈α ∧ β, Π〉 = 〈β, ](α)〉
for any covector β ∈ T ∗x M . We will call ] = ]Π the anchor map of Π.

The same notations ] (or ]Π) will be used to denote the operator which as-
sociates to each differential 1-form α the vector field ](α) defined by (](α))(x) =
](α(x)). For example, if f is a function, then ](df) = Xf is the Hamiltonian vector
field of f .

The restriction of ]Π to a cotangent space T ∗x M will be denoted by ]x or ]Π(x).
In a local system of coordinates (x1, . . . , xn) we have

]

(
n∑

i=1

aidxi

)
=

∑

ij

{xi, xj} ai
∂

∂xj
=

∑

ij

Πijai
∂

∂xj
.

Thus ]x is a linear operator, given by the matrix [Πij(x)] in the linear bases

(dx1, . . . , dxn) and
(

∂
∂x1

, . . . , ∂
∂xn

)
.

Definition 1.4.1. Let (M, Π) be a Poisson manifold and x a point of M .
Then the image Cx := Im]x of ]x is called the characteristic space at x of the
Poisson structure Π. The dimension dim Cx of Cx is called the rank of Π at x, and
maxx∈M dim Cx is called the rank of Π. When rank Πx = dim M we say that Π is
nondegenerate at x. If rank Πx is a constant on M , i.e. does not depend on x,
then Π is called a regular Poisson structure .

Example 1.4.2. The constant Poisson structure
∑s

i=1
∂

∂xi
∧ ∂

∂xi+s
on Rm (m ≥

2s) is a regular Poisson structure of rank 2s.

Exercise 1.4.3. Show that rank Πx is always an even number, and that Π is
nondegenerate everywhere if and only if it is the associated Poisson structure of a
symplectic structure.

The characteristic space Cx admits a unique natural antisymmetric nondegen-
erate bilinear scalar product, called the induced symplectic form : if X and Y
are two vectors of Cx then we put

(1.40) (X, Y ) := 〈β,X〉 = 〈Π, α ∧ β〉 = −〈Π, β ∧ α〉 = −〈α, Y 〉 = −(Y, X)

where α, β ∈ T ∗x M are two covectors such that X = ]α and Y = ]β.

Exercise 1.4.4. Verify that the above scalar product is anti-symmetric nonde-
generate and is well-defined (i.e. does not depend on the choice of α and β). When
Π is nondegenerate then the above formula defines the corresponding symplectic
structure on M .

Theorem 1.4.5 (Splitting theorem [205]). Let x be a point of rank 2s of a
Poisson m-dimensional manifold (M, Π): dim Cx = 2s where Cx is the characteris-
tic space at x. Let N be an arbitrary (m−2s)-dimensional submanifold of M which
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contains x and is transversal to Cx at x. Then there is a local system of coordi-
nates (p1, . . . , ps, q1, . . . , qs, z1, . . . , zm−2s) in a neighborhood of x, which satisfy the
following conditions:
a) pi(Nx) = qi(Nx) = 0 where Nx is a small neighborhood of x in N .
b) {qi, qj} = {pi, pj} = 0 ∀ i, j; {pi, qj} = 0 if i 6= j and {pi, qi} = 1 ∀ i.
c) {zi, pj} = {zi, qj} = 0 ∀ i, j.
d) {zi, zj}(x) = 0 ∀ i, j.

A local coordinate system which satisfies the conditions of the above theorem
is called a system of local canonical cordinates. In such canonical coordinates
we have

(1.41) {f, g} =
∑

i,j

{zi, zj} ∂f

∂zi

∂g

∂zj
+

s∑

i=1

∂(f, g)
∂(pi, qi)

= {f, g}N + {f, g}S ,

where

(1.42) {f, g}S =
s∑

i=1

∂(f, g)
∂(pi, qi)

defines the nondegenerate Poisson structure
∑

∂
∂pi

∧ ∂
∂qi

on the local submanifold
S = {z1 = · · · = zm−2s = 0}, and

(1.43) {f, g}N =
∑
u,v

{zi, zj} ∂f

∂zi

∂g

∂zj

defines a Poisson structure on a neighborhood of x in N . Notice that, since
{zi, pj} = {zi, qj} = 0 ∀ i, j, the functions {zi, zj} do not depend on the vari-
ables (p1, . . . , ps, q1, . . . , qs). The equality {zi, zj}(x) = 0 ∀ i, j means that the
Poisson tensor of {, }N vanishes at x.

Formula (1.41) means that the Poisson manifold (M, Π) is locally isomorphic (in
a neighborhood of x) to the direct product of a symplectic manifold (S,

∑s
1 dpi∧dqi)

with a Poisson manifold (Nx, {, }N ) whose Poisson tensor vanishes at x. That’s why
Theorem 1.4.5 is called the splitting theorem for Poisson manifolds: locally, we can
split a Poisson structure in two parts – a regular part and a singular part which
vanishes at a point.

Proof of Theorem 1.4.5. If Π(x) = 0 then s = 0 and there is nothing to
prove. Suppose that Π(x) 6= 0. Let p1 be a local function (defined in a small
neighborhood of x in M) which vanishes on N and such that dp1(x) 6= 0. Since
Cx is transversal to N , there is a vector Xg(x) ∈ Cx such that 〈Xg(x),dp1(x)〉 6= 0,
or equivalently, Xp1(g)(x) 6= 0, where Xp1 denotes the Hamiltonian vector field of
p1 as usual. Therefore Xp1(x) 6= 0. Since Cx 3 ](dp1)(x) = Xp1(x) 6= 0 and is not
tangent to N , there is a local function q1 such that q1(N) = 0 and Xp1(q1) = 1 in
a neighborhood of x, or

(1.44) Xp1q1 = {p1, q1} = 1 .

Moreover, Xp1 and Xq1 are linearly independent (Xq1 = λXp1 would imply that
{p1, q1} = −λXp1(p1) = 0), and we have

(1.45) [Xp1 , Xq1 ] = X{p1,q1} = 0 .



14 1. GENERALITIES ON POISSON STRUCTURES

Thus Xp1 and Xq1 are two linearly independent vector fields which commute. Hence
they generate a locally free infinitesimal R2-action in a neighborhood of x, which
gives rise to a local regular 2-dimensional foliation. As a consequence, we can find
a local system of coordinates (y1, . . . , ym) such that

(1.46) Xq1 =
∂

∂y1
, Xp1 =

∂

∂y2
.

With these coordinates we have {q1, yi} = Xq1 (yi) = 0 and {p1, yi} = Xp1 (yi) =
0, for i = 3, . . . , m. Poisson’s Theorem 1.1.10 then implies that {p1, {yi, yj}} =
{q1, {yi, yj}} = 0 for i, j ≥ 3, whence

(1.47)
{yi, yj} = ϕij (y3, . . . , ym) ∀ i, j ≥ 3 ,
{p1, q1} = 1 ,
{p1, yj} = {q1, yj} = 0 ∀ j ≥ 3 .

We can take (p1, q1, y3, . . . , ym) as a new local system of coordinates. In fact, the
Jacobian matrix of the map ϕ : (y1, y2, y3, . . . , ym) 7→ (p1, q1, y3, . . . , ym) is of the
form

(1.48)




0 1
−1 0 ∗

0 Id




(because ∂q1
∂y1

= Xq1q1 = 0, ∂q1
∂y2

= Xp1q1 = {q1, p1} = 1, . . . ), which has a non-zero
determinant (equal to 1). In the coordinates (q1, p1, y3, . . . , ym), we have

(1.49) Π =
∂

∂p1
∧ ∂

∂q1
+

1
2

∑

i,j≥3

Π′ij(y3, . . . , yn)
∂

∂yi
∧ ∂

∂yj
.

The above formula implies that our Poisson structure is locally the product
of a standard symplectic structure on a plane {(p1, q1)} with a Poisson structure
on a (m − 2)-dimensional manifold {(y3, . . . , ym)}. In this product, N is also the
direct product of a point (= the origin) of the plane {(p1, q1)} with a local subman-
ifold in the Poisson manifold {(y3, . . . , ym)}. The splitting theorem now follows by
induction on the rank of Π at x. ¤

Remark 1.4.6. In the above theorem, when m = 2s, we recover Darboux the-
orem which gives local canonical coordinates for symplectic manifolds. If (M, Π)
is a regular Poisson structure, then the Poisson structure of Nx in the above theo-
rem must be trivial, and we get the following generalization of Darboux theorem:
any regular Poisson structure is locally isomorphic to a standard constant Poisson
structure.

Exercise 1.4.7. Prove the following generalization of Theorem 1.4.5. Let N be
a submanifold of a Poisson manifold (M, Π), and x be a point of N such that TxN +
Cx = TxM and TxN ∩ Cx is a symplectic subspace of Cx, i.e. the restriction of the
symplectic form on the characteristic space Cx to TzN ∩Cx is nondegenerate. (Such
a submanifold N is sometimes called cosymplectic). Then there is a coordinate
system in a neighborhood of x which satisfy the conditions a), b), c) of Theorem
1.4.5, where 2s = dim M − dim N = dim Cx − dim(TxN ∩ Cx).
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1.5. Singular symplectic foliations

A smooth singular foliation in the sense of Stefan-Sussmann [187, 192] on a
smooth manifold M is by definition a partition F = {Fα} of M into a disjoint union
of smooth immersed connected submanifolds Fα, called leaves, which satisfies the
following local foliation property at each point x ∈ M : Denote the leaf that
contains x by Fx, the dimension of Fx by d and the dimension of M by m. Then
there is a smooth local chart of M with coordinates y1, . . . , ym in a neighborhood
U of x, U = {−ε < y1 < ε, . . . ,−ε < ym < ε}, such that the d-dimensional
disk {yd+1 = . . . = ym = 0} coincides with the path-connected component of the
intersection of Fx with U which contains x, and each d-dimensional disk {yd+1 =
cd+1, . . . , ym = cm}, where cd+1, . . . , cm are constants, is wholly contained in some
leaf Fα of F . If all the leaves Fα of a singular foliation F have the same dimension,
then one says that F is a regular foliation .

A singular distribution on a manifold M is the assignment to each point
x of M a vector subspace Dx of the tangent space TxM. The dimension of Dx

may depend on x. For example, if F is a singular foliation, then it has a natural
associated tangent distribution DF : at each point x ∈ V , DF

x is the tangent
space to the leaf of F which contains x.

A singular distribution D on a smooth manifold is called smooth if for any
point x of M and any vector X0 ∈ Dx, there is a smooth vector field X defined in a
neighborhood Ux of x which is tangent to the distribution, i.e. X(y) ∈ Dy ∀ y ∈ Ux,
and such that X(x) = X0. If, moreover, dim Dx does not depend on x, then we
say that D is a smooth regular distribution .

It follows directly from the local foliation property that the tangent distribution
DF of a smooth singular foliation is a smooth singular distribution.

An integral submanifold of smooth singular distribution D on a smooth
manifold M is, by definition, a connected immersed submanifold W of M such
that for every y ∈ W the tangent space TyW is a vector subspace of Dy. An
integral submanifold W is called maximal if it is not contained in any other integral
submanifold; it is said to be of maximum dimension if its tangent space at every
point y ∈ W is exactly Dy.

We say that a smooth singular distribution D on a smooth manifold M is an
integrable distribution if every point of M is contained in a maximal integral
manifold of maximum dimension of D.

Let C be a family of smooth vector fields on M . Then it gives rise to a smooth
singular distribution DC : for each point x ∈ M , DC

x is the vector space spanned
by the values at x of the vector fields of C. We say that DC is generated by C.

A distribution D is called invariant with respect to a family of smooth vector
fields C if it is invariant with respect to every element of C: if X ∈ C and (ϕt

X)
denotes the local flow of X, then we have (ϕt

X)∗Dx = Dϕt
X(x) wherever ϕt

X(x) is
well-defined.

The following result, due to Stefan [187] and Sussmann [192] (see also Dazord
[61]), gives an answer to the following question: what are the conditions for a
smooth singular distribution to be the tangent distribution of a singular foliation ?
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Theorem 1.5.1 (Stefan-Sussmann). Let D be a smooth singular distribution
on a smooth manifold M . Then the following three conditions are equivalent:
a) D is integrable.
b) D is generated by a family C of smooth vector fields, and is invariant with respect
to C.
c) D is the tangent distribution DF of a smooth singular foliation F .

Proof (sketch). a) ⇒ b). Suppose that D is integrable. Let C be the family
of all smooth vector fields which are tangent to D. The smoothness condition of
D implies that D is generated by C. It remains to show that if X is an arbitrary
smooth vector field tangent to D, then D is invariant with respect to X. Let x be
an arbitrary point in M , and denote by F(x) the maximal invariant submanifold
of maximum dimension which contains x. Then by definition (the condition of
maximum dimension), for every point y ∈ F(x) we have TyF(x) = Dy, which
implies that the vector field X, when restricted to F(x), is tangent to F(x). In
particular, the local flow ϕt

X can be restricted to F(x), i.e. F(x) is an invariant
manifold for this local flow. Moreover, if ϕτ

X(x) is well-defined for some τ > 0, then
the point ϕτ

X(x) lies on F(x). This fact follows from the maximality condition on
F(x). (Note that, the union of two invariant submanifolds of maximum dimension is
again an invariant submanifold of maximum dimension if it is connected). Because
X is tangent to F(x), we have (ϕτ

X)∗(TxF(x)) = Tϕτ
X(x)F(x). But TxF(x) = Dx

and Tϕτ
X(x)F(x) = Dϕτ

X(x), hence (ϕτ
X)∗Dx = Dϕτ

X(x).

b) ⇒ c). Suppose that D is generated by a family C of smooth vector fields,
and is invariant with respect to C. Let x be an arbitrary point of M , denote
by d the dimension of Dx, and choose d vector fields X1, . . . , Xd of C such that
X1(x), . . . , Xd(x) span Dx. Denote by φt

1, . . . , φ
t
d the local flow of X1, . . . , Xd re-

spectively. The map

(1.50) (s1, . . . , sd) 7→ φs1
1 ◦ . . . ◦ φsd

d (x)

is a local diffeomorphism from a d-dimensional disk to a d-dimensional submani-
fold containing x in M . The invariance of D with respect to C implies that this
submanifold is an integral submanifold of maximum dimension. Gluing these local
integral submanifolds together (wherever they intersect), we obtain a partition of
M into a disjoint union of connected immersed integral submanifolds of maximum
dimension, called leaves. To see that this partition satisfies the local foliation prop-
erty of singular foliations, we can proceed by induction on the dimension of Dx:
If dim Dx = 0, then the local foliation property at x is empty. If dim Dx > 0,
then there is a vector field X ∈ C such that X(x) 6= 0. Then the trajectories of
X lie on the leaves, and we can take the quotient of a small neighborhood of x by
the trajectories of X to reduce the dimension of M and of the leaves by 1. The
invariance with respect to C and the local foliation property does not change under
this reduction.

c) ⇒ a): If D = DF is the tangent distribution of a singular foliation F , then
the leaves of F are maximal invariant submanifolds of maximum dimension for D.
¤
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Definition 1.5.2. An involutive distribution is a distribution D such that
if X,Y are two arbitrary smooth vector fields which are tangent to D then their
Lie bracket [X, Y ] is also tangent to D.

It is clear from Theorem 1.5.1 that if a singular distribution is integrable, then
it is involutive. Conversely, for regular distributions we have:

Theorem 1.5.3 (Frobenius). If a smooth regular distribution is involutive then
it is integrable, i.e. it is the tangent distribution of a regular foliation.

Proof (sketch). One can use Formula (1.50) to construct local invariant sub-
manifolds of maximum dimension and then glue them together, just like in the
proof of Theorem 1.5.1. One can also see Theorem 1.5.3 as a special case of The-
orem 1.5.1, by first showing that a regular involutive distribution is invariant with
respect to the family of all smooth vector fields which are tangent to it. ¤

Example 1.5.4. Consider the following singular foliation D on R2 with coor-
dinates (x, y): D(x,y) = T(x,y)R2 if x > 0, and D(x,y) is spanned by ∂

∂x if x ≤ 0.
Then D is smooth involutive but not integrable.

The above example shows that, if in Frobenius theorem we omit the word
regular, then it is false. The reason is that, though Formula (1.50) still provides us
with local invariant submanifolds, they are not necessarily of maximum dimension.
However, the situation in the finitely generated case is better. A smooth distribution
D on a manifold M is called locally finitely generated if for any x ∈ M there
is a neighborhood U of x such that the C∞(U)-module of smooth tangent vector
fields to D in U is finitely generated: there is a finite number of smooth vector
fields X1, . . . , Xn in U which are tangent to D, such that any smooth vector field
Y in U which is tangent to D can be written as Y =

∑n
i=1 fiXi with fi ∈ C∞(U).

Theorem 1.5.5 (Hermann [105]). Any locally finitely generated smooth invo-
lutive distribution on a smooth manifold is integrable.

See [215] for a simple proof of Theorem 1.5.5. ¤

Consider now a smooth Poisson manifold (M, Π). Denote by C its characteristic
distribution. Recall that

(1.51) Cx = Im]x = {Xf (x), f ∈ C∞(M)} ∀ x ∈ M .

Since the Hamiltonian vector fields preserve the Poisson structure, they also pre-
serve the characteristic distribution. Thus, according to Stefan-Sussmann theorem,
the characteristic foliation C is completely integrable and corresponds to a singu-
lar foliation, which we will denote by F = FΠ. For the reasons which will become
clear below, this singular foliation is called the symplectic foliation of the Poisson
manifold (M, Π).

For each point x ∈ M , denote by F(x) the leaf of F which contains x. Local
charts of F(x) are readily provided by Theorem 1.4.5: If

(p1, . . . , ps, q1, . . . , qs, z1, . . . , zm−2s)

is a local canonical system of coordinates at a point x ∈ M , then the submanifold
{z1 = · · · = zm−2s = 0} is a open subset of F(x), and it has a natural symplectic
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structure with Darboux coordinates (pi, qi). Notice that this symplectic structure
does not depend on the choice of coordinates: at each point of {z1 = · · · = zm−2s =
0}, it coincides with the symplectic form on the characteristic space. Thus, on
each leaf F(x) we have a unique natural symplectic structure, which at each point
coincides with the symplectic form on the corresponding characteristic space. It
also follows from Assertions b), d) of Theorem 1.4.5 that the injection i : F → M
is a Poisson morphism: if f, g are two functions on M and y ∈ F(x), then

(1.52) {f, g}(y) = {f |F(x), g|F(x)}x(y),

where {, }x is the Poisson bracket of the symplectic form on F(x). In other words,
we have:

Theorem 1.5.6 ([205]). Every leaf F(x) of the symplectic foliation FΠ of a
Poisson manifold (M, Π) is an immersed symplectic submanifold, the immersion
being a Poisson morphism. The Poisson structure Π is completely determined by
the symplectic structures on the leaves of FΠ.

Example 1.5.7. Symplectic foliation of linear Poisson structures. Let G be
a connected Lie group, g its Lie algebra, and g∗ the dual of g. Recall that g∗

has a natural linear Poisson structure, also known as the Lie-Poisson structure ,
defined by

(1.53) {f, h}(α) = 〈α, [df(α),dh(α)]〉.
Denote the neutral element of G by e, and identify g with TeG. G acts on g by
the adjoint action Adg(x) = (u 7→ gug−1)∗e(x) and on g∗ by the coadjoint action
(the induced dual action) Ad∗g(α)(x) = α(Adg−1x), α ∈ g∗, x ∈ g, g ∈ G. This
action is generated infinitesimally by the coadjoint action of g on g∗ defined by
ad∗x(α)(y) = 〈α, [y, x]〉 = −〈α, adxy〉.

Theorem 1.5.8. The symplectic leaves of the Lie-Poisson structure on the
dual of an arbitrary finite-dimensional Lie algebra coincide with the orbits of the
coadjoint representation on it.

Proof. Due to the Leibniz rule, the tangent spaces to the symplectic leaves, i.e.
the characteristic spaces, are generated by the Hamiltonian vector fields of linear
functions. If f, h are two linear functions on g∗, also considered as two elements of
g by duality, and α is a point of g∗, then we have

(1.54) Xf (h)(α) = 〈α, [f, h]〉 = −〈ad∗f (α), h〉.
It implies that the tangent spaces of symplectic leaves are the same as the tangent
spaces of coadjoint orbits. It follows that coadjoint orbits are open closed subsets of
symplectic leaves, so they coincide with symplectic leaves because symplectic leaves
are connected by definition. ¤

A corollary of the above theorem is that the orbits of the coadjoint represen-
tation of a finite-dimensional Lie algebra are of even dimension and equipped with
a natural symplectic form. This symplectic form is also known as the Kirillov–
Kostant–Souriau form . Let us mention that coadjoint orbits play a very impor-
tant role in the theory of unitary representations of Lie groups (the so-called orbit
method), see, e.g., [119].

Exercise 1.5.9. Describe the symplectic leaves of so∗(3) and sl∗(2).
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Remark 1.5.10. A direct way to define the symplectic foliation of a Poisson
manifold (M, Π) is as follows: two points x, y are said to belong to the same leaf
if they can be connected by a piecewise-smooth curve consisting of integral curves
of Hamiltonian vector fields. Then it is a direct consequence of the splitting the-
orem 1.4.5 that the corresponding partition of M into leaves satisfies the local
foliation property. Thus, in fact, we can use the splitting theorem 1.4.5 instead of
Stefan-Sussmann theorem 1.5.1 in order to show that on (M, Π) there is a natural
associated foliation whose tangent distribution is the characteristic distribution.

1.6. Transverse Poisson structures

Let N be a smooth local (i.e. sufficiently small) disk of dimension m − 2s
of an m-dimensional Poisson manifold (M, Π), which intersects transversally a 2s-
dimensional leaf F(x) of the symplectic foliation F of (M, Π) at a point x. In
other words, N contains x and is transversal to the characteristic space Cx. Then
according to the splitting theorem 1.4.5, there are local canonical coordinates in
a neighborhood of x, which will define on N a Poisson structure. This Poisson
structure on N is called the transverse Poisson structure at x of the Poisson
manifold (M, Π).

To justify the above definition of transverse Poisson structures, we must show
that the Poisson structure on N given by Theorem 1.4.5 does not depend on the
choice of local canonical coordinates, nor on the choice of N itself, modulo local
Poisson diffeomorphisms.

Theorem 1.6.1. With the above notations, we have:
a) The local Poisson structure on N given by Theorem 1.4.5 does not depend on
the choice of local canonical coordinates.
b) If x0 and x1 are two points on the symplectic leaf F(x), and N0 and N1 are two
smooth local disks of dimension m−2s which intersect F(x) transversally at x0 and
x1 respectively, then there is a smooth local Poisson diffeomorphism from (N0, x0)
to (N1, x1).

Proof. a) Theorem 1.4.5 implies that the local symplectic leaves near point x
are direct products of the symplectic leaves of a neighborhood of x in N with the
local symplectic manifold {(p1, . . . , ps, q1, . . . , qs)}. In particular, the symplectic
leaves of N are connected components of intersections of the symplectic leaves of
M with N , and the symplectic form on the symplectic leaves of N is the restriction
of the symplectic form of the leaves of M to that intersections. This geometric
characterization of the symplectic leaves of N and their corresponding symplectic
forms shows that they do not depend on the choice of local canonical coordinates.
Hence, according to Theorem 1.5.6, the Poisson structure of N does not depend on
the choice of local canonical coordinates.

b) Let N0 and N1 be two local disks which intersect a symplectic leaf F(x)
transversally at x0 and x1 respectively. Then there is a smooth 1-dimensional
family of local submanifolds Nt (0 ≤ t ≤ 1), connecting N0 to N1, such that Nt

intersects Fα transversely at a point xt. Point xt depends smoothly on t. According
to (a parameterized version of) Theorem 1.4.5, there is a smooth family of local
functions

(pt
1, . . . , p

t
s, q

t
1, . . . , q

t
s, z

t
1, . . . , z

t
m−2s),
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such that for each t ∈ [0, 1], (pt
1, . . . , p

t
s, q

t
1, . . . , q

t
s, z

t
1, . . . , z

t
m−2s) is a local canon-

ical system of coordinates for (M, Π) in a neighborhood of xt such that pt
i(Nt) =

qt
i(Nt) = 0.

For each point y ∈ Nt close enough to xt, define a tangent vector Yt(y) ∈ TyM
as follows: For each τ near t, the disk Nτ intersects the local submanifold {zt

1 =
zt
1(y), . . . , zt

m−2s = zt
m−2s(y)} transversally at a unique point yτ . The map τ 7→ yτ

is smooth. Vector Yt(y) is defined to be the derivation of this map at τ = t. In
particular, Yt(xt) is the derivation of the map τ 7→ xτ at τ = t.

There is a unique cotangent vector βt(y) ∈ T ∗y M such that βt(y) annulates
TyNt (the tangent space of Nt at y), and ]βt(y) = Yt(y). For each t ∈ [0, 1] we
can choose a function ft defined in a neighborhood of Nt, in such a way that ft

depends smoothly on t, and that dft(y) = βt(y) ∀ y ∈ Nt. It implies that we have
Xt(y) = Yt(y) ∀ y ∈ Nt, where Xt = Xft denotes the Hamiltonian vector field of
ft.

Denote by ϕt the local flow of the time-dependent Hamiltonian vector field Xt

(where t is considered as the time variable). Then of course ϕt preserves the Poisson
structure of V (wherever ϕt is defined). From the construction of Xt, we also see
that ϕt moves x0 to xt, and it moves a sufficiently small neighborhood of x0 in N0

into Nt. In particular, ϕ1 defines a local diffeomorphism from N0 to N1. Since
ϕ1 preserves the Poisson structure of M , it also preserves the Poisson structure
of N0. (As explained in the first part of this theorem, the Poisson structure of
N0 depends only on Π and N0, and does not depend on other things like local
canonical coordinates). In other words, ϕ1 defines a local Poisson diffeomorphism
from (N0, x0) to (N1, x1). ¤

In practice, the transverse Poisson structure may be calculated by the following
so-called Dirac’s constrained bracket formula, or Dirac’s formula1 for short.

Proposition 1.6.2 (Dirac’s formula). Let N be a local submanifold of a Pois-
son manifold (M, Π) which intersects a symplectic leaf transversely at a point z.
Let ψ1, . . . , ψ2s, where 2s = rank Π(z), be functions in a neighborhood U of z such
that

(1.55) N = {x ∈ U | ψi(x) = constant}.
Denote by Pij = {ψi, ψj} and by (P ij) the inverse matrix of (Pij)2s

i,j=1. Then the
bracket formula for the transverse Poisson structure on N is given as follows:

(1.56) {f, g}N (x) = {f̃ , g̃}(x)−
2s∑

i,j=1

{f̃ , ψi}(x)P ij(x){ψj , g̃}(x) ∀ x ∈ N,

where f, g are functions on N and f̃ , g̃ are extensions of f and g to U . The above
formula is independent of the choice of extensions f̃ and g̃.

Proof (sketch). If one replaces f̃ by ψk (∀ k = 1, . . . , 2s) in the above formula,
then the right-hand side vanishes. If f̃ and f̂ are two extensions of f , then we
can write f̂ = f̃ +

∑2s
i=1(ψi − ψi(z))hi. Using the Leibniz rule, one verifies that

1According to Weinstein [206], Dirac’s formula was actually found by T. Courant and R.
Montgomery, who generalized a constraint procedure of Dirac.
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the right hand side in Formula (1.56) does not depend on the choice of f̃ . By anti-
symmetricity, the right hand side does not depend on the choice of g̃ either. Finally,
we can choose f̃ and g̃ to be independent of pi, qi in a canonical coordinate system
(p1, . . . , ps, q1, . . . , qs, z1, . . . , zm−2s) provided by the splitting theorem 1.4.5. For
that particular choice we have {f̃ , ψi}(x) = 0 and {f̃ , g̃}(x) = {f, g}N (x). ¤

1.7. The Schouten bracket

1.7.1. Schouten bracket of multi-vector fields.

Recall that, if A =
∑

i ai
∂

∂xi
and B =

∑
i bi

∂
∂xi

are two vector fields written in
a local system of coordinates (x1, . . . , xn), then the Lie bracket of A and B is

(1.57) [A,B] =
∑

i

ai(
∑

j

∂bj

∂xi

∂

∂xj
)−

∑

i

bi(
∑

j

∂aj

∂xi

∂

∂xj
) .

We will redenote ∂
∂xi

by ζi and consider them as formal, or odd variables2

(formal in the sense that they don’t take values in a field, but still form an algebra,
and odd in the sense that ζiζj = −ζjζi, i.e. ∂

∂xj
∧ ∂

∂xj
= − ∂

∂xj
∧ ∂

∂xi
). We can write

A =
∑

i aiζi and B =
∑

i biζi and consider them formally as functions of variables
(xi, ζi) which are linear in the odd variables (ζi). We can write [A,B] formally as

(1.58) [A,B] =
∑

i

∂A

∂ζi

∂B

∂xi
−

∑

i

∂B

∂ζi

∂A

∂xi
.

The above formula makes the Lie bracket of two vector fields look pretty much like
the Poisson bracket of two functions in a Darboux coordinate system.

Now if Π =
∑

i1<···<ip
Πi1...ip

∂
∂xi1

∧ · · · ∧ ∂
∂xip

is a p-vector field, then we will
consider it as a homogeneous polynomial of degree p in the odd variables (ζi):

(1.59) Π =
∑

i1<···<ip

Πi1...ipζi1 . . . ζip .

It is important to remember that the variables ζi do not commute. In fact,
they anti-commute among themselves, and commute with the variables xi:

(1.60) ζiζj = −ζjζi; xiζj = ζjxi; xixj = xjxi.

Due to the anti-commutativity of (ζi), one must be careful about the signs when
dealing with multiplications and differentiations involving these odd variables. The
differentiation rule that we will adopt is as follows:

(1.61)
∂(ζi1 . . . ζip)

∂ζip

:= ζi1 . . . ζip−1 .

2The name odd variable comes from the theory of supermanifolds, though it is not necessary
to know what a supermanifold is in order to understand this section.
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Equivalently, ∂(ζi1 ...ζip )

∂ζik
= (−1)p−kζi1 . . . ζ̂ik

. . . ζip , where the hat means that ζik
is

missing in the product (1 ≤ k ≤ p).

If

(1.62) A =
∑

i1<...<ia

Ai1,...,ia

∂

∂xi1

∧ · · · ∧ ∂

∂xia

=
∑

i1,...,ia

Ai1,...,ia
ζi1 . . . ζia

is an a-vector field, and

(1.63) B =
∑

i1<...<ib

Bi1,...,ib

∂

∂xi1

∧ · · · ∧ ∂

∂xib

=
∑

i1,...,ia

Bi1,...,iaζi1 . . . ζib

is a b-vector field, then generalizing Formula (1.58), we can define a bracket of A
and B as follows:

(1.64) [A,B] =
∑

i

∂A

∂ζi

∂B

∂xi
− (−1)(a−1)(b−1)

∑

i

∂B

∂ζi

∂A

∂xi
.

Clearly, the bracket [A,B] of A and B as defined above is a homogeneous
polynomial of degree a + b− 1 in the odd variables (ζi), so it is a (a + b− 1)-vector
field.

Theorem 1.7.1 (Schouten–Nijenhuis). The bracket defined by Formula (1.64)
satisfies the following properties:
a) Graded anti-commutativity: if A is an a-vector field and B is a b-vector field
then

(1.65) [A,B] = −(−1)(a−1)(b−1)[B, A] .

b) Graded Leibniz rule: if A is an a-vector field, B is a b-vector field and C is a
c-vector field then

(1.66) [A,B ∧ C] = [A,B] ∧ C + (−1)(a−1)bB ∧ [A,C] ,

(1.67) [A ∧B, C] = A ∧ [B,C] + (−1)(c−1)b[A,C] ∧B .

c) Graded Jacobi identity:

(1.68) (−1)(a−1)(c−1)[A, [B,C]] + (−1)(b−1)(a−1)[B, [C, A]]+

+ (−1)(c−1)(b−1)[C, [A,B]] = 0 .

d) If A = X is a vector field then

(1.69) [X,B] = LXB ,

where LX denotes the Lie derivative by X. In particular, if A and B are two vector
fields then the Schouten bracket of A and B coincides with their Lie bracket. If
A = X is a vector field and B = f is a function (i.e. a 0-vector field) then we have

(1.70) [X, f ] = X(f) = 〈df, X〉 .

Proof. Assertion a) follows directly from the definition.

b) The differentiation rule (1.61) implies that

∂(B ∧ C)
∂ζi

= B
∂C

∂ζi
+ (−1)c ∂B

∂ζi
C.
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Hence we have

[A,B ∧ C] =
∑ ∂A

∂ζi

∂(B ∧ C)
∂xi

− (−1)(a−1)(b+c−1)
∑ ∂(B ∧ C)

∂ζi

∂A

∂xi

=
∑ ∂A

∂ζi

∂B

∂xi
C +

∑ ∂A

∂ζi
B

∂C

∂xi
− (−1)(a−1)(b+c−1)

∑
B

∂C

∂ζi

∂A

∂xi

−(−1)(a−1)(b+c−1)+c
∑ ∂B

∂ζi
C

∂A

∂xi

=
∑ ∂A

∂ζi

∂B

∂xi
C − (−1)(a−1)(b+c−1)+c+ac

∑ ∂B

∂ζi

∂A

∂xi
C

+(−1)(a−1)b

(
−(−1)(a−1)(c−1)

∑
B

∂C

∂ζi

∂A

∂xi
+

∑
B

∂A

∂ζi

∂C

∂xi

)

= [A, B] ∧ C + (−1)(a−1)bB ∧ [A,C]

The proof of Formula (1.67) is similar.

c) By direct calculations we have

(−1)(a−1)(c−1)[A, [B,C]] = S1 + S2 + S3 + S4 ,

where

S1 = (−1)(a−1)(c−1)
∑

i,j

∂A

∂ζj

∂2B

∂xj∂ζi

∂C

∂xi
− (−1)(a−1)(b−1)

∑

i,j

∂B

∂ζi

∂2C

∂xi∂ζj

∂A

∂xj
,

S2 = (−1)(a−1)(c−1)
∑

i,j

∂A

∂ζj

∂B

∂ζi

∂2C

∂xi∂xj
− (−1)(c−1)(b−1)

∑

i,j

∂C

∂ζi

∂A

∂ζj

∂2B

∂xi∂xj
,

S3 = (−1)(b−1)(a−1)
∑

i,j

∂2B

∂ζj∂xi

∂C

∂ζi

∂A

∂xj
− (−1)(c−1)(b−1)

∑

i,j

∂2C

∂ζi∂xj

∂A

∂ζj

∂B

∂xi
,

S4 = (−1)(b−1)(a+c)+b
∑

i,j

∂2C

∂ζj∂ζi

∂B

∂xi

∂A

∂xj
−

− (−1)(a−1)(b−1)+c
∑

i,j

∂2B

∂ζj∂ζi

∂C

∂xi

∂A

∂xj
=

= (−1)(b−1)(c−1)+a
∑

i,j

∂2C

∂ζj∂ζi

∂A

∂xi

∂B

∂xj
− (−1)(a−1)(b−1)+c

∑

i,j

∂2B

∂ζj∂ζi

∂C

∂xi

∂A

∂xj
.

(because ∂2C
∂ζi∂ζj

= − ∂2C
∂ζj∂ζi

). Each of the summands S1, S2, S3, S4 will become zero

when adding similar terms from (−1)(b−1)(a−1)[B, [C, A]] and (−1)(c−1)(b−1)[C, [A,B]].

d) If f is a function and X =
∑

i ξi
∂

∂xi
is a vector field, then ∂f

∂ζi
= 0, and

[X, f ] =
∑

∂X
∂ζi

∂f
∂xi

=
∑

ξi
∂f
∂xi

= X(f). When A and B are vector fields, Formula
(1.64) clearly coincides with Formula 1.58. When B is a multi-vector field, Assertion
d) can be proved by induction on the degree of B, using the Leibniz rules given by
Assertion b). ¤

A-priori, the bracket of an a-vector field A with a b-vector field B, as defined
by Formula (1.64), may depend on the choice of local coordinates (x1, . . . , xn).
However, the Leibniz rules (1.66) and (1.67) show that the computation of [A,B]
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can be reduced to the computation of the Lie brackets of vector fields. Since the
Lie bracket of vector fields does not depend on the choice of local coordinates, it
follows that the bracket [A,B] is in fact a well-defined (a+ b−1)-vector field which
does not depend on the choice of local coordinates.

Definition 1.7.2. If A is an a-vector field and B is a b-vector field, then the
uniquely defined (a+b−1)-vector field [A,B], given by Formula (1.64) in each local
system of coordinates, is called the Schouten bracket of A and B.

Remark 1.7.3. Our sign convention in the definition of the Schouten bracket
is the same as Koszul’s [123], but different from Vaisman’s [195] and some other
authors.

The Schouten bracket was first discovered by Schouten [182, 183]. Theorem
1.7.1 is essentially due to Schouten [182, 183] and Nijenhuis [162]. The graded
Jacobi identity (1.68) means that the Schouten bracket is a graded Lie bracket: the
space V?(M) =

⊕
p≥0 Vp(M), where Vp(M) is the space of smooth p-vector fields

on a manifold M , is a graded Lie algebra, also known as Lie super-algebra, under
the Schouten bracket, if we define the grade of Vp(M) to be p− 1. In other words,
we have to shift the natural grading by −1 for V(M) together with the Schouten
bracket to become a graded Lie algebra in the usual sense.

Another equivalent definition of the Schouten bracket, due to Lichnerowicz
[127], is as follows. If A is an a-vector field, B is a b-vector field, and η is an
(a + b− 1)-form then

(1.71) 〈η, [A,B]〉 = (−1)(a−1)(b−1)〈d(iBη), A〉 − 〈d(iAη), B〉+ (−1)a〈dη,A ∧B〉.
In this formula, iA : Ω?(M) → Ω?(M) denotes the inner product of differential

forms with A, i.e. 〈iAβ, C〉 = 〈β, A ∧ C〉 for any k-form β and (k − a)-vector field
C. If k < a then iAβ = 0.

More generally, we have the following useful formula, due to Koszul [123]3.

Lemma 1.7.4. For any A ∈ Va(M), B ∈ Vb(M) we have

(1.72) i[A,B] = (−1)(a−1)(b−1)iA ◦ d ◦ iB − iB ◦ d ◦ iA+

+ (−1)aiA∧B ◦ d + (−1)bd ◦ iA∧B .

Proof. By induction, using the Leibniz rule. ¤

Yet another equivalent definition of the Schouten bracket, via the so called curl
operator, will be given in Section 2.5.

The Schouten bracket offers a very convenient way to characterize Poisson
structures and Hamiltonian vector fields:

Theorem 1.7.5. A 2-vector field Π is a Poisson tensor if and only if the
Schouten bracket of Π with itself vanishes:

(1.73) [Π,Π] = 0 .

3Koszul [123] wrote (1.72) as i[A,B] = [[iA, d], iB ]. But the brackets on the right-hand

side must be understood as graded commutators of graded endomorphisms of Ω?(M), not usual
commutators.
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If Π is a Poisson tensor and f is a function, then the corresponding Hamiltonian
vector field Xf satisfies the equation

(1.74) Xf = −[Π, f ] .

Proof. It follows directly from Formula (1.64) that Equation (1.73), when
expressed in local coordinates, is the same as Equation (1.28). Thus the first
part of the above theorem is a consequence of Proposition 1.2.8. The second
part also follows directly from Formula (1.64) and the definition of Xf : −[Π, f ] =
−[

∑
i<j Πij

∂
∂xi

∧ ∂
∂xj

, f ] = −∑
i,j Πij

∂
∂xi

∂f
∂xj

=
∑

i,j
∂f
∂xi

Πij
∂

∂xj
= Xf . ¤

By abuse of language, we will call Equation (1.73) the Jacobi identity , be-
cause it is equivalent to the usual Jacobi identity (1.2).

Exercise 1.7.6. Let Π be a smooth Poisson tensor on a manifold M . Using
Theorem 1.7.5, show that the following two statements are equivalent: a) rank Π ≤
2; b) fΠ is a Poisson tensor for every smooth function f on M .

Exercise 1.7.7. Show that, if Λ is a p-vector field on a Poisson manifold
(M, Π), then the Schouten bracket [Π, Λ] can be given, in terms of multi-derivations,
as follows:

(1.75) [Π,Λ](f1, . . . , fp+1) =
p+1∑

i=1

(−1)i+1{fi,Λ(f1, . . . f̂i . . . , fp+1)}+

+
∑

i<j

(−1)i+jΛ({fi, fj}, f1, . . . f̂i . . . f̂j . . . , fp+1),

where the hat over fi and fj means that these terms are missing in the expression.
(Hint: one can use Formula (1.71)).

1.7.2. Schouten bracket on Lie algebras.

The Schouten bracket on V?(M) extends the Lie bracket on V1(M) by the
graded Leibniz rule. Similarly, by the graded Leibniz rule (1.66,1.67), we can extend
the Lie bracket on any Lie algebra g to a natural graded Lie bracket on ∧?g =⊕∞

k=0 ∧kg, where ∧kg means g ∧ . . . ∧ g (k times), which will also be called the
Schouten bracket . More precisely, we have:

Lemma 1.7.8. Given a Lie algebra g over K, there is a unique bracket on
∧?g = ⊕∞k=0∧kg which extends the Lie bracket on g and which satisfies the following
properties, ∀ A ∈ ∧ag, B ∈ ∧bg, C ∈ ∧cg:
a) Graded anti-commutativity:

(1.76) [A,B] = −(−1)(a−1)(b−1)[B, A]

b) Graded Leibniz rule:

(1.77) [A,B ∧ C] = [A,B] ∧ C + (−1)(a−1)bB ∧ [A,C]

(1.78) [A ∧B, C] = A ∧ [B, C] + (−1)(c−1)b[A,C] ∧B

c) Graded Jacobi identity:

(1.79)
(−1)(a−1)(c−1)[A, [B, C]] + (−1)(b−1)(a−1)[B, [C,A]]+

+(−1)(c−1)(b−1)[C, [A,B]] = 0
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d) The bracket of any element in ∧?g with an element in ∧0g = K is zero.

Proof. The proof is straightforward and is left to the reader as an exercise.
Remark that, another equivalent way to define the Schouten bracket on ∧?g is to
identify ∧?g with the space of left-invariant multi-vector fields on G, where G is
the simply-connected Lie group whose Lie algebra is g, then restrict the Schouten
bracket on V?(G) to these left-invariant multi-vector fields. ¤

If ξ : g → V1(M) is an action of a Lie algebra G on a manifold M , then it can
be extended in a unique way by wedge product to a map

∧ξ : ∧?g → V?(M).

For example, if x, y ∈ g then ∧ξ(x ∧ y) = ξ(x) ∧ ξ(y).

Lemma 1.7.9. If ξ : g → V1(M) is a Lie algebra homomorphism then its
extension ∧ξ : ∧?g → V?(M) preserves the Schouten bracket, i.e.

∧ξ([α, β]) = [∧ξ(α),∧ξ(β)] ∀ α, β ∈ ∧g.

Proof. The proof is straightforward, by induction, based on the Leibniz rule.
¤

Notation 1.7.10. For an element α ∈ ∧?g, we will denote by α+ the left-
invariant multi-vector field on G whose value at the neutral element e of G is
α, i.e. α+(g) = Lgα, where Lg means the left translation by g. Similarly, α−

denotes the right-invariant multi-vector field α−(g) = Rgα, where Rg means the
right translation by g.

As a direct consequence of Lemma 1.7.9, we have:

Theorem 1.7.11. For an element r ∈ g ∧ g, where g is the Lie algebra of a
connected Lie group G, the following three conditions are equivalent:
a) r satisfies the equation [r, r] = 0,
b) r+ is a left-invariant Poisson structure on G,
c) r− is a right-invariant Poisson structure on G.

Proof. Obvious. ¤

The equation [r, r] = 0 is called the classical Yang-Baxter equation4 [86],
or CYBE for short. This equation will be discussed in more detail in Chapter ??.

Example 1.7.12. If x, y ∈ g such that [x, y] = 0 and x ∧ y 6= 0, then r = x ∧ y
satisfies the classical Yang-Baxter equation, and the corresponding left and right
invariant Poisson structures on G have rank 2.

1.7.3. Compatible Poisson structures.

Definition 1.7.13. Two Poisson tensors Π1 and Π2 are called compatible if
their Schouten bracket vanishes:

(1.80) [Π1, Π2] = 0.

4The Yang-Baxter equation has its origins in integrable models in statistical mechanics, and
is one of the main tools in the study of integrable systems (see, e.g., [116]).
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Another equivalent definition is: two Poisson structures Π1 and Π2 are com-
patible if Π1 +Π2 is also a Poisson structure. Indeed, we have [Π1 +Π2,Π1 +Π2] =
[Π1, Π1] + [Π2, Π2] + 2[Π1, Π2] = 2[Π1, Π2], provided that [Π1, Π1] = [Π2,Π2] = 0.
So Equation (1.80) is equivalent to [Π1 + Π2, Π1 + Π2] = 0.

If Π1 and Π2 are two compatible Poisson structures, then we have a whole
2-dimensional family of compatible Poisson structures (or projective 1-dimensional
family): for any scalars c1 and c2, c1Π1 +c2Π2 is a Poisson structure. Such a family
of Poisson structures is often called a pencil of Poisson structures.

Example 1.7.14. The linear Poisson structure x1
∂

∂x2
∧ ∂

∂x3
+ x2

∂
∂x3

∧ ∂
∂x1

+
x3

∂
∂x1

∧ ∂
∂x2

on so∗(3) = R3 can be decomposed into the sum of two compatible
linear Poisson structures (x1

∂
∂x2

− x2
∂

∂x1
) ∧ ∂

∂x3
and x3

∂
∂x1

∧ ∂
∂x2

.

Example 1.7.15. If r1, r2 ∈ g∧ g are solutions of the CYBE [r, r] = 0, then r+
1

and r−2 form a pair of compatible Poisson structures on G, where G is Lie group
whose Lie algebra is g.

Example 1.7.16 ([148]). On the dual g∗ of a Lie algebra g, besides the stan-
dard Lie-Poisson structure {f, g}LP (x) = 〈[df(x), dg(x)], x〉, consider the following
constant Poisson structure:

(1.81) {f, g}a(x) = 〈[df(x),dg(x)], a〉,
where a is a fixed element of g∗. This constant Poisson structure {, }a and the
Lie-Poisson structure {, }LP are compatible. In fact, their sum is the affine (i.e.
nonhomogeneous linear) Poisson structure

(1.82) {f, g}(x) = 〈[df(x), dg(x)], x + a〉,
which can be obtained from the linear Poisson structure {, }LP by the pull-back of
the translation map x 7→ x + a on g∗.

Exercise 1.7.17. Suppose that Π1 is a nondegenerate Poisson structure, i.e.
it corresponds to a symplectic form ω1. For a Poisson structure Π2, denote by ω2

the differential 2-form defined as follows:

ω2(X, Y ) = 〈Π2, iXω1 ∧ iY ω1〉 ∀ X, Y ∈ V1(M).

Show that [Π1, Π2] = 0 if and only if dω2 = 0.

Exercise 1.7.18 ([23]). Consider a complex pencil of holomorphic Poisson
structures λ1Π1 + λ2Π2, γ1, γ2 ∈ C. Let S be the set of points (γ1, γ2) ∈ C2 such
that the rank of γ1Π1 +γ2Π2 is smaller than the rank of a generic Poisson structure
in the pencil. Show that if (γ1, γ2), (δ1, δ2) ∈ C2 \ S are two arbitrary “regular”
points of the pencil (which may coincide), f is a Casimir function for γ1Π1 + γ2Π2

and g is a Casimir function for δ1Π1 + δ2Π2, then {f, g}Π1 = {f, g}Π2 = 0.

Remark 1.7.19. A vector field X on a manifold is called a bi-Hamiltonian
system if it is Hamiltonian with respect to two compatible Poisson structures:
X = XΠ1

H1
= XΠ2

H2
. Bi-Hamiltonian systems often admit large sets of first integrals,

which make them into integrable Hamiltonian systems. Conversely, a vast majority
of known integrable systems turn out to be bi-Hamiltonian. The theory of biHamil-
tonian systems starts with Magri [133] and Mischenko–Fomenko [148], and there
is now a very large amount of articles on the subject. See, e.g., [2, 9, 10, 24, 66]
for an introduction to the theory of integrable Hamiltonian systems.
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1.8. Symplectic realizations

We have seen in Section 1.5 that Poisson manifolds can be viewed as singular
foliations by symplectic manifolds. In this section, we will discuss another way to
look at Poisson manifolds, namely as quotients of symplectic manifolds.

Definition 1.8.1. A symplectic realization of a Poisson manifold (P, Π) is
a symplectic manifold (M, ω) together with a surjective Poisson submersion Φ :
(M, ω) → (P, Π) (i.e. a submersion which is a Poisson map).

For example, Theorem 1.3.10 says that if G is a Lie group then T ∗G together
with the left translation map L : T ∗G → g∗ is a symplectic realization for g∗.

The existence of symplectic realizations for arbitrary Poisson manifolds is an
important result due to Karasev [118] and Weinstein [208]:

Theorem 1.8.2 (Karasev–Weinstein). Any smooth Poisson manifold of dimen-
sion n admits a symplectic realization of dimension 2n.

In fact, the result of Karasev and Weinstein is stronger: any Poisson manifold
can be realized by a local symplectic groupoid (see Section ??). In this section, we
will give a pedestrian proof of Theorem 1.8.2. First let us show a local version of
it, which can be proved by an explicit formula. We will say that Φ : (M, ω,L) →
(P, Π) is a marked symplectic realization of (P, Π), where L is a Lagrangian
submanifold of M , if it is a symplectic realization such that Φ|L : L → P is a
diffeomorphism. Note that in this case we automatically have dimM = 2 dim L =
2dim P .

Theorem 1.8.3 ([205]). Any point z of a smooth Poisson manifold (P, Π) has
an open neighborhood U such that (U,Π) admits a marked symplectic realization.

Proof. Denote by (x1, . . . , xn) a local system of coordinates at z. We will
look for functions wi(x, y), i = 1, . . . , n, x = (x1, . . . , xn), viewed as functions in
a neighborhood of z which depend smoothly on n parameters y = (y1, . . . , yn),
such that wi(x, 0) = xi, and if we denote by xi = xi(w, y) (w = (w1, . . . , wn)) the
inverse functions, then the map Θ : (w, y) 7→ x(w, y) is a Poisson submersion from a
symplectic manifold M with coordinates (w, y) and standard symplectic structure
ω =

∑
i dwi ∧dyi to a neighborhood (U,Π) of z. We may also view (x, y) as a local

coordinate system on M . The condition that Θ be a Poisson map can be written
as:

(1.83) {xi, xj}ω(x, y) = {xi, xj}Π(x) (∀ i, j = 1, . . . , n),

or

(1.84)
n∑

h=1

( ∂xi

∂wh

∂xj

∂yh
− ∂xi

∂yh

∂xj

∂wh

)
= {xi, xj}Π (∀ i, j = 1, . . . , n).
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Viewing the above equation as a matrix equation, and multiplying it by (∂wk

∂xi
)k,i

on the left and (∂wl

∂xj
)j,l on the right of each side, we get

(1.85)
(

∂wk

∂xi

)

k,i

(
n∑

h=1

(
∂xi

∂wh

∂xj

∂yh
− ∂xi

∂yh

∂xj

∂wh

))

ij

(
∂wl

∂xj

)

j,l

=

=
(

∂wk

∂xi

)

k,i

({xi, xj}Π)ij

(
∂wl

∂xj

)

j,l

,

which means

(1.86)
∂wl

∂yk
− ∂wk

∂yl
= {wk, wl}Π (∀ k, l = 1, . . . , n).

Equation (1.86) with the initial condition wi(x, 0) = xi has the following explicit
local solution: denote by ϕt

y the local time-t flow of the local Hamiltonian vector
field Xfy

of the local function fy =
∑

i yixi on (P, Π). Then put (noting that ϕ1
y is

well-defined in a neighborhood of z when y is small enough)

(1.87) wi(x, y) =
∫ 1

0

xi ◦ ϕt
ydt .

A straightforward computation, which will be left as an exercise (see [195, 205]),
shows that this is a solution of (1.86). The local Lagrangian submanifold in question
can be given by L = {y = 0}. ¤

Proposition 1.8.4. If Φ1 : (M1, ω1, L1) → (P, Π) and Φ2 : (M2, ω2, L2) →
(P, Π) are two marked symplectic realizations of a Poisson manifold (P, Π), then
there is a unique symplectomorphism Ψ : U(L1) → U(L2) from a neighborhood
U(L1) of L1 in (M1, ω1) to a neighborhood U(L2) of L2 in (M2, ω2), which sends
L1 to L2 and such that Φ1|U(L1) = Φ2|U(L2) ◦Ψ.

Proof (sketch). Clearly, ψ = (Φ2|L2)
−1 ◦Φ1|L1 : L1 → L2 is a diffeomorphism.

We want to extend it to a symplectomorphism Ψ from a neighborhood of L1 to
a neighborhood of L2 which satisfies the conditions of the theorem. Let f be a
function on P . Then Ψ must send Φ∗1f to Φ∗2f , hence it sends the Hamiltonian
vector field XΦ∗1f to XΦ∗2f . If x1 ∈ M1 is a point close enough to L1, then there is
a point y1 ∈ L1 and a function f on P such that x1 = φ1

Φ∗1f (y1), where φt
g denotes

the time-t flow of the Hamiltonian vector field Xg of the function g, and we must
have

(1.88) Ψ(x1) = φ1
Φ∗2f (ψ(y1))

This formula shows the uniqueness of Ψ (if it can be defined) in a neighborhood of
L1. To show that this formula also defines Ψ unambiguously, we will find the graph
of Ψ in M1 × M2. Consider the distribution D on M1 × M2, generated at each
point (x1, x2) ∈ M1×M2 by the tangent vectors of the type (XΦ∗1f (x1), XΦ∗2f (x2)).
The fact that Φ1 and Φ2 are Poisson submersions imply that this distribution is
regular involutive of dimension n = dim P , so we have an n-dimensional foliation.
The graph of Ψ is nothing but the union of the leaves which go through the n-
dimensional submanifold {(y1, ψ(y1)) | y1 ∈ L1}.

It remains to show that Φ is symplectic, and sends Φ∗1f to Φ∗2f for any function
f on P . To show that Φ is symplectic, it suffices to show that its graph in M1 ×
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M2 is Lagrangian (see Proposition 1.3.12). Since the involutive distribution D is
generated by Hamiltonian vector fields (XΦ∗1f , XΦ∗2f ), and the property of being
Lagrangian is invariant under Hamiltonian flow, it is enough to show that the
tangent spaces to the graph of Ψ at points (y1, ψ(y1)), y1 ∈ L1, are Lagrangian.
But this last fact can be verified immediately.

Since Ψ is symplectic and Ψ∗XΦ∗1f = XΦ∗2f by construction, it means that
Ψ∗(Φ∗1f) is equal to Φ∗2f up to a constant. But this constant is zero, because these
two functions coincide on L2 by the construction of Ψ. Thus Ψ∗(Φ∗1f) = Φ∗2f for
any function f on P , implying that Φ1 = Φ2 ◦Ψ. ¤

Theorem 1.8.2 is now a direct consequence of the local realization theorem 1.8.3
and the uniqueness proposition 1.8.4: there is a unique way to glue local marked
symplectic realizations together, which glues the marked Lagrangian submanifolds
together on their overlaps, to get a marked symplectic realization of a given Poisson
manifold. ¤

Remark 1.8.5. Of course, (non-marked) symplectic realizations of a Poisson
manifold (P, Π) of dimension n are not necessarily of dimension 2n. For example,
if (M,ω) is a symplectic realization of (P, Π) and (N, σ) is a symplectic manifold,
then M × N is also a symplectic realization of P . And if (P, Π) is symplectic
then it is a symplectic realization of itself. Proposition 1.8.4 can be generalized to
an “essential uniqueness” result for non-marked local symplectic realizations (see
[205]).

An important notion in symplectic geometry, directly related to symplectic
realizations, is the following:

Definition 1.8.6 ([126]). A foliation F on a symplectic manifold (M, ω) is
called a symplectically complete foliation if the symplectically orthogonal dis-
tribution (TF)⊥ to F is integrable.

In other words, F is a symplectically complete foliation if there is another
foliation F ′ such that TxF = (TxF ′)⊥ ∀ x ∈ M . In this case, the pair (F ,F ′)
is called a dual pair . For example, any Lagrangian foliation is a symplectically
complete foliation which is dual to itself.

Theorem 1.8.7 (Libermann [126]). Let Φ : (M, ω) → P be a surjective sub-
mersion from a symplectic manifold (M,ω) to a manifold P , such that the level
sets of Φ are connected. Denote by F the foliation whose leaves are level sets of Φ.
Then there is a (unique) Poisson structure Π on P such that Φ : (M, ω) → (P, Π)
is Poisson if and only if F is symplectically complete.

Proof (sketch). The symplectically orthogonal distribution (TF)⊥ to F is
generated by Hamiltonian vector fields of the type XΦ∗f where f is a function on P .
The integrability of (TF)⊥ is equivalent to the fact that [XΦ∗f , XΦ∗g] is tangent to
(TF)⊥ for any functions f, g on P . In other words, X{Φ∗f,Φ∗g} is tangent to (TF)⊥,
i.e. {Φ∗f, Φ∗g} is constant on the leaves of F . Since the leaves of F are level sets
of Φ, it means that there is a function h on P such that {Φ∗f, Φ∗g} = Φ∗h. In
other words, {f, g} := h is a Poisson bracket on P such that Φ is Poisson. ¤



CHAPTER 2

Poisson cohomology

2.1. Poisson cohomology

2.1.1. Definition of Poisson cohomology.

Poisson cohomology was introduced by Lichnerowicz [127]. Its existence is
based on the following simple lemma.

Lemma 2.1.1. If Π is a Poisson tensor, then for any multi-vector field A we
have

(2.1) [Π, [Π, A]] = 0 .

Proof. By the graded Jacobi identity (1.68) for the Schouten bracket, if Π is
a 2-vector field and A is an a-vector field then

(−1)a−1[Π, [Π, A]]− [Π, [A,Π]] + (−1)a−1[A, [Π,Π]] = 0 .

Moreover, [A,Π] = −(−1)a−1[Π, A] due to the graded anti-commutativity, hence
[Π, [Π, A]] = − 1

2 [A, [Π,Π]]. Now if Π is a Poisson structure, then [Π,Π] = 0, and
therefore [Π, [Π, A]] = 0. ¤

Let (M, Π) be a smooth Poisson manifold. Denote by δ = δΠ : V?(M) −→
V?(M) the R-linear operator on the space of multi-vector fields on M , defined as
follows:

(2.2) δΠ(A) = [Π, A].

Then Lemma 2.1.1 says that δΠ is a differential operator in the sense that
δΠ ◦ δΠ = 0. The corresponding differential complex (V?(M), δ), i.e.,

(2.3) . . . −→ Vp−1(M) δ−→ Vp(M) δ−→ Vp+1(M) −→ . . . ,

will be called the Lichnerowicz complex . The cohomology of this complex is
called Poisson cohomology .

By definition, Poisson cohomology groups of (M, Π), i.e. the cohomology groups
of the Lichnerowicz complex (2.3), are the quotient groups

(2.4) Hp
Π(M) =

ker(δ : Vp(M) −→ Vp+1(M))
Im(δ : Vp−1(M) −→ Vp(M))

.

The above Poisson cohomology groups are also denoted by Hp(M, Π), or also
Hp

LP (M, Π), where LP stands for Lichnerowicz–Poisson.

31
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Remark 2.1.2. Poisson cohomology groups can be very big, infinite-dimensional.
For example, when Π = 0 then H?

Π(M) :=
⊕

k Hk
Π(M) = V?(M). Poisson coho-

mology groups of smooth Poisson manifolds have a natural induced topology from
the Fréchet spaces of multi-vector fields, which make them into not-necessarily-
separated locally convex topological vector spaces (see Ginzburg [88, 89]).

2.1.2. Interpretation of Poisson cohomology.

The zeroth Poisson cohomology group H0
Π(M) is the group of functions f ∈

C∞(M) such that Xf = −[Π, f ] = 0. In other words, H0
Π(M) is the space of

Casimir functions of Π, i.e. the space of first integrals of the associated sym-
plectic foliation.

The first Poisson cohomology group H1
Π(M) is the quotient of the space of

Poisson vector fields (i.e. vector fields X such that [Π, X] = 0) by the space of
Hamiltonian vector fields (i.e. vector fields of the type [Π, f ] = X−f ). Poisson vec-
tor fields are infinitesimal automorphisms of the Poisson structures, while Hamil-
tonian vector fields may be interpreted as inner infinitesimal automorphisms. Thus
H1

Π(M) may be interpreted as the space of outer infinitesimal automorphisms
of Π.

The second Poisson cohomology group H2
Π(M) is the quotient of the space of

2-vector fields Λ which satisfy the equation [Π, Λ] = 0 by the space of 2-vector fields
of the type Λ = [Π, Y ]. If [Π,Λ] = 0 and ε is a formal (infinitesimal) parameter,
then Π + εΛ satisfies the Jacobi identity up to terms of order ε2:

(2.5) [Π + εΛ, Π + εΛ] = ε2[Λ,Λ] = 0 mod ε2.

So one may view Π + εΛ as an infinitesimal deformation of Π in the space of
Poisson tensors. On the other hand, up to terms of order ε2, Π+ε[Π, Y ] is equal to
(ϕε

Y )∗Π, where ϕε
Y denotes the time-ε flow of Y . Therefore Π + ε[Π, Y ] is a trivial

infinitesimal deformation of Π up to a infinitesimal diffeomorphism. Thus, H2
Π(M)

is the quotient of the space of all possible infinitesimal deformations of Π by the
space of trivial deformations. In other words, H2

Π(M) may be interpreted as the
moduli space of formal infinitesimal deformations of Π. For this reason, the
second Poisson cohomology group plays a central role in the study of normal forms
of Poisson structures.

The third Poisson cohomology group H3
Π(M) may be interpreted as the space

of obstructions to formal deformation . Suppose that we have an infinitesimal
deformation Π + εΛ, i.e. [Π, Λ] = 0. Then a-priori, Π + εΛ satisfies the Jacobi
identity only modulo ε2. To make it satisfy the Jacobi identity modulo ε3, we have
to add a term ε2Λ2 such that

(2.6) [Π + εΛ + ε2Λ2,Π + εΛ + ε2Λ2] = 0 mod ε3.

The equation to solve is 2[Π,Λ2] = −[Λ, Λ]. This equation can be solved if and only
if the cohomology class of [Λ, Λ] in H3

Π(M) is trivial. Similarly, if (2.6) is already
satisfied, to find a term ε3Λ3 such that

(2.7) [Π + εΛ + ε2Λ2 + ε3Λ3,Π + εΛ + ε2Λ2 + ε3Λ3] = 0 mod ε4,

we have to make sure that the cohomology class of [Λ, Λ2] in H3
Π(M) vanishes, and

so on.
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The Poisson tensor Π is itself a cocycle in the Lichnerowicz complex. If the
cohomology class of Π in H2

Π(M) vanishes, i.e. there is a vector field Y such that
Π = [Π, Y ], then Π is called an exact Poisson structure .

2.1.3. Poisson cohomology versus de Rham cohomology.

Recall that, the Poisson structure Π gives rise to a homomorphism

(2.8) ] = ]Π : T ∗M −→ TM,

which associates to each covector α a unique vector ](α) such that

(2.9) 〈α ∧ β, Π〉 = 〈β, ](α)〉
for any covector β. This homomorphism is an isomorphism if and only if Π is
nondegenerate, i.e., is a symplectic structure. By taking exterior powers of the
above map, we can extend it to a homomorphism

(2.10) ] : ΛpT ∗M −→ ΛpTM,

and hence a C∞(M)-linear homomorphism

(2.11) ] : Ωp(M) −→ Vp(M),

where Ωp(M) denotes the space of smooth differential forms of degree p on M .
Recall that ] is called the anchor map of Π.

Lemma 2.1.3. For any smooth differential form η on a given smooth Poisson
manifold (M, Π) we have

(2.12) ](dη) = −[Π, ](η)] = −δΠ(](η)) .

Proof. By induction on the degree of η, using the Leibniz rule. If η is a function
then ](η) = η and ](dη) = −[Π, η] = Xη, the Hamiltonian vector field of η. If η = df
is an exact 1-form then ](dη) = 0 and [Π, ](η)] = [Π, Xf ] = 0, hence Equation
(2.12) is satisfied. If Equation (2.12) is satisfied for a differential p-form η and a
differential q-form µ, then its also satisfied for their exterior product η∧µ. Indeed,
we have ](d(η ∧µ)) = ](dη ∧µ + (−1)pη ∧ dµ) = ](dη)∧ ](µ) + (−1)p](η)∧ ](dµ) =
−[Π, ](η)] ∧ ](µ)− (−1)p](η) ∧ [Π, ](µ)] = −[Π, ](η) ∧ ](µ)] = −[Π, ](η ∧ µ)]. ¤

The above lemma means that, up to a sign, the operator ] intertwines the usual
differential operator d of the de Rham complex

(2.13) . . . −→ Ωp−1(M) d−→ Ωp(M) d−→ Ωp+1(M) −→ . . .

with the differential operator δΠ of the Lichnerowicz complex. In particular, it
induces a linear homomorphism of the corresponding cohomologies. In other words,
we have:

Theorem 2.1.4 ([127]). For every smooth Poisson manifold (M, Π), there is
a natural homomorphism

(2.14) ]∗ : H?
dR(M) =

⊕
p

Hp
dR(M) −→ H?

Π(M) =
⊕

p

Hp
Π(M)

from its de Rham cohomology to its Poisson cohomology, induced by the map ] = ]Π.
If M is a symplectic manifold, then this homomorphism is an isomorphism.
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When M is symplectic, ] is an isomorphism, and that’s why ]∗ is also an
isomorphism. ¤

Remark 2.1.5. de Rham cohomology has a graded Lie algebra structure, given
by the cap product (induced from the exterior product of differential forms). So does
Poisson cohomology. The Lichnerowicz homomorphism ]∗ : H?

dR(M) −→ H?
Π(M)

in the above theorem is not only a linear homomorphism, but also an algebra
homomorphism.

Remark 2.1.6. If (M, Π) is not symplectic then the map ]∗ : H?
dR(M) →

H?
Π(M) is not an isomorphism in general. In particular, while de Rham coho-

mology groups of manifolds of “finite type” (e.g. compact manifolds) are of finite
dimensions, Poisson cohomology groups may have infinite dimension in general. An
interesting and largely open question is: what are the conditions for the Lichnerow-
icz homomorphism to be injective or surjective ?

2.1.4. Other versions of Poisson cohomology.

If, in the Lichnerowicz complex, instead of smooth multi-vector fields, we con-
sider other classes of multi-vector fields, then we arrive at other versions of Poisson
cohomology. For example, if Π is an analytic Poisson structure, and one considers
analytic multi-vector fields, then one gets analytic Poisson cohomology.

Recall that, a germ of an object (e.g., a function, a differential form, a Rie-
mannian metric, etc.) at a point z is an object defined in a neighborhood of z.
Two germs at z are considered to be the same if there is a neighborhood of z in
which they coincide. When considering a germ of smooth (resp. analytic) Poisson
structure Π at a point z, it is natural to talk about germified Poisson cohomology :
the space V?(M) in the Lichnerowicz complex is replaced by the space of germs
of smooth (resp. analytic) multi-vector fields. More generally, given any subset N
of a Poisson manifold (M, Π), one can define germified Poisson cohomology at N .
Similarly, one can talk about formal Poisson cohomology. By convention, the germ
of a formal multi-vector field is itself. Viewed this way, formal Poisson cohomology
is the formal version of germified Poisson cohomology.

If M is not compact, then one may be interested in Poisson cohomology with
compact support, by restricting one’s attention to multi-vector fields with compact
support. Remark that Theorem 2.1.4 also holds in the case with compact support:
if (M, Π) is a symplectic manifold then its de Rham cohomology with compact
support is isomorphic to its Poisson cohomology with compact support.

If one considers only multi-vector fields which are tangent to the characteristic
distribution, then one gets tangential Poisson cohomology. (A multi-vector field λ
is said to be tangent to a distribution D on a manifold M if at each point x ∈ M
one can write Λ(x) =

∑
aivi1∧ . . .∧vis where vij are vectors lying in D). It is easy

to see that the homomorphism ]∗ in Theorem 2.1.4 also makes sense for tangential
Poisson cohomology (and tangential de Rham cohomology).

The above versions of Poisson cohomology also have a natural interpretation,
similar to the one given for smooth Poisson cohomology.

2.1.5. Computation of Poisson cohomology.
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If a Poisson structure Π on a manifold M is nondegenerate (i.e. symplectic),
then Poisson cohomology of Π is the same as de Rham cohomology of M . There
are many tools for computing de Rham cohomology groups, and these groups have
probably been computed for most “familiar” manifolds, see, e.g., [27, 85]. How-
ever, when Π is not symplectic, H?

Π(M) is much more difficult to compute than
H?

dR(M) in general, and at the moment of writing of this book, there are few Pois-
son (non-symplectic) manifolds for which Poisson cohomology has been computed.
For one thing, H?

Π(M) can have infinite dimension even when M is compact, and
the problem of determining whether H?

Π(M) is finite dimensional or not is already
a difficult open problem for most Poisson structures that we know of.

Nevertheless, various tools from algebraic topology and homological algebra can
be adapted to the problem of computation of Poisson cohomology. One of them
is the classical Mayer–Vietoris sequence (see, e.g., [27]). The following Poisson
cohomology version of Mayer–Vietoris sequence is absolutely analogous to its de
Rham cohomology version.

Proposition 2.1.7 ([195]). Let U and V be two open subsets of a smooth
Poisson manifold (M, Π). Then

(2.15) 0 −→ V?(U ∪ V ) α−→ V?(U)⊕ V?(V )
β−→ V?(U ∩ V ) −→ 0,

where α(Λ) = (Λ|U , Λ|V ) is the restriction map, and β(Λ1, Λ2) = Λ1|U∩V −Λ2|U∩V

is the difference map, is an exact sequence of smooth Lichnerowicz complexes, and
the corresponding cohomological long exact sequence (called the Mayer–Vietoris
sequence) has the form

(2.16) . . . −→ Hk(U ∪ V,Π) α∗−→ Hk(U, Π)⊕Hk(V, Π)
β∗−→

Hk(U ∩ V, Π) −→ Hk+1(U ∪ V, Π) α∗−→ . . . .

The proof of Proposition 2.1.7 is also absolutely similar to the proof of its de
Rham version. The above Mayer–Vietoris sequence reduces the computation of
Poisson cohomology on a manifold to the computation of Poisson cohomology on
small open sets (which contain singularities of the Poisson structure). To study
(germified) Poisson cohomology of singularities of Poisson structures, one can try
to use the tools from singularity theory. See, e.g., [151] for the case of dimension
2.

Another standard tool is the spectral sequence, which will be discussed in
Section 2.4.

In the case of linear Poisson structures, Poisson cohomology is intimately re-
lated to Lie algebra cohomology, also known as Chevalley–Eilenberg cohomology,
which will be discussed in Section 2.3.

Poisson cohomology can be viewed as a particular case of cohomology of Lie
algebroids. This leads to a definition and study of Poisson cohomology from a
purely algebraic point of view, as was done by Huebschmann [111].

Some other methods for computing and studying Poisson cohomology include:
the use of symplectic groupoids to reduce the computation of Poison cohomology
of certain Poisson manifolds to the computation of de Rham cohomology of other
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manifolds [212]; the van Est map which relates Lie algebroid cohomology with dif-
ferentiable cohomology of Lie groupoids [210, 56]; comparison of Poisson cohomol-
ogy of Poisson manifolds which are Morita equivalent [92, 91, 90, 56]; equivariant
Poisson cohomology [89].

2.2. Normal forms of Poisson structures

Consider a Poisson structure Π on a manifold M . In a given system of coordi-
nates (x1, . . . , xm), Π has the expression

(2.17) Π =
∑

i<j

Πij
∂

∂xi
∧ ∂

∂xj
=

1
2

∑

i,j

Πij
∂

∂xi
∧ ∂

∂xj
.

A priori, the coefficients Πij of Π may be very complicated, non-polynomial func-
tions. The idea of normal forms is to simplify these coefficients in the expression
of Π.

A (local) normal form of Π is a Poisson structure

(2.18) Π′ =
∑

i<j

Π′ij
∂

∂x′i
∧ ∂

∂x′j
=

1
2

∑

i,j

Π′ij
∂

∂x′i
∧ ∂

∂x′j

which is (locally) isomorphic to Π, i.e. there is a (local) diffeomorphism ϕ : (xi) 7→
(x′i) called a normalization such that ϕ∗Π = Π′, such that the functions Π′ij
are “simpler” than the functions Πij . The ideal would be that Π′ij were constant
functions. According to Remark 1.4.6, such a local normal form exists when Π is a
(locally) regular Poisson structure.

Near a singular point of Π, we can use the splitting theorem 1.4.5 to write Π as
the direct sum of a constant symplectic structure with a Poisson structure which
vanishes at a point. The local normal form problem for Π is then reduced to the
problem of local normal forms for a Poisson structure which vanishes at a point.

Having this in mind, we now assume that Π vanishes at the origin 0 of a given
local coordinate system (x1, . . . , xm). Denote by

(2.19) Π = Π(k) + Π(k+1) + . . . + Π(k+n) + . . . (k ≥ 1)

the Taylor expansion of Π in the coordinate system (x1, . . . , xm), where for each
h ∈ N, Π(h) is a 2-vector field whose coefficients Π(h)

ij are homogeneous polynomial
functions of degree h. Π(k), assumed to be non-trivial, is the term of lowest degree
in Π, and is called the homogeneous part , or principal part of Π. If k = 1
then Π(1) is called the linear part of Π, and so on. This homogeneous part can
be defined intrinsically, i.e. it does not depend on the choice of local coordinates.

At the formal level, the Jacobi identity for Π can be written as

0 = [Π,Π] = [Π(k) + Π(k+1) + . . . , Π(k) + Π(k+1) + . . .]

= [Π(k), Π(k)] + 2[Π(k), Π(k+1)] + 2[Π(k), Π(k+2)] + [Π(k+1),Π(k+1)] + . . . ,

which leads to (by considering terms of the same degree):

(2.20)

[Π(k), Π(k)] = 0,
2[Π(k), Π(k+1)] = 0,
2[Π(k), Π(k+2)] + [Π(k+1), Π(k+1)] = 0,
. . .
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In particular, the homogeneous part Π(k) of Π is a Poisson structure, and Π
may be viewed as a deformation of Π(k). A natural homogenization question arises:
is this deformation trivial ? In other words, is Π locally (or formally) isomorphic to
its homogeneous part Π(k) ? That’s where Poisson cohomology comes in, because,
as explained in Subsection 2.1.2, Poisson cohomology governs (formal) deformations
of Poisson structures.

When k = 1, one talks about the linearization problem, and when k = 2 one
talks about the quadratization problem, and so on. These problems, for Poisson
structures and related structures like Nambu structures, Lie algebroids and Lie
groupoids, will be studied in detail in the subsequent chapters of this book. Here we
will discuss, at the formal level, a more general problem of quasi-homogenization .

Denote by

(2.21) Z =
n∑

i=1

wixi
∂

∂xi
, wi ∈ N

a given diagonal linear vector field with the following special property: its coeffi-
cients wi are positive integers. Such a vector field is called a quasi-radial vector
field . (When wi = 1 ∀i, we get the usual radial vector field).

A multi-vector field Λ is called quasi-homogeneous of degree d (d ∈ Z) with
respect to Z if

(2.22) LZΛ = dΛ.

For a function f , it means Z(f) = df . For example, a monomial k-vector field

(2.23)
( n∏

i=1

xai
i

) ∂

∂xj1

∧ . . . ∧ ∂

∂xjk

, ai ∈ Z≥0,

is quasi-homogeneous of degree
∑n

i=1 aiwi −
∑k

s=1 wjs . In particular, monomial
terms of high degree in the usual sense (i.e. with large

∑
ai) also have high quasi-

homogeneous degree. As a consequence, quasi-homogeneous (smooth, formal or
analytic) multi-vector fields are automatically polynomial in the usual sense. Note
that the quasi-homogeneous degree of a monomial multi-vector field can be negative,
though it is always greater or equal to −∑n

i=1 wi.

Given a Poisson structure Π with Π(0) = 0, by abuse of notation, we will now
denote by

(2.24) Π = Π(d1) + Π(d2) + . . . , d1 < d2 < . . .

the quasi-homogeneous Taylor expansion of Π with respect to Z, where each term
Π(di) is quasi-homogeneous of degree di. The term Π(d1), assumed to be non-
trivial, is called the quasi-homogeneous part of Π. Similarly to the case with
usual homogeneous Taylor expansion, the Jacobi identity for Π implies the Jacobi
identity for Π(d1), which means that Π(d1) is a quasi-homogeneous Poisson structure,
and Π may be viewed as a deformation of Π(d1). The quasi-homogenization problem
is the following : is there a transformation of coordinates which sends Π to Π(d1),
i.e. which kills all the terms of quasi-homogeneous degree > d1 in the expression of
Π?

In order to treat this quasi-homogenization problem at the formal level, we will
need the quasi-homogeneous graded version of Poisson cohomology.
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Let Π(d) be a Poisson structure on an n-dimensional space V = Kn, which
is quasi-homogeneous of degree d with respect to a given quasi-radial vector field
Z =

∑n
i=1 wixi

∂
∂xi

. For each r ∈ Z, denote by Vk
(r) = Vk

(r)(K
n) the space of quasi-

homogeneous polynomial k-vector fields on Kn of degree r with respect to Z. Of
course, we have

(2.25) Vk = ⊕rVk
(r),

where Vk = Vk(Kn) is the space of all polynomial vector fields on Kn. Note that,
if Λ ∈ Vk

(r) then

LZ [Π(d), Λ] = [LZΠ(d), Λ] + [Π(d),LZΛ] = (d + r)[Π(d), Λ],

i.e. δΠ(d)Λ = [Π(d), Λ] ∈ Vk+1
r+d . The group

(2.26) Hk
(r)(Π

(d)) =
ker(δΠ(d) : Vk

(r) −→ Vk+1
(r+d))

Im(δΠ(d) : Vk−1
(r−d) −→ Vk

(r))

is called the k-th quasi-homogeneous of degree r Poisson cohomology group of Π(d).
Of course, there is a natural injection from Hk

(r)(Π
(d)) to the usual (formal, analytic

or smooth) Poisson cohomology group Hk(Π(d)) of Π(d) over Kn. While Hk(Π(d))
may be of infinite dimension, Hk

(r)(Π
(d)) is always of finite dimension (for each r).

Return now to the quasi-homogeneous Taylor series Π = Π(d1) + Π(d2) + . . ..
The Jacobi identity for Π implies that [Π(d1),Π(d2)] = 0, i.e. Π(d2) is a quasi-
homogeneous cocycle in the Lichnerowicz complex of Π(d1). If this term Π(d2) is a
coboundary, i.e. Π(d2) = [Π(d1), X(d2−d1)] for some quasi-homogeneous vector field
X(d2−d1) = X

(d2−d1)
i ∂/∂xi, then the coordinate transformation x′i = xi −X

(d2−d1)
i

will kill the term Π(d2) in the expression of Π. More generally, we have:

Proposition 2.2.1. With the above notations, suppose that Π(dk) = [X, Π(d1)]+
Λ(dk) for some k > 1, where X = Xi∂/∂xi is a quasi-homogeneous vector field of
degree dk − d1. Then the diffeomorphism (coordinate transformation) φ : (xi) 7→
(x′i) = (xi −Xi) transforms Π into

(2.27) φ∗Π = Π(d1) + . . . + Π(dk−1) + Λ(dk) + Π̃(dk+1) . . . .

In other words, this transformation suppresses the term [X, Π(d1)] without changing
the terms of degree strictly smaller than dk.

Proof. Denote by Γ = φ∗Π. For the Poisson structure Π we have

{x′i, x′j} =
∑
uv

∂x′i
∂xu

∂x′j
∂xv

{xu, xv} =
∑
uv

∂x′i
∂xu

∂x′j
∂xv

Πuv =

=
∑
uv

(δu
i −

∂Xi

∂xu
)(δv

j −
∂Xj

∂xv
)(Π(d1) + Π(d2) + . . .)uv,

where δu
i is the Kronecker symbol, and the terms of degree smaller or equal to dk

in this expression give

(Π(d1) + . . . + Π(dk))ij −
∑

u

∂Xi

∂xu
Π(d1)

uj −
∑

v

∂Xj

∂xv
Π(d1)

iv .
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On the other hand, by definition, {x′i, x′j} is equal to Γij ◦φ. But the terms of degree
smaller or equal to dk in the expansion of Γij ◦ φ are

(Γ(d1) + . . . + Γ(dk))ij −
∑

s

Xs

∂Γ(d1)
ij

∂xs
.

Comparing the terms of degree d1, . . . , dk−1, we get Γ(d1)
ij = Π(d1)

ij , . . . , Γ(dk−1)
ij =

Π(dk−1)
ij . As for the terms of degree dk, they give

Γ(dk)
ij −

∑
s

Xs

∂Π(d1)
ij

∂xs
= Π(dk)

ij −
∑

u

∂Xi

∂xu
Π(d1)

uj −
∑

v

∂Xj

∂xv
Π(d1)

iv .

As we have

[X, Π(d1)]ij =
∑

s

Xs

∂Π(d1)
ij

∂xs
−

∑
u

∂Xi

∂xu
Π(d1)

uj −
∑

v

∂Xj

∂xv
Π(d1)

iv ,

it follows that

Γ(dk)
ij = Π(dk)

ij + [X, Π(d1)]ij = Π(dk)
ij − [Π(d1), X]ij = Λ(dk)

ij .

The proposition is proved. ¤

Theorem 2.2.2. If the quasi-homogeneous Poisson cohomology groups H2
(r)(Π

(d))
of a quasi-homogeneous Poisson structure Π(d) of degree d are trivial for all r > d,
then any Poisson structure admitting a formal quasi-homogeneous expansion Π =
Π(d) + Π(d2) + . . . is formally isomorphic to its quasi-homogeneous part Π(d).

Proof. Use Proposition 2.2.1 to kill the terms of degree strictly greater than
d in Π consecutively. ¤

Example 2.2.3. One can use Theorem 2.2.2 to show that any Poisson structure
on K2 of the form Π = f ∂

∂x ∧ ∂
∂y , where f = x2+y3+ higher order terms, is formally

isomorphic to (x2 + y3) ∂
∂x ∧ ∂

∂y . (This is a simple singularity studied by Arnold,
see Theorem ??). The quasi-radial vector field in this case is Z = 3x ∂

∂x + 2y ∂
∂y .

2.3. Cohomology of Lie algebras

Let Π(1) be a linear Poisson structure on a vector space Kn. Denote by g =
((Kn)∗, {, }Π(1)) the Lie algebra corresponding to Π(1). We will see in this section
that Poisson cohomology groups of Π(1) are special cases of Lie algebra cohomology
of g.

2.3.1. Chevalley–Eilenberg complexes.

Let W be a g-module, i.e. a vector space together with a Lie algebra homo-
morphism ρ : g → End(W ) from g to the Lie algebra of endomorphisms of W . In
other words, ρ is a linear map such that ρ([x, y]) = ρ(x).ρ(y)− ρ(y).ρ(x) ∀x, y ∈ g.
The action of an element x ∈ g on a vector v ∈ W is defined by

(2.28) x.v = ρ(x)(v).
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One associates to W the following complex, called Chevalley–Eilenberg complex
of g with coefficients in W [51]:

(2.29) . . .
δ−→ Ck−1(g, ρ) δ−→ Ck(g, ρ) δ−→ Ck+1(g, ρ) δ−→ . . . ,

where

(2.30) Ck(g, ρ) = (∧kg∗)⊗W

(k ≥ 0) is the space of k-multilinear antisymmetric maps from g to W : an element
θ ∈ Ck(g, ρ) may be presented as a k-multilinear antisymmetric map from g to W ,
or a linear map from ∧kg to W :

(2.31) θ(x1, . . . , xk) = θ(x1 ∧ . . . ∧ xk) ∈ W, xi ∈ g.

The operator δ = δCE : Ck(g, ρ) → C(k+1)(g, ρ) in the Chevalley–Eilenberg com-
plex is defined as follows:

(2.32) (δθ)(x1, . . . , xk+1) =
∑

i

(−1)i+1ρ(xi)(θ(x1, . . . x̂i . . . , xk+1))+

+
∑

i<j

(−1)i+jθ([xi, xj ], x1, . . . x̂i . . . x̂j . . . , xk+1),

the symbol ̂ above a variable means that this variable is missing in the list.

It is a classical result [51], which follows directly from the Jacobi identity of g,
that δCE ◦δCE = 0. It means that the Chevalley–Eilenberg complex is a differential
complex with differential operator δ = δCE . Its cohomology groups

(2.33) Hk(g, ρ) = Hk(g,W ) =
ker(δ : Ck(g, ρ) −→ Ck+1(g, ρ))
Im(δ : Ck−1(g, ρ) −→ Ck(g, ρ))

are called cohomology groups of g with coefficients in W (or with respect to the
representation ρ).

Remark 2.3.1. Formula (2.32) is absolutely analogous to Cartan’s formula
(1.7). This construction of differential operators is sometimes referred to as Cartan–
Chevalley–Eilenberg construction . If G is a connected Lie group with Lie
algebra g, then the space Ω?

L(G) of left-invariant differential forms on G is a
subcomplex of the de Rham complex of G which is naturally isomorphic to the
Chevalley-Eilenberg C?(G,R) for the trivial action of g on R, which implies that
their cohomologies are also isomorphic:

(2.34) H?
L(G) ∼= H?(g,R).

(The isomorphism from Ω?
L(G) to C?(G,R) associates to each left-invariant dif-

ferential form on G its value at the neutral element e of G, after the identifica-
tion of g∗ with T ∗e G). In particular, when G is compact, the averaging process
α 7→ ∫

G
L∗gαdg (where α denotes a differential form on G, and Lg denotes the left

translation by g ∈ G) induces an isomorphism from H?
dR(G) to H?

L(G), and we
have H?

dR(G) ∼= H?(g,R).

Exercise 2.3.2. Show that, given a smooth Poisson manifold (M, Π), its Lich-
nerowicz complex can be identified with a subcomplex of the Chevalley-Eilenberg
complex of the (infinite-dimensional) Lie algebra C∞(M) with coefficients in C∞(M)
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(with respect to the adjoint action given by the Poisson bracket), which consists of
cochains which are multi-derivations. (Hint: use Formula (1.75)).

In general, the problem of computation of H(g,W ) for a finite-dimensional g-
module W of a finite-dimensional Lie algebra g is a problem of linear algebra: one
simply has to deal with finite-dimensional systems of linear equations. However,
even for low dimensional Lie algebras, these systems of linear equations often have
high dimensions and require thousands or millions of computations, so it is not easy
to do it by hand.

Fortunately, cohomology of semisimple Lie algebras is relatively simple, due in
part to the following results, known as Whitehead’s lemmas.

Theorem 2.3.3 (Whitehead). If g is semisimple, and W is a finite-dimensional
g-module, then H1(g, W ) = 0 and H2(g,W ) = 0.

Theorem 2.3.4 (Whitehead). If g is semisimple, and W is a finite-dimensional
g-module such that W g = 0, where W g = {w ∈ W | x.w = 0 ∀ x ∈ g} denotes the
set of elements in W which are invariant under the action of g, then Hk(g,W ) =
0 ∀ k ≥ 0.

See, e.g., [115] for the proof of Whitehead’s lemmas. A refined (normed)
version of Theorem 2.3.3 will be proved in Chapter 3. Let us also mention that if
g is simple then dim H3(g,K) = 1. Combining the two Whitehead’s lemmas with
the fact that any finite-dimensional module W of a semisimple Lie algebra g is
completely reducible, one gets the following formula:

(2.35) H?(g, W ) = H?(g,K)⊗W g =
⊕

k 6=1,2

Hk(g,K)⊗W g.

Remark 2.3.5. If W is a smooth Fréchet module of a compact Lie group G
and g is the Lie algebra of G, then the formula H?(g,W ) = H?(g,R)⊗W g is still
valid, see Ginzburg [89]. In particular, if a compact Lie group G acts on a smooth
manifold M , then C∞(M) is a smooth Fréchet G-module, and we have

(2.36) H?(g, C∞(M)) = H?(g,R)⊗ (C∞(M))g.

Remark 2.3.6. Cohomology of Lie algebras is closely related to differentiable
(or continuous) cohomology of Lie groups, via the so called van Est map and van
Est spectral sequence. See, e.g., [26, 97].

2.3.2. Cohomology of linear Poisson structures.

Consider now the case W = Sqg, the q-symmetric power of g together with the
adjoint action of g:

(2.37) ρ(x)(xi1 . . . xiq ) =
q∑

s=1

xi1 . . . [x, xis ] . . . xiq .

Since g = ((Kn)∗, {, }Π(1)), the space W = Sqg can be naturally identified with the
space of homogeneous polynomials of degree q on Kn, and we can write

(2.38) ρ(x).f = {x, f},
where f ∈ Sqg, and {x, f} denotes the Poisson bracket of x with f with respect to
Π(1).
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Denote by Vp
(q) = Vp

(q)(K
n) the space of homogeneous p-vector fields of degree

q. (It is the same as the space of quasi-homogeneous p-vector fields of quasi-
homogeneous degree q − p with respect to the radial vector field

∑
xi∂/∂xi). Vp

(q)

can be identified with Cp(g,Sqg) as follows: For

(2.39) A =
∑

i1<···<ip

Ai1,...,ip

∂

∂xi1

∧ · · · ∧ ∂

∂xip

∈ Vp
(q)

define θA ∈ Cp(g,Sqg) by

(2.40) θA(xi1 , . . . , xip) = Ai1,...,ip .

Lemma 2.3.7. With the above identification A ↔ θA, the Lichnerowicz dif-
ferential operator δLP = [Π(1), .] : Vp

(q) −→ Vp+1
(q) is identified with the Chevalley–

Eilenberg differential operator δCE : Cp(g,Sqg) −→ Cp+1(g,Sqg).

Proof. We must show that θ[Π(1),A] = δCEθA for A ∈ Vp
(q). Write Π(1) =

1
2

∑
i,j,k ck

ijxk
∂

∂xi
∧ ∂

∂xj
, and A = 1

p!

∑
i1,...,ip

Ai1,...,ik

∂
∂xi1

∧ . . . ∧ ∂
∂xip

. Denote the

Poisson bracket of Π(1) by {, }. By the Leibniz rule, we have

[Π(1), A] = E1 + E2

where

E1 =
1
p!

∑
[Π(1), Ai1,...,ip ] ∧ ∂

∂xi1

∧ . . . ∧ ∂

∂xip

=
1
p!

∑

i1,...,ip,i

{xi, Ai1,...,ip}
∂

∂xi
∧ ∂

∂xi1

∧ . . . ∧ ∂

∂xip

and

E2 =
1
p!

∑
Ai1,...,ip [Π(1),

∂

∂xi1

∧ . . . ∧ ∂

∂xip

]

=
1

2p!

∑

i1,...,ip,i,j,s

(−1)sAi1,...,ipcis
ij

∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xi1

∧ . . .
∂̂

∂xis

. . . ∧ ∂

∂xip

.

It means that

E1(dxi1 , . . . , dxip+1) =
∑

s

(−1)s+1{xis , Ai1,...bis...,ip+1
}

and

E2(dxi1 , . . . , dxip+1) =
∑

u<v;k

(−1)u+vAk,i1,... biu...biv...,ip+1
ck
iuiv

.
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On the other hand, we have

δθA(xi1 , . . . , xip+1) =

=
∑

u

(−1)u+1ρ(xiu)A(xi1 , . . . x̂iu . . . , xip+1)

+
∑
u<v

(−1)u+vA([xiu , xiv ], xi1 , . . . x̂iu . . . x̂iv . . . , xip+1)

=
∑

u

(−1)u+1{xiu , Ai1,... biu...,ip+1
}

+
∑

u<v;k

(−1)u+vck
iuiv

A(xk, xi1 , . . . x̂iu
. . . x̂iv

. . . , xip+1).

It remains to compare the above formulas. ¤

An immediate consequence of Lemma 2.3.7 and Theorem 2.2.2 is the following:

Theorem 2.3.8 ([205]). If g is a finite-dimensional Lie algebra such that
H2(g,Skg) = 0 ∀ k ≥ 2, then any formal Poisson structure Π which vanishes
at a point and whose linear part Π(1) at that point corresponds to g is formally
linearizable. In particular, it is the case when g is semisimple.

Remark 2.3.9. In Lemma 2.3.7, the fact that A is homogeneous is not so
important. What is important is that the module W in question can be identified
with a subspace of the space of functions on Kn, where the action of g is given by
the Poisson bracket, i.e. by Formula (2.38). The following smooth (as compared to
homogeneous) version of Lemma 2.3.7 is also true, with a similar proof (see, e.g.,
[89, 93, 130, 131]): if U is an Ad∗-invariant open subset of the dual g∗ of the
Lie algebra g of a connected Lie group G (or more generally, an open subset of
a dual Poisson-Lie group G∗ which is invariant under the dressing action of G –
Poisson-Lie groups will be introduced later in the book), then

(2.41) H?
Π(U) ∼= H?(g, C∞(U)) ,

where the action of g on C∞(U) is induced by the coadjoint (or dressing) action, and
a natural isomorphism exists already at the level of cochain complexes. In particu-
lar, if G is compact semisimple, then this formula together with the Fréchet-module
version of Whitehead’s lemmas (Remark 2.3.5) leads to the following formula (see
[93]):

(2.42) H?
Π(U) = H?(g)⊗ (C∞(U))G =

⊕

k 6=1,2

Hk(g)⊗ (C∞(U))G.

2.3.3. Rigid Lie algebras.

Theorem 2.3.8 means that the second cohomology group

H2(g,S≥2g) =
⊕

k≥2

H2(g,Skg)

governs nonlinear deformations of the linear Poisson structure of g∗. Meanwhile, the
group H2(g, g) governs deformations of g itself (or equivalently, linear deformations
of the Poisson structure on g∗ associated to g).
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An n-dimensional Lie algebra g over K can be determined by its structure
constants ck

ij with respect to a given basis (xi): [xi, xj ]g =
∑

ck
ijxk. The n3-

tuple of coefficients (ck
ij) is called a Lie algebra structure of dimension n. The

set A(n,K) ⊂ Kn3
of all Lie algebra structures of dimension n is an algebraic

variety (the Jacobi identity and the anti-commutativity give the system of algebraic
equations which determine this set). The full linear group GL(n,K) acts naturally
on A(n,K) by changes of basis, and two Lie algebra structures are isomorphic if
and only if they lie on the same orbit of GL(n,K). An n-dimensional Lie algebra g
is called rigid if the orbit of its structure is an open subset of A(n,K) with respect
to the usual topology induced from the Euclidean topology of Kn3

; equivalently,
any Lie algebra g′ close enough to g is isomorphic to g.

Theorem 2.3.10 (Nijenhuis–Richardson [161]). If g is a finite dimensional
Lie algebra such that H2(g, g) = 0 then g is rigid. In particular, semisimple Lie
algebras are rigid.

Remark 2.3.11. The condition H2(g, g) = 0 is a sufficient but not a necessary
condition for the rigidity of a Lie algebra. For example, Richardson [173] showed
that, for any odd integer n > 5, the semi-direct product ln = sl(2,K) nW 2n+1,
where W 2n+1 is the (2n+1)-dimensional irreducible sl(2,K)-module, is rigid but has
H2(ln, ln) 6= 0. In fact, H2(g, g) 6= 0 means that there are non-trivial infinitesimal
deformations, but not every infinitesimal deformation can be made into a true
deformation. See, e.g., [39, 40, 95].

2.4. Spectral sequences

2.4.1. Spectral sequence of a filtered complex.

Spectral sequences are one of the main tools for computing cohomology groups.
The general idea is as follows.

Let (C = ⊕k∈Z+Ck, δ) be a differential complex. It means that Ck (k ≥ 0) are
vector spaces (or more generally, Abelian groups), and δ : Ck → Ck+1 are linear
operators such that δ ◦ δ = 0.

Assume that (C, δ) admits a filtration (Ch)h∈N. It means that each Ck is
filtered by subspaces

(2.43) Ck = Ck
0 ⊃ Ck

1 ⊃ Ck
2 ⊃ . . . ,

such that δCk
h ⊂ Ck+1

h ∀ k, h. In other words, Ch =
⊕

k Ck
h is a differential subcom-

plex of Ch−1 for h ≥ 1, and C0 = C. Put Ch = C if h < 0 by convention. Using
this filtration, one decomposes cohomology groups

(2.44) Hk(C) =
Zk

Bk
=

ker(δ : Ck −→ Ck+1)
Im(δ : Ck−1 −→ Ck)

into smaller pieces Hk
h(C)/Hk

h+1(C), where Hk
h(C) consists of the elements of

Hk(C) which can be represented by cocycles lying in Ck
h . The group

(2.45)
⊕

h≥0

Hk
h(C)/Hk

h+1(C).

is called the graded version of Hk(C); it is linearly isomorphic to Hk(C) if, say, the
filtration is finite, i.e. Cn = 0 for some n ∈ N.
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A way to compute Hk
h(C)/Hk

h+1(C) and Hk(C) is to use the spectral sequence
(Ep,q

r )r≥0 of the above filtered complex. By definition,

(2.46) Ep,q
r =

Zp,q
r + Cp+q

p+1

Bp,q
r + Cp+q

p+1

where

(2.47) Zp,q
r =

{
y ∈ Cp+q

p | δy ∈ Cp+q+1
p+r

}

and

(2.48) Bp,q
r =

{
y ∈ Cp+q

p | y = δz, z ∈ Cp+q−1
p−r+1

}
.

Clearly, Bp,q
r ⊂ Zp,q

r , Bp,q
r ⊂ Bp,q

r+1 and Zp,q
r ⊃ Zp,q

r+1. Hence Ep,q
r is well-defined,

and is bigger than Ep,q
r+1. (There is a surjection from a subgroup of Ep,q

r to Ep,q
r+1).

As r tends to ∞, the group Ep,q
r gets smaller and smaller, and it approximates

better and better the group Hp+q
p (C)/Hp+q

p+1 (C). In fact, if the filtration is of finite
length, i.e. Cn = 0 for some n ∈ N, then

(2.49) Ep,q
r =

Zp+q ∩ Cp+q
p + Cp+q

p+1

Bp+q ∩ Cp+q
p + Cp+q

p+1

∼= Hp+q
p (C)/Hp+q

p+1 (C) ∀ r ≥ n, p.

In general, one says that (Ep,q
r ) converges if its limit

(2.50) Ep,q
∞ = lim

r→∞
Ep,q

r

is isomorphic to Hp+q
p (C)/Hp+q

p+1 (C).

The terms Ep,q
r of the spectral sequence can be computed inductively on r

(that’s why they are useful for computing Hp+q
p (C)/Hp+q

p+1 (C)). The zeroth term
is:

(2.51) Ep,q
0 = Cp+q

p /Cp+q
p+1 .

In other words, E0 = ⊕Ep,q
0 is just the graded version of the complex C. For

r ≥ 0, the differential operator δ induces an operator on (Ep,q
r ), denoted by δr:

(2.52) δr : Ep,q
r → Ep+r,q−r+1

r .

(The image of y ∈ Zp,q
r mod Bp,q

r + Cp+q
p+1 under δr is δy ∈ Zp+r,q−r+1

r mod
Bp+r,q−r+1

r + Cp+q
p+r+1. One verifies directly that δr is well-defined).

Since δ ◦ δ = 0, we also have δr ◦ δr = 0, i.e. δr is a differential operator. It
turns out that Ep,q

r+1 is nothing but the cohomology of Ep,q
r with respect to δr:

(2.53) Ep,q
r+1 =

ker(δr : Ep,q
r −→ Ep+r,q−r+1

r )
Im(δr : Ep−r,q+r−1

r −→ Ep,q
r )

.

Exercise 2.4.1. Verify Formula (2.53), starting from (2.46), (2.47) and (2.48).

Remark 2.4.2. In the literature, Formula (2.53) is often used in the definition
of spectral sequences, and Formulas (2.46), (2.47) and (2.48) only show up after or
not at all.
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2.4.2. Leray spectral sequence.

As a first example of spectral sequences, let us consider a locally trivial fibration
π : M → N of a manifold M over a connected manifold N with fibers diffeomorphic
to F . The de Rham complex Ω?(M) of differential forms on M admits a natural
filtration with respect to this fibration: Ωk

h(M) (h ≥ 0) is the subspace of Ωk(M)
consisting of k-forms ω which satisfy the following condition:
(2.54)
ωx(X1, . . . , Xk) = 0 ∀x ∈ M, X1, . . . Xk ∈ TxM s.t. π∗X1 = . . . = π∗Xk−h+1 = 0.

The associated spectral sequence of this filtration is known as the Leray spectral
sequence . Its zeroth term Ep,q

0 can be written as follows:

(2.55) Ep,q
0

∼= Ωp(N, Ωq(F )).

More precisely, Ep,q
0 = Ωp+q

p (M)/Ωp+q
p+1(M) is naturally isomorphic to the space of

vector-valued p-forms on N with values in the vector bundle over N whose fiber
over a point y ∈ N is the space of q-forms on the fiber Fy = π−1(y) of the fibration
of M over N . The first and second terms are

(2.56) Ep,q
1 = Ωp(N, Hq(F ))

and

(2.57) Ep,q
2 = Hp(N, Hq(F )).

In the above formulas, Hq(F ) must be understood as a vector bundle over N whose
fiber over y ∈ N is Hq

dR(Fy), i.e., it is a local system of coefficients. If N is simply
connected then this bundle is automatically trivial and we can write

(2.58) Ep,q
2 = Hp

dR(N)⊗Hq
dR(F ).

Example 2.4.3. The de Rham cohomology of the special unitary groups SU(n)
can be computed inductively on n with the help of the Leray spectral sequence
associated to the natural fibration of SU(n) over S2n−1 with fiber SU(n− 1) (this
fibration is obtained via the natural action of SU(n) on the unit sphere S2n−1 in
Cn). When n = 2, SU(2) is diffeomorphic to the 3-dimensional sphere S3, so we
will simply write H?

dR(SU(2)) = H?
dR(S3). When n = 3, the second terms of the

Leray spectral sequence of the fibration SU(2) → SU(3) → S5 are as follows:

E0,3
2 = R, E5,3

2 = R,

E0,0
2 = R, E5,0

2 = R,

(the other second terms are zero). The differential δ2 is automatically trivial, be-
cause, for example, it maps the nontrivial term E0,3

2 to the trivial term E2,2
2 . Sim-

ilarly, all the other differentials δr, r ≥ 2, are trivial, because there are only 4
nontrivial cells E0,3, E5,3, E0,0, E5,0, and no differential δr connects two of these
cells. It means that the Leray spectral sequence degenerates at E2, implying that

(2.59) H?
dR(SU(3)) ∼= H?

dR(SU(2))⊗H?
dR(S5) ∼= H?

dR(S3 × S5).

This isomorphism between H?
dR(SU(3)) and H?

dR(S3 × S5) is actually an algebra
isomorphism, because the Leray spectral sequence is compatible with the product
structure of de Rham cohomology in a natural sense. Using this compatibility,
one can show inductively on n that the Leray spectral sequence for the fibration
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SU(n − 1) → SU(n) → Sn−1 degenerates at the second term E2 for any n ≥ 3,
leading to the following algebra isomorphism:

(2.60) H?
dR(SU(n)) ∼= H?

dR(S3 × S5 × . . .× S2n−1).

See, e.g., [27, 85] for details and other applications of Leray spectral sequences and
other spectral sequences in topology.

2.4.3. Hochschild–Serre spectral sequence.

Given a Lie algebra l, a Lie subalgebra r ⊂ l, and an l-module W , the Chevalley–
Eilenberg complex C(l,W ) has the following natural filtration with respect to r:

(2.61) Ck
h(l,W ) =

{
f ∈ Ck(l,W ) | f(x1, . . . , xk) = 0 if x1, . . . , xk−h+1 ∈ r

}
.

By convention, Ck
0 (l,W ) = Ck(l,W ), and Ck

h(l,W ) = 0 if h > k. One checks
directly that δCh(l,W ) ⊂ Ch(l,W ), i.e. it is really a filtered complex. The corre-
sponding spectral sequence is known as the Hochschild–Serre spectral sequence
[109].

We will be mainly interested in a special case of this spectral sequence, when
r is an ideal of l, and the quotient Lie algebra g = l/r is semisimple. (This is the
case, for example, when r is the radical , i.e. the maximal solvable ideal of l). In
this case, Hochschild–Serre spectral sequence leads to the following theorem.

Theorem 2.4.4 (Hochschild–Serre [109]). Let l be a finite dimensional Lie
algebra over K (K = R or C), r be an ideal of l such that g = l/r is semisimple,
and W be a finite-dimensional l-module. Then

(2.62) Hk(l, W ) ∼=
⊕

i+j=k

Hi(g,K)⊗Hj(r,W )g ∀ k ≥ 0.

In the above theorem, Hj(r, W ) has a natural structure of g-module which
will be explained below, and Hj(r,W )g is the subspace of Hj(r,W ) consisting of
elements which are invariant under the action of g.

Proof (sketch). Since g is semisimple, by the classical Levi–Malcev theorem
there is a Lie algebra injection g → l whose composition with the projection map
l → l/r = g is identity. (See, e.g., [28, 196], and the beginning of Chapter 3). In
other words, we may assume that g is a Lie subalgebra of l. As a vector space, l is
the direct sum of g with r. As a Lie algebra, l can be written a semi-direct product
l = gn r.

By definition, the zeroth term Ep,q
0 of the spectral sequence is

(2.63) Ep,q
0 = Cp+q

p (l,W )/Cp+q
p+1(l,W ).

This space can be naturally identified with Cp(g, Cq(r, W )). Indeed, if we de-
note by (x1, . . . , xm, y1, . . . , yn−m) a basis of l such that (x1, . . . , xm) span g and
(y1, . . . , yn−m) span r, then an element f ∈ Cp+q

p (l,W ) mod Cp+q
p+1(l,W ) is com-

pletely determined by its value on elements of the type

xi1 ∧ . . . ∧ xip ∧ yj1 ∧ . . . ∧ yjq .

The map

θf : xi1 ∧ . . . ∧ xip 7→
(
yj1 ∧ . . . ∧ yjq 7→ f(xi1 ∧ . . . ∧ xip ∧ yj1 ∧ . . . ∧ yjq )

)
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is a linear map from ∧pg to Cq(r,W ), i.e. θf ∈ Cp(g, Cq(r, W )). Note that
Cq(r,W ) = ∧qr ⊗ W is a g-module: g acts on W by the restriction of the ac-
tion of l; it acts on r by the adjoint action of g in l, and on r∗ by the dual action.
It is clear that the correspondence f ↔ θf is one-to-one. Thus, we can write

(2.64) Ep,q
0

∼= Cp(g, Cq(r, W )).

The next step is to look at the first spectral term Ep,q
1 , which is the coho-

mology of Ep,q
0 with respect to δ0 : Ep,q

0 → Ep,q+1
0 . Using the identification

Ep,q
0

∼= Cp(g, Cq(r, W )), we can write δ0 as

(2.65) δ0 : Cp(g, Cq(r,W )) → Cp(g, Cq+1(r,W )).

It follows that

(2.66) Ep,q
1

∼= Cp(g,Hq(r,W )).

Similarly, we have

(2.67) Ep,q
2

∼= Hp(g,Hq(r,W )).

Whitehead’s lemma (see Formula (2.35)) implies that

(2.68) Ep,q
2

∼= Hp(g,Hq(r, W )g) ∼= Hp(g,K)⊗Hq(r,W )g.

If f ∈ ∧pg∗ and g ∈ ∧qr∗ ⊗W are cocycles, and moreover g is invariant under the
action of g on ∧qr∗ ⊗W , then their product

(2.69) f ⊗ g ∈ ∧pg∗ ⊗ ∧qr∗ ⊗W ⊂ ∧p+ql∗ ⊗W

is a cocycle. Equation (2.68) means that elements of Ep,q
2 can be written as linear

combinations of such cocycles f ⊗ g. In particular, any element of Ep,q
2 can be

represented by a cocycle in Zp+q(l,W ). It implies that δ2 = δ3 = . . . = 0, and the
Hochschild–Serre spectral sequence degenerates (stabilizes) at E2, i.e.

Ep,q
2 = Ep,q

3 = . . . = Ep,q
∞ .

Since the filtration is clearly of finite length, we have

Hp+q
p (l,W )/Hp+q

p+1 (l,W ) ∼= Ep,q
∞ ∼= Hp(g,K)⊗Hq(r,W )g

and

Hk(l,W ) ∼=
⊕

p

Hk
p (l,W )

Hk
p+1(l,W )

∼=
⊕

p+q=k

Hp(g,K)⊗Hq(r,W )g.

¤

2.4.4. Spectral sequence for Poisson cohomology.

Given a smooth Poisson manifold (M, Π), there is a natural filtration of the
Lichnerowicz complex, induced by the characteristic distribution as follows. De-
note by Vq

k(M, Π) the space of smooth q-vector fields Λ on M with the following
property: Λ(x) ∈ ∧k(Im]x) ∧ ∧q−kTxM ∀ x ∈ M . In other words, Λ(x) is a linear
combination of q-vectors of the type Y1∧ . . .∧Yq with Y1, . . . , Yk ∈ Im]x. It is clear
that Π ∈ V2

2 (M, Π), V?(M) = V?
0 (M, Π) ⊃ V?

1 (M, Π) ⊃ . . . ⊃ V?
(rank Π)(M, Π) ⊃

V?
(rank Π)+1(M, Π) = 0, and [Π,Λ] ∈ Vp+1

k (M, Π) if Λ ∈ Vq
k(M, Π). So we have a

filtration of finite length. The corresponding spectral sequence was first written
down explicitly by Vaisman [194, 195]. It was also present implicitly in the work
of Karasev and Vorobjev [199].
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Let us mention that the zeroth column Ep,0
0 of the zeroth term of the above

spectral sequence consists of multi-vector fields which are tangent to the characteris-
tic distribution. Consequently, the zeroth column Ep,0

1 of the first term of the above
spectral sequence consists of tangential Poisson cohomology groups, mentioned in
Subsection 2.1.4.

The use of the above spectral sequence in the computation of Poisson coho-
mology has yielded only limited success so far, mainly in the case when the Pois-
son structure is regular and the characteristic symplectic foliation is a fibration
[199, 194]. For this reason, we will not write down explicitly the above spectral
sequence in the general case (the reader may try to do it as an exercise). Instead,
we will give here a concrete simple example.

Example 2.4.5. Let M = P × Bn, where P is a closed manifold such that
H1

dR(P ) = 0, and Bn is an open ball of dimension n = dim H2
dR(P ). Let Π be

a regular Poisson structure on M , whose symplectic leaves are P × {y}, y ∈ Bn,
such that the map Bn → H2

dR(P ), y 7→ [ωy], where ωy is the symplectic form of the
symplectic leaf P × {y} of Π, is a diffeomorphism from B to its image. Then the
second Poisson cohomology of M vanishes: H2

Π(M) = 0. To see this, decompose any
2-vector field Λ such that [Λ, Π] = 0 into the sum of three parts, Λ = Λxx+Λxy+Λyy,
where Λxx is tangent to the symplectic leaves, Λxy =

∑n
i=1 Xi∧∂/∂yi with Xi being

vector fields tangent to the symplectic leaves and (yi) being a system of coordinates
on Bn, and Λyy =

∑
fij∂/∂yi ∧ ∂/∂yj . The condition [Λ, Π] = 0 is equivalent to

the following system of equations:

[Λxx, Π] = −
∑

i

αi ∧ [∂/∂yi, Π],(2.70)

∑

i

[Xi, Π] ∧ ∂/∂yi =
∑

i,j

fij [∂/∂yj , Π] ∧ ∂/∂yi,(2.71)

∑

i,j

[fij , Π] ∧ ∂/∂yi ∧ ∂/∂yj = 0.(2.72)

The second equation means that [X, Π] =
∑

j fij [∂/∂yj , Π] ∀ i. If we fix a symplec-
tic leaf {y = constant}, then [Xi,Π] is exact on that leaf while

∑
j fij [∂/∂yj ,Π] is

not exact unless fij = 0 because of the hypothesis that y 7→ [ωy] is a diffeomorphism.
Thus the equation [Λ, Π] = 0 implies that fij = 0, i.e. Λyy = 0, and [Xi, Π] = 0 ∀ i.
It follows from the hypothesis H1

dR(P ) = 0 that Xi is exact on each symplectic
leaf, hence we can write Xi = [gi, Π]. The 2-vector field Λ′ = Λ +

∑
[gi∂/∂yi, Π] is

tangent to the symplectic leaves (i.e. Λ′ = Λ′xx), and [Λ′, Π] = 0. It follows again
from the hypothesis that y 7→ [ωy] is a diffeomorphism that Λ′ is exact, Λ′ = [Z, Π],
and so is Λ. Thus, any two cocycle is a coboundary, and H2

Π(M) = 0. In terms
of spectral sequences, the decomposition Λ = Λxx + Λxy + Λyy corresponds to the
decomposition H2

Π(M) ∼= E0,2
∞ ⊕E1,1

∞ ⊕E2,0
∞ , and we showed that each of the three

summands in this cohomology decomposition is trivial.

Exercise 2.4.6. Write down more explicitly the spectral sequence for the Pois-
son cohomology of the above example.

Remark 2.4.7. There are some other natural filtrations of the Lichnerowicz
complex, e.g., the filtration associated to a momentum map, studied by Viktor
Ginzburg [88, 89], and the filtration given by the powers of an ideal (usually the
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maximal ideal) of functions at a point where the Poisson structure vanishes). This
last filtration is a general one, appearing in the study of local normal forms of many
different objects – we already used it in Section 2.2, without even mentioning the
spectral sequence.

2.5. The curl operator

2.5.1. Definition of the curl operator.

Recall that, if A is an a-vector field and ω is a differential p-form with p ≥ a,
then the inner product of ω by A is a unique (p − a)-form, denoted by iAω or
Ayω, such that

(2.73) 〈iAω, B〉 = 〈ω, A ∧B〉
for any (p− a)-vector field B. If p < a then we put iAω = 0 by convention.

For example, if X is a vector field then iXω(X1, . . . , Xp−1) = 〈iXω, X1 ∧ . . . ∧
Xp−1〉 = 〈ω,X ∧X1 ∧ . . . ∧Xp−1〉 = ω(X,X1, . . . , Xp−1).

Similarly, when a ≥ p, then we can define the inner product of an a-vector field
A by a p-form η to be a unique (a − p)-vector field, denoted by iηA or ηyA, such
that

(2.74) 〈β, iηA〉 = 〈β ∧ η, A〉
for any (a− p)-form β.

Warning: Due to the non-commutativity of the wedge product, one must be
careful with the signs when dealing with inner products. Also, our sign convention
may be different from some other authors.

Exercise 2.5.1. If f is a function and A a multi-vector field then

(2.75) idfA = [A, f ] .

In particular, the Hamiltonian vector field of f with respect to a given Poisson
structure Π is Xf = ]Π(df) = −idfΠ.

Let Ω be a smooth volume form on a m-dimensional manifold M , i.e. a
nowhere vanishing differential m-form. Then for every p = 0, 1, . . . , m, the map

(2.76) Ω[ : Vp(M) −→ Ωm−p(M)

defined by Ω[(A) = iAΩ, is a C∞(M)-linear isomorphism from the space Vp(M)
of smooth p-vector fields to the space Ωm−p(M) of smooth (m − p)-forms. The
inverse map of Ω[ is denoted by Ω] : Ωn−p(M) −→ Vp(M), which can be defined
by Ω](η) = iηΩ̂, where Ω̂ is the dual m-vector field of Ω, i.e. 〈Ω, Ω̂〉 = 1.

Exercise 2.5.2. Prove the formula (ηyΩ̂)yΩ = η.

Denote by DΩ : Vp(M) −→ Vp−1(M) the linear operator defined by DΩ =
Ω# ◦ d ◦ Ω[. Then we have the following commutative diagram:
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(2.77)

Vp(M) Ω[

−−−−−→ Ωm−p(M)

DΩ

y

y d

Vp−1(M) Ω[

−−−−−→ Ωm−p+1(M)

Since d ◦ d = 0, we also have DΩ ◦DΩ = 0.

Definition 2.5.3. The above operator DΩ is called the curl operator (with
respect to the volume form Ω). If A is an a-vector field then DΩA is called the curl
of A (with respect to Ω).

Example 2.5.4. The curl DΩX of a vector field X is nothing but the divergence
of X with respect to the volume form Ω: (DΩX)Ω = Ω[(DΩX) = diXΩ = LXΩ =
(DivΩX)Ω, which implies that DΩX = DivΩX.

In a local system of coordinates (x1, . . . , xn) with Ω = dx1 ∧ . . . ∧ dxn, and
denoting ∂

∂xi
by ζi as in Section 1.7, we have the following convenient formal formula

for the curl operator:

(2.78) DΩA =
∑

i

∂2A

∂xi∂ζi
.

The following proposition shows what happens to the curl when we change the
volume form.

Proposition 2.5.5. If f is a non-vanishing function then we have

(2.79) DfΩA = DΩA + [A, ln |f |] .

Proof. We have DfΩA−DΩA = Ω#Ω[(DfΩA−DΩA) = Ω#( 1
f diA(fΩ)−diAΩ)

= Ω#(d ln |f | ∧ iAΩ) = id ln |f |Ω#(iAΩ) = id ln |f |A = [A, ln |f |]. ¤

Remark 2.5.6. It follows from the above proposition that, if we multiply the
volume form by a non-zero constant, then the curl operator does not change. In
particular, the curl operator DΩ can be defined on non-orientable manifolds as
well. Non-orientable manifolds don’t admit global volume forms in the sense of
non-vanishing differential forms of top degree, but they do admit measure-theoretic
volume forms with smooth positive distribution. Such a measure-theoretic volume
form is a non-oriented (or absolute) version of differential volume forms, and is also
called a density . Proposition 2.5.5 implies that one can replace a volume form by
a density in the definition of the curl operator.

2.5.2. Schouten bracket via curl operator.

Theorem 2.5.7 (Koszul [123]). If A is an a-vector field, B is a b-vector field
and Ω is a volume form then

(2.80) [A,B] = (−1)bDΩ(A ∧B)− (DΩA) ∧B − (−1)bA ∧ (DΩB).
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Proof. By Formula (2.78) and Formula (1.64) we have:
(−1)bDΩ(A ∧B) = (−1)b

∑ ∂2(A∧B)
∂xi∂ζi

=
∑

∂
∂xi

(
∂A
∂ζi

B + (−1)bA ∂B
∂ζi

)

=
∑

∂2A
∂xi∂ζi

B + (−1)bA
∑

∂2B
∂xi∂ζi

+ ∂A
∂ζi

∂B
∂xi

+ (−1)b
∑

∂A
∂xi

∂B
∂ζi

= (DΩA)B + (−1)bA(DΩB) +
(

∂A
∂ζi

∂B
∂xi

− (−1)(b−1)(a−1)
∑

∂A
∂xi

∂B
∂ζi

)

= (DΩA)B + (−1)bA(DΩB) + [A,B]. ¤

The curl operator is, up to a sign, a derivation of the Schouten bracket. More
precisely, we have the following formula:

(2.81) DΩ[A,B] = [A,DΩB] + (−1)b−1[DΩA,B].

Exercise 2.5.8. Prove the above formula, either by direct calculations, or by
using Theorem 2.5.7 and the fact that DΩ ◦DΩ = 0.

2.5.3. The modular class.

A particular important application of the curl operator in Poisson geometry
is the curl vector field DΩΠ, also called modular vector field , of a Poisson
structure Π with respect to a volume form Ω. This curl vector field is an infinitesimal
automorphism of the Poisson structure, i.e. it is a Poisson vector field. Moreover,
it also preserves the volume form:

Lemma 2.5.9. If Π is a Poisson tensor and Ω a volume form, then

(2.82) [DΩΠ, Π] = 0 and L(DΩΠ)Ω = 0.

Proof. It follows from Formula (2.81) and the fact that [Π, Π] = 0 that we have
0 = DΩ[Π, Π] = [Π, DΩΠ]− [DΩΠ, Π] = −2[DΩΠ, Π]. Hence we have [DΩΠ, Π] = 0.

To prove the second equality, we don’t even need the fact that Π is a Poisson
structure. Indeed, we have L(DΩΠ)Ω = i(DΩΠ)dΩ + di(DΩΠ)Ω = d(d(ΠyΩ)) = 0. ¤

Exercise 2.5.10. Show that the curl vector field of the linear Poisson structure
Π = y ∂

∂x ∧ ∂
∂y with respect to the volume forme dx ∧ dy is ∂

∂x , and it is not a
Hamiltonian vector field.

Lemma 2.5.9 means that the curl vector field DΩΠ is an 1-cocycle in the Lich-
nerowicz complex. Proposition 2.5.5 implies that if we change the volume form
(or more precisely, the density, see Remark 2.5.6) then this cocycle changes by a
coboundary. Thus the cohomology class of the curl vector field DΩΠ in H1(M, Π)
does not depend on the choice of the volume form Ω.

Definition 2.5.11. If (M, Π) is a Poisson manifold and Ω a smooth density
on M , then the cohomology class of the curl vector field DΩΠ in H1(M, Π) is
called the modular class of (M, Π). If this class is trivial, then (M, Π) is called a
unimodular Poisson manifold .

Definition 2.5.12. A density Ω on a Poisson manifold (M, Π) is called an
invariant density if it is preserved by all Hamiltonian vector fields on M : LXf

Ω =
0 ∀ f ∈ C∞(M).
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Lemma 2.5.13. If Π is a Poisson structure and Ω is a smooth density, then
DΩΠ = 0 if and only if Ω is an invariant density. In particular, a Poisson manifold
is unimodular if and only if it admits a smooth invariant density.

We will leave the proof of the above lemma as an exercise. ¤

Exercise 2.5.14. Show that, if (M2n, ω) is a symplectic manifold of dimension
2n, then it is unimodular as a Poisson manifold. Up to multiplication by a constant,
the only invariant volume form on M is the so-called Liouville form

(2.83) Ω =
1
n!
∧n ω.

(Don’t confuse this Liouville volume form with the Liouville 1-form mentioned in
Example 1.1.9).

Exercise 2.5.15. A unimodular Lie algebra is a Lie algebra g such that for
any x ∈ g, the linear operator adx : g → g is traceless. In other words, g is called
unimodular if its adjoint action preserves a standard volume form. Show that a
linear Poisson structure is unimodular if and only if its corresponding Lie algebra
is unimodular.

For more about the modular class, see, e.g., [1, 77, 80, 91, 112]. For the theory
of (secondary) characteristic classes of Poisson manifolds (and Lie algebroids), of
which the modular class is a particular case, see Fernandes [80] and Crainic [56].

2.5.4. The curl operator of an affine connection.

Recall that a linear connection on a vector bundle E over a manifold M is
a R-bilinear map

(2.84) ∇ : V1(M)× Γ(E) → Γ(E), (X, ξ) 7→ ∇Xξ,

(where Γ(E) denotes the space of sections of E), which is C∞(M)-linear with
respect to X, i.e. ∇fXξ = f∇Xξ ∀f ∈ C∞(M), and which satisfies the Leibniz
rule with respect to ξ, i.e. ∇X(fξ) = f∇Xξ + X(f)ξ. A linear connection is also
called a covariant derivation on E.

Let ∇ be an affine connection on a manifold M , i.e. a linear connection on
the tangent bundle TM of M . By the Leibniz rule, one can extend ∇ to a map

(2.85) ∇ : V1(M)× V?(M) → V?(M)

(and more generally, to a covariant derivation on all kinds of tensor fields on M).
For example, ∇X(Y ∧ Z) = (∇XY ) ∧ Z + Y ∧ (∇XZ). The operator

(2.86) D∇ =
∑

k

idxk
◦ ∇∂/∂xk

: V?(M) → V?(M),

where (x1, . . . , xm) denotes a system of coordinates on M , is called the curl oper-
ator of ∇.

Exercise 2.5.16. Show that the above definition of D∇ does not depend on
the choice of local coordinates.

Recall that, an affine connection ∇ on a manifold M is called torsionless if
∇XY − ∇Y X = [X,Y ] for all X, Y ∈ V1(M). We have the following statement,
similar to Theorem 2.5.7:
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Theorem 2.5.17 (Koszul [123]). If A is an a-vector field, B is a b-vector field
and ∇ is a torsionless affine connection then

(2.87) [A, B] = (−1)bD∇(A ∧B)− (D∇A) ∧B − (−1)bA ∧ (D∇B).

Proof. By induction, using the Leibniz identity. ¤

If∇ is a flat torsionless connection with (x1, . . . , xm) as a trivializing coordinate
system, i.e. ∇∂/∂xi

∂/∂xj = 0 ∀i, j, then Formula (2.86) coincides with Formula
(2.78).



CHAPTER 3

Levi decomposition

In this chapter, we will discuss a type of local normal forms for Poisson struc-
tures which vanish at a point, called Levi normal forms, or Levi decompositions.
A Levi normal form is a kind of partial linearization of a Poisson structure, and in
“good” cases this leads to a true linearization. The name Levi decomposition comes
from the analogy with the classical Levi decomposition for finite dimensional Lie
algebras. Let us briefly recall here the classical theory (see, e.g., [28, 196]):

Let l be a finite-dimensional Lie algebra. Denote by r the radical of l, i.e. the
maximal solvable ideal of l. Then the quotient Lie algebra g = l/r is semi-simple,
and we have the following exact sequence:

(3.1) 0 → r → l → g → 0.

The classical Levi-Malcev theorem says that the above sequence splits, i.e. there
is an injective Lie algebra homomorphism ı : g → l such that its composition with
the projection map l → g is identity. The image ı(g) of g in l is called a Levi factor
of l. Up to conjugations in l, the Levi factor of l is unique. We will identify g with
ı(g). Then g acts on r by the adjoint action in l, and l can be decomposed into a
semi-direct product of g with r:

(3.2) l = gn r.

The above decomposition is called the Levi decomposition of l.

In the study of Poisson structures or other structures involving Lie brackets,
we often have infinite dimensional Lie algebras. So the idea is to find analogs of the
Levi-Malcev theorem which hold for these infinite dimensional Lie algebras. These
analogs will give interesting information about Poisson structures.

In Section 3.1 we will give a formal infinite dimensional analog of the Levi-
Malcev theorem, and illustrate its use in the example of singular foliations. Then
in the rest of this chapter, we will discuss Levi decomposition for Poisson structures.

3.1. Formal Levi decomposition

Let L be a Lie algebra of infinite dimension. Suppose that L admits a filtration

(3.3) L = L0 ⊃ L1 ⊃ L2 ⊃ . . . ,

such that ∀i, j ≥ 0, [Li,Lj ] ⊂ Li+j and dim(Li/Li+1) < ∞. Then we say that L is
a pro-finite Lie algebra , and call the inverse limit

(3.4) L̂ = lim
∞←i

L/Li

the formal completion of L (with respect to a given pro-finite filtration).

55



56 3. LEVI DECOMPOSITION

Example 3.1.1. Let L be the Lie algebra of smooth vector fields on Rn which
vanish at the origin 0, and Lk be the ideal of L consisting of vector fields with zero
k-jet at 0. Then L is pro-finite, and its formal completion is the algebra of formal
vector fields at 0.

Given a pro-finite Lie algebra L as above, denote by r the radical of l = L/L1

and by g the semisimple quotient l/r. Denote by R the preimage of r under the
projection L → l = L/L1. Then R is an ideal of L, called the pro-solvable

radical , and we have L/R ∼= l/r = g. Denote by R̂ = lim←R/Li the formal
completion of R. Then we have the following exact sequences:

(3.5) 0 →R→ L → g → 0,

(3.6) 0 → R̂ → L̂ → g → 0.

The exact sequence (3.5) does not necessarily split, but its formal completion
(3.6) always does:

Theorem 3.1.2. With the above notations, there is a Lie algebra injection
ı : g → L̂ whose composition with the projection map L̂ → g is the identity map.
Up to conjugations in L̂, such an injection is unique.

Proof. By induction, for each k ∈ N we will construct an injection ık : g →
L/Lk, whose composition with the projection map L/Lk → g is identity, and
moreover the following compatibility condition is satisfied: the diagram

(3.7)

g
ık+1−−−−−→ L/Lk+1

Id

y

y proj.

g
ık−−−−−→ L/Lk

is commutative. Then ı = lim← ık will be the required injection. When k = 1, ı1 is
given by the Levi-Malcev theorem. If we forget about the compatibility condition,
then the other ık, k > 1, can also be provided by the Levi-Malcev theorem. But to
achieve the compatibility condition, we will construct ık+1 directly from ık.

Assume that ık has been constructed. Denote by ρ : g → L/Lk+1 an arbitrary
linear map which lifts the injective Lie algebra homomorphism ık : g → L/Lk. We
will modify ρ into a Lie algebra injection.

Note that Lk/Lk+1 is a g-module. The action of g on Lk/Lk+1 is defined
as follows: for x ∈ g, v ∈ Lk/Lk+1, put x.v = [ρ(x), v] ∈ Lk/Lk+1. If x, y ∈ g
then [ρ(x), ρ(y)] − ρ([x, y]) ∈ Lk/Lk+1 ⊂ L1/Lk+1, and therefore [[ρ(x), ρ(y)] −
ρ([x, y]), v] = 0 because [L1/Lk+1,Lk/Lk+1] = 0. The Jacobi identity in L/Lk+1

then implies that x.(y.v)− y.(x.v) = [x, y].v, so Lk/Lk+1 is a g-module.

Define the following 2-cochain f : g ∧ g → Lk/Lk+1:

(3.8) x ∧ y ∈ g ∧ g 7→ f(x, y) = [ρ(x), ρ(y)]− ρ([x, y]) ∈ Lk/Lk+1.
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One verifies directly that f is a 2-cocycle of the corresponding Chevalley-Eilenberg
complex: denoting by

∮
xyz

the cyclic sum in (x, y, z), we have

δf(x, y, z) =
∮

xyz

(
x.f(y, z)− f([y, z], x)

)
=

=
∮

xyz

([
ρ(x), [ρ(y), ρ(z)]− ρ([y, z])

]− [ρ[y, z], ρ(x)] + ρ([[y, z], x])
)

=
∮

xyz

[
ρ(x), [ρ(y), ρ(z)]

]
+

∮

xyz

ρ([[y, z], x]) = 0 + 0 = 0.

Since g is semisimple, by Whitehead’s lemma every 2-cocycle of g is a 2-
coboundary. In particular, there is an 1-cochain φ : g → Lk/Lk+1 such that
δφ = f, i.e.

(3.9) [ρ(x), φ(y)]− [ρ(y), φ(x)]− [φ(x), φ(y)] = [ρ(x), ρ(y)]− ρ([x, y]).

It implies that the linear map ık+1 = ρ− φ is a Lie algebra homomorphism from g
to L/Lk+1. Since the image of φ lies in Lk/Lk+1, it is clear that ık+1 is a lifting of
ık. Thus ık+1 satisfies our requirements. By induction, the existence of ı is proved.

The uniqueness of ı up to conjugations in L̂ is proved similarly. Suppose that
ık+1, ı

′
k+1 : g → L/Lk+1 are two different injections which lift ık. Then ı′k+1 − ık+1

is an 1-cocycle, and therefore an 1-coboundary by Whitehead’s lemma. Denote
by α an element of Lk/Lk+1 such that δα is this 1-coboundary. Then the inner
automorphism of L/Lk+1 given by

(3.10) v ∈ L/Lk+1 7→ Adexp αv = v + [α, v]

(because the other terms vanish) is a conjugation in L/Lk+1 which intertwines ık+1

and ı′k+1, and which projects to the identity map on L/Lk. ¤

The image ı(g) of g in L̂, where ı is given by Theorem 3.1.2, is called a formal
Levi factor of L.

Remark 3.1.3. The above proof can be modified slightly to yield a proof of
the classical Levi-Malcev theorem, pretty close to the one given in [196] (Put L1 =
the radical of L in the finite dimensional case).

Remark 3.1.4. Every semisimple subalgebra of a finite dimensional Lie algebra
is contained in a Levi factor. Similarly, each semisimple subalgebra of a pro-finite
Lie algebra is formally contained in a formal Levi factor. These facts can also be
proved by a slight modification of the uniqueness part of the proof of Theorem
3.1.2.

Relations between Levi decomposition and linearization problems were ob-
served, for example, by Flato and Simon [83] in their work on linearization of
field equations. Here we will show a simple example of such relations, involving
singular foliations.

Let F be a singular holomorphic foliation in a neighborhood of 0 in Cn. Holo-
morphic means that F is generated by holomorphic vector fields. We will assume
that the rank of F at 0 is 0, i.e. X(0) = 0 for any tangent vector field X tangent
to F . Denote by X (F) the Lie algebra of germs at 0 of holomorphic vector fields
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tangent to F . Denote by X (1)(F) the Lie algebra consisting of linear parts of ele-
ments of X (F) at 0. Then X (1)(F) is a Lie algebra of linear vector fields. Denote
by F (1) the singular foliation generated by X (1)(F) and call it the linear part of F .

Theorem 3.1.5 (Cerveau [46]). With the above notations, if X (1)(F) is semisim-
ple and dimF = dimF (1), then F is formally linearizable at 0, i.e. it is formally
isomorphic to F (1).

Proof. X (F) is a pro-finite Lie algebra with the standard filtration given by
the order of vanishing of vector fields at 0, hence it admits a formal Levi factor
g. When X (1)(F) is semisimple, then g is isomorphic to X (1)(F). Since g is
semisimple, its formal action on Cn is formally linearizable by a classical theorem
of Hermann (Theorem 3.1.6). Suppose that the action of g has been linearized. It
means that g consists of linear vector fields, hence it coincides with X (1)(F). In
other words, after the formal linearization, we have an inclusion X (1)(F) ⊂ X (F),
hence F (1) ⊂ F . But F and F (1) have the same dimension by assumptions, hence
they must coincide. ¤

Theorem 3.1.6 (Hermann [106]). If g ⊂ V1
formal,0(Kn) is a finite dimensional

semisimple subalgebra of the Lie algebra V1
formal,0(Kn) of formal vector fields on

Kn which vanish at 0, where K = R or C, then there is a formal coordinate sys-
tem (z1, . . . , zn) of Kn at 0, with respect to which the elements of g have linear
coefficients.

Proof (sketch). The proof follows the usual formal normalization procedure,
and is based on Whitehead’s lemma H1(g,W ) = 0. Let X1, . . . , Xd be a basis of g.
Suppose that, in a coordinate system (z1, . . . , zn), we have

(3.11) Xi = X
(1)
i + X

(s)
i + X

(s+1)
i + . . .

with s ≥ 2, where X
(s)
i is a vector field whose coefficients are homogeneous of

degree s, and so on. We want to kill the term X
(s)
i in the expression of Xi by a

coordinate transformation of the type z′i = zi+ terms of degree ≥ s. Due to the
Jacobi identity, the map Xi 7→ X

(s)
i is an 1-cocycle of g with coefficients in the

g-module of homogeneous vector fields of degree s. By Whitehead’s lemma, this
1-cocycle is a coboundary, i.e. we can write

(3.12) X
(s)
i = [X(1)

i , Y ],

where Y =
∑

j fj∂/∂zj is homogeneous of degree s. Put z′i = zi − fi. This
coordinate transformation will kill the term of degree s in the Taylor expansion of
Xi. ¤

3.2. Levi decomposition of Poisson structures

Let Π be a Poisson structure in a neighborhood of 0 in Kn, where K = R or
C, which vanishes at 0: Π(0) = 0. Denote by Π(1) the linear part of Π at 0, and
by l the Lie algebra of linear functions on Kn under the linear Poisson bracket of
Π(1). Let g ⊂ l be a semisimple subalgebra of l. If Π is formal or analytic, we
will assume that g is a Levi factor of l. If Π is smooth (but not analytic), we will
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assume that g is a maximal compact semisimple subalgebra of l, and we will call
such a subalgebra a compact Levi factor . Denote by (x1, . . . , xm, y1, . . . , yn−m)
a linear basis of l, such that x1, . . . , xm span g (dim g = m), and y1, . . . , yn−m span
a complement r of g with respect to the adjoint action of g on l, i.e. [g, r] ⊂ r. (In
the formal and analytic cases, r is the radical of l; in the smooth case it is not the
radical in general). Denote by ck

ij and ak
ij the structural constants of g and of the

action of g on r respectively: [xi, xj ] =
∑

k ck
ijxk and [xi, yj ] =

∑
k ak

ijyk.

Definition 3.2.1. With the above notations, we will say that Π admits a formal
(resp. analytic, resp. smooth) Levi decomposition or Levi normal form at 0,
with respect to the (compact) Levi factor g, if there is a formal (resp. analytic,
resp. smooth) coordinate system

(x∞1 , . . . , x∞m , y∞1 , . . . , y∞n−m),

with x∞i = xi+ higher order terms and y∞i = yi+ higher order terms, such that in
this system of coordinates we have

(3.13) Π =
∑

i<j

ck
ijx

∞
k

∂

∂x∞i
∧ ∂

∂x∞j
+

∑
ak

ijy
∞
k

∂

∂x∞i
∧ ∂

∂y∞j
+

∑

i<j

Pij
∂

∂y∞i
∧ ∂

∂y∞j
,

where Pij are formal (resp. analytic, resp. smooth) functions.

Remark 3.2.2. Another way to express Equation (3.13) is as follows:

(3.14) {x∞i , x∞j } =
∑

ck
ijx

∞
k and {x∞i , y∞j } =

∑
ak

ijy
∞
k .

In other words, the Poisson brackets of x-coordinates with x-coordinates, and of
x-coordinates with y-coordinates, are linear. Yet another way to say it is that the
Hamiltonian vector fields of x∞i are linear:

(3.15) Xx∞i =
∑

ck
ijx

∞
k

∂

∂x∞j
+

∑
ak

ijy
∞
k

∂

∂y∞j
.

In particular, the vector fields Xx∞1 , . . . , Xx∞m form a Lie algebra isomorphic to
g, and we have an infinitesimal linear Hamiltonian action of g on (Kn, Π), whose
momentum map µ : Kn → g∗ is defined by 〈µ(z), xi〉 = xi(z).

Theorem 3.2.3 (Wade [201]). Any formal Poisson structure Π in Kn (K = R
or C) which vanishes at 0 admits a formal Levi decomposition.

Proof. Denote by L the algebra of formal functions in Kn which vanish at 0,
under the Lie bracket of Π. Then it is a pro-finite Lie algebra, whose completion
is itself. The Lie algebra L/L1, where L1 is the ideal of L consisting of functions
which vanish at 0 together with their first derivatives, is isomorphic to the Lie
algebra l of linear functions on Kn whose Lie bracket is given by the linear Poisson
structure Π(1). By Theorem 3.1.2, L admits a Levi factor, which is isomorphic
to the Levi factor g of l. Denote by x∞1 , . . . , x∞m a linear basis of a Levi factor
of L, {x∞i , x∞j } =

∑
k ck

ijx
∞
k where ck

ij are structural constants of g. Then the
Hamiltonian vector fields Xx∞1 , . . . , Xx∞m gives a formal action of g on Kn. By
Hermann’s formal linearization theorem 3.1.6, this formal action can be linearized
formally, i.e. there is a formal coordinate system (x0

1, . . . , y
0
n−m) in which we have

(3.16) Xx∞i =
∑

ck
ijx

0
k

∂

∂x0
j

+
∑

ak
ijy

0
k

∂

∂y0
j

.
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A-priori, it may happen that x0
i 6= x∞i , but in any case we have x0

i = x∞i + higher
order terms, and Xx∞i (x∞j ) =

∑
k ck

ijx
∞
k , Xx∞i (y0

j ) =
∑

k ak
ijy

0
k. Renaming y0

i by
y∞i , we get a formal coordinate system (x∞1 , . . . , y∞n−m) which puts Π in formal Levi
normal form. ¤

Remark 3.2.4. A particular case of Theorem 3.2.3 is the following formal
linearization theorem of Weinstein [205] mentioned in Chapter 2: if the linear part
of Π at 0 is semisimple (i.e. it corresponds to a semisimple Lie algebra l = g), then
Π is formally linearizable at 0.

Remark 3.2.5. As observed by Chloup [52], Theorem 3.2.3 may also be viewed
as a consequence of Hochschild–Serre’s Theorem 2.4.4. Indeed, according to Theo-
rem 2.4.4 and Whitehead’s lemma, we have

(3.17) H2(l,Spl) ∼= H0(g,K)⊗H2(r,Spl)g ∼= H2(r,Spl)g ∀ p.

It means that any non-linear term in the Taylor expansion of Π, which is represented
by a 2-cocycle of l with values in Sl = ⊕pSpl, can be “pushed to r”, i.e. pushed to
the “y-part” (consisting of terms Pij∂/∂yi ∧ ∂/∂yj) of Π.

In the analytic case, we have:

Theorem 3.2.6 ([218]). Any analytic Poisson structure Π in a neighborhood
of 0 in Kn, where K = R or C, which vanishes at 0, admits an analytic Levi
decomposition.

Remark 3.2.7. If in the above theorem, l = ((Kn)∗, {., .}Π(1)) is a semi-simple
Lie algebra, i.e. g = l, then we recover the following analytic linearization theorem
of Conn [53]: any analytic Poisson structure with a semi-simple linear part is locally
analytically linearizable. When l = g ⊕ K, then a Levi decomposition of Π is still
automatically a linearization (because {y1, y1} = 0), and Theorem 3.2.6 implies the
following result of Molinier [149] and Conn (unpublished): If the linear part of an
analytic Poisson structure Π which vanishes at 0 corresponds to l = g ⊕ K, where
g is semisimple, then Π is analytically linearizable in a neighborhood of 0.

Remark 3.2.8. The existence of a local analytic Levi decomposition of Π is
essentially equivalent to the existence of a Levi factor (and not just a formal Levi
factor) for the Lie algebra O of germs at 0 of analytic functions under the Poisson
bracket of Π. Indeed, if Π is in analytic Levi normal form with respect to a coor-
dinate system (x1, . . . , yn−m), then the functions x1, . . . , xm form a linear basis of
a Levi factor of O. Conversely, suppose that O admits a Levi factor with a linear
basis x1, . . . , xm. Then Xx1 , . . . , Xxm generate a local analytic action of g on Kn.
According to Kushnirenko-Guillemin–Sternberg analytic linearization theorem for
analytic actions of semisimple Lie algebras [99, 124], we may assume that

(3.18) Xxi =
∑

ck
ijx

0
k

∂

∂x0
j

+
∑

ak
ijy

0
k

∂

∂y0
j

in a local analytic system of coordinates (x0
1, . . . , y

0
n−m), where x0

i = xi+ higher
order terms. Renaming y0

i by yi, we get a local analytic system of coordinates
(x1, . . . , yn−m) which puts Π in Levi normal form.

In the smooth case, we have:
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Theorem 3.2.9 (Monnier–Zung [152]). For any n ∈ N and p ∈ N∪{∞} there
is p′ ∈ N ∪ {∞}, p′ < ∞ if p < ∞, such that the following statement holds: Let
Π be a Cp′-smooth Poisson structure in a neighborhood of 0 in Rn. Denote by l
the Lie algebra of linear functions in Rn under the Lie-Poisson bracket Π1 which
is the linear part of Π, and by g a compact Levi factor of l. Then there exists a
Cp-smooth Levi decomposition of Π with respect to g in a neighborhood of 0 .

Remark 3.2.10. The condition that g be compact in Theorem 3.2.9 is in a
sense necessary, already in the case when l = g.

Remark 3.2.11. Remark 3.2.7 and Remark 3.2.8 also apply to the smooth case
(provided that g is compact). In particular, when l = g, one recovers from Theorem
3.2.9 the following smooth linearization theorem of Conn [54]: any smooth Poisson
structure whose linear part is compact semisimple is locally smoothly linearizable.
When l = g ⊕ R with g compact semisimple, Theorem 3.2.9 still gives a smooth
linearization. And the existence of a local smooth Levi decomposition is equivalent
to the existence of a compact Levi factor.

Remark 3.2.12. There are analogs of the above Levi decomposition theorems
for Lie algebroids.

In the rest of this chapter, we will give a full proof of Theorem 3.2.6, and
then a sketch of the proof of Theorem 3.2.9, which is similar but more technical.
These proofs of Theorem 3.2.6 and Theorem 3.2.9 are inspired by and based on
Conn’s work [53, 54], and use a normed version of Whitehead’s lemma (on vanish-
ing cohomology of semisimple Lie algebras) and the fast convergence method (of
Kolmogorov in the analytic case and Nash–Moser in the smooth case) in order to
show the convergence of a formal coordinate transformation putting the Poisson
structure in Levi normal form.

3.3. Construction of Levi decomposition

In this section we will construct, by a recurrence process, a formal system of
coordinates (x∞1 , . . . , x∞m , y∞1 , . . . , y∞n−m) which satisfy Relations (3.14) for a given
local analytic Poisson structure Π. We will later use analytic estimates to show
that our construction actually yields a local analytic system of coordinates.

Each step in our recurrence process consists of 2 substeps: the first substep is
to find an almost Levi factor. The second substep consists of almost linearizing this
almost Levi factor.

We begin the first step with the original linear coordinate system

(3.19) (x0
1, . . . , x

0
m, y0

1 , . . . , y0
n−m) = (x1, . . . , xm, y1, . . . , yn−m) .

For each positive integer l, after Step l we will find a local coordinate system
(xl

1, . . . , x
l
m, yl

1, . . . , y
l
n−m) with the following properties (3.20), (3.21), (3.24):

(3.20) (xl
1, . . . , x

l
m, yl

1, . . . , y
l
n−m) = (xl−1

1 , . . . , xl−1
m , yl−1

1 , . . . , yl−1
n−m) ◦ φl ,

where φl is a local analytic diffeomorphism of (Kn, 0) of the type

(3.21) φl(z) = z + terms of order ≥ 2l−1 + 1 .
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The space (Kn, 0) above is fixed (our local Poisson manifold). The functions
xl−1

1 , xl
1, etc. are local functions on that fixed space.

Denote by

(3.22) X l
i = Xxl

i
(i = 1, . . . , m)

the Hamiltonian vector field of xl
i with respect to our Poisson structure Π. Then

we have

(3.23) X l
i = X̂ l

i + Y l
i ,

where

(3.24) X̂ l
i =

∑

jk

ck
ijx

l
k

∂

∂xl
j

+
∑

jk

ak
ijy

l
k

∂

∂yl
j

, Y l
i ∈ O(|z|2l+1) ,

i.e., X̂ l
i is the linear part of X l

i = Xxl
i

in the coordinate system (xl
1, . . . , y

l
n−m), ck

ij

and ak
ij are structural constants as appeared in Theorem 3.2.6, and Y l

i = X l
i − X̂ l

i

does not contain terms of order ≤ 2l.

Condition (3.24) may be rewritten as

{xl
i, x

l
j} =

∑

k

ck
ijx

l
k modulo terms of order ≥ 2l + 1 ,(3.25)

{xl
i, y

l
j} =

∑

k

ak
ijy

l
k modulo terms of order ≥ 2l + 1 .(3.26)

So we may say that the functions (xl
1, . . . , x

l
m) form an almost Levi factor ,

and their corresponding Hamiltonian vector fields are almost linearized , up to
terms of order 2l + 1.

Of course, when l = 0, then Relation (3.24) is satisfied by the assumptions of
Theorem 3.2.6. Let us show how to construct the coordinate system (xl+1

1 , . . . , yl+1
n−m)

from the coordinate system (xl
1, . . . , y

l
n−m). Denote

(3.27) Ol = {local analytic functions in (Kn, 0) without terms of order ≤ 2l} .

Due to Relations (3.20) and (3.21), it doesn’t matter if we use the original coor-
dinate system (x1, . . . , xm, y1, . . . , yn−m) or the new one (xl

1, . . . , x
l
m, yl

1, . . . , y
l
n−m)

in the above definition of Ol. It follows from Relation (3.24) that

(3.28) f l
ij := {xl

i, x
l
j} −

∑

k

ck
ijx

l
k = Y l

i (xl
j) ∈ Ol .

Denote by (ξ1, . . . , ξm) a fixed basis of the semi-simple algebra g, with

(3.29) [ξi, ξj ] =
∑

k

ck
ijξk .

Then g acts on O via vector fields X̂ l
1, . . . , X̂

l
m, and this action induces the

following linear action of g on the finite-dimensional vector space Ol/Ol+1 : if
g ∈ Ol, considered modulo Ol+1, then we put



3.3. CONSTRUCTION OF LEVI DECOMPOSITION 63

(3.30) ξi · g := X̂ l
i(g) =

∑

jk

ck
ijx

l
k

∂g

∂xl
j

+
∑

jk

ak
ijy

l
k

∂g

∂yl
j

mod Ol+1 .

Notice that if g ∈ Ol then Y l
i (g) ∈ Ol+1, and hence we have

(3.31) ξi · g = X l(g) mod Ol+1 = {xl
i, g} mod Ol+1 .

The functions f l
ij in (3.28) form a 2-cochain f l of g with values in the g-module

Ol/Ol+1 :

(3.32)
f l : g ∧ g → Ol/Ol+1

f l(ξi ∧ ξj) := f l
ij mod Ol+1 = {xl

i, x
l
j} −

∑
k ck

ijx
l
k mod Ol+1 .

In other words, if we denote by g∗ the dual space of g, and by (ξ∗1 , . . . , ξ∗m) the basis
of g∗ dual to (ξ1, . . . , ξm), then we have

(3.33) f l =
∑

i<j

ξ∗i ∧ ξ∗j ⊗ (f l
ij mod Ol+1) ∈ ∧2g∗ ⊗Ol/Ol+1 .

It follows from (3.28), and the Jacobi identity for the Poisson bracket of Π and
the algebra g, that the above 2-cochain is a 2-cocycle. Because g is semi-simple,
we have H2(g,Ol/Ol+1) = 0, i.e. the second cohomology of g with coefficients in
g-module Ol/Ol+1 vanishes, and therefore the above 2-cocycle is a coboundary. In
other words, there is an 1-cochain

(3.34) wl ∈ g∗ ⊗Ol/Ol+1

such that

(3.35) f l(ξi ∧ ξj) = ξi · wl(ξj)− ξj · wl(ξi)− wl(
∑

k

ck
ijξk) .

Denote by wl
i the element of Ol which is a polynomial of order ≤ 2l+1 in

variables (xl
1, . . . , x

l
m, yl

1, . . . , y
l
n−m) such that the projection of wl

i in Ol/Ol+1 is
wl(ξi).

Remark 3.3.1. Remember that wl
i are local functions on our fixed space

(Kn, 0). They are not functions of variables (xl
1, . . . , x

l
m, yl

1, . . . , y
l
n−m) per se, but

when expressed in terms of these variables they become polynomial functions.

Define xl+1
i as follows:

(3.36) xl+1
i = xl

i − wl
i ∀ i = 1, . . . , m .

Then it follows from (3.28) and (3.35) that we have

(3.37) {xl+1
i , xl+1

j } −
∑

k

ck
ijx

l+1
k ∈ Ol+1 for i, j ≤ m .

This concludes our first substep (the (xl+1
i ) form a better “almost Levi factor”

than (xl
i)). Let us now proceed to the second substep.

Denote by Y l the space of local analytic vector fields of the type u =
∑n−m

i=1 ui∂/∂yl
i

(with respect to the coordinate system (xl
1, . . . , y

l
n−m)), with ui being local analytic

functions. For each natural number k, denote by Y l
k the following subspace of Y l:
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(3.38) Y l
k =

{
u =

n−m∑

i=1

ui∂/∂yl
i

∣∣∣ ui ∈ Ok

}
.

Then Y l, as well as Y l
l/Y l

l+1, are g-modules under the following action :

(3.39) ξi ·
∑

j

uj∂/∂yl
j := [X̂ l

i , u] =
[∑

jk

ck
ijx

l
k

∂

∂xl
j

+
∑

jk

ak
ijy

l
k

∂

∂yl
j

,
∑

j

uj∂/∂yl
j

]
.

The above linear action of g on Yl/Yl+1 can also be written as follows :

(3.40) ξi ·
∑

j

uj∂/∂yl
j =

∑

j

({xl
i, uj} −

∑

k

ak
ijuk)∂/∂yl

j mod Y l
l+1 .

Define the following 1-cochain of g with values in Y l
l/Y l

l+1 :

(3.41)
m∑

i=1

(
ξ∗i ⊗

( n−m∑

j=1

({xl+1
i , yl

j}−
∑

k

ak
ijy

l
k)∂/∂yl

j mod Y l
l+1

)) ∈ g∗⊗Y l
l/Y l

l+1 .

Due to Relation (3.37), the above 1-cochain is an 1-cocycle. Since g is semi-
simple, we have H1(g,Y l

l/Y l
l+1) = 0, and the above 1-cocycle is an 1-coboundary.

In other words, there exists a vector field

(3.42)
n−m∑

j=1

vl
j∂/∂yl

j ∈ Y l
l ,

with vl
j being polynomial functions of degree ≤ 2l+1 in variables (xl

1, . . . , y
l
n−m),

such that for every i = 1, . . . , m we have
(3.43)∑

j

({xl+1
i , yl

j} −
∑

ak
ijy

l
k)∂/∂yl

j =
∑

j

({xl
i, v

l
j} −

∑
ak

ijv
l
k)∂/∂yl

j mod Y l
l+1 .

We now define the new system of coordinates as follows :

(3.44) xl+1
i = xl

i − wl
i (i = 1, . . . ,m),

yl+1
i = yl

i − vl
i (i = 1, . . . , n−m),

where functions wl
i, v

l
i ∈ Ol are chosen as above. In particular, Relations (3.37) and

(3.43) are satisfied, which means that

(3.45)
{xl+1

i , xl+1
j } −∑

ck
ijx

l+1
k ∈ Ol+1 ,

{xl+1
i , yl+1

j } −∑
ak

ijy
l+1
k ∈ Ol+1 ,

i.e. Relation (3.24) is satisfied with l replaced by l + 1. Of course, Relations (3.20)
and (3.21) are also satisfied with l replaced by l + 1, and with φl+1 being the map
which when written in the variables (xl

1, . . . , y
l
n−m) has the following form:

(3.46) φl+1 = Id + ψl+1 ,
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where

(3.47) ψl+1 = −(wl
1, . . . , w

l
m, vl

1, . . . , v
l
n−m) ∈ (Ol)n .

Remark 3.3.2. We stress here the fact that Formula (3.46) is valid with re-
spect to the coordinate system (xl

1, . . . , y
l
n−m) only. In particular, the sum there

is taken with respect to the local linear structure given by the coordinate system
(xl

1, . . . , y
l
n−m) and not by the original coordinate system (x1, . . . , yn−m). If we

want to express φl+1 in terms of the original coordinate system then it will be
much more complicated.

Recall that, by the above construction, wl
1, . . . , w

l
m, vl

1, . . . , v
l
n−m are polyno-

mial functions of degree ≤ 2l+1 in variables (xl
1, . . . , y

l
n−m), which do not contain

terms of degree ≤ 2l.

Define the following limits

(3.48) (x∞1 , . . . , y∞n−m) = liml→∞(xl
1, . . . , y

l
n−m) ,

Φ∞ = liml→∞ Φl where Φl = φ1 ◦ . . . ◦ φl .

It is clear that the above limits exist in the formal category,

(3.49) (x∞1 , . . . , y∞n−m) = (x0
1, . . . , y

0
n−m) ◦ Φ∞,

and the formal coordinate system (x∞1 , . . . , y∞n−m) satisfies Relation (3.14).

The above construction works not only for local analytic Poisson structures,
but also for formal Poisson structures, so it gives us another proof of Theorem 3.2.3.
To prove Theorem 3.2.6, it remains to show that, when Π is analytic, we can choose
functions wl

i, v
l
i in such a way that (x∞1 , . . . , y∞n−m) is in fact a local analytic system

of coordinates.

Remark 3.3.3. The above construction of formal Levi decomposition differs
from the construction of Wade [201] and Weinstein [209]. Their construction is
simpler (they don’t almost linearize the almost Levi factor at each step, and they
kill only one term at each step), and is good enough to show the existence of a
formal Levi decomposition. However, in order to prove the existence of an analytic
Levi decomposition, using Kolmogorov’s fast convergence method, one needs to kill
a bunch of terms at each step, and that’s why the second substep (almost linearizing
an almost Levi factor) is important.

3.4. Normed vanishing of cohomology

In this section, using normed vanishing of first and second cohomology groups
of g, we will obtain some estimates on wl

i = xl
i− xl+1

i and vl
i = yl

i − yl+1
i . For some

basic results on semi-simple Lie algebras and their representations which will be
used below, one may consult a book on Lie algebras, e.g., [115, 196].

We will denote by gC the algebra g if K = C, and the complexification of g if
K = R. So gC is a complex semi-simple Lie algebra of dimension m. Denote by g0

the compact real form of gC, and identify gC with g0 ⊗R C. Fix an orthonormal
basis (e1, . . . , em) of gC with respect to the Killing form: 〈ei, ej〉 = δij . We may
assume that e1, . . . , em ∈ √−1g0. Denote by Γ =

∑
i e2

i the Casimir element
of gC: Γ lies in the center of the universal enveloping algebra U(gC) and does not
depend on the choice of the basis (ei). When K = R then Γ is real, i.e., Γ ∈ U(g).
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Let W be a finite dimensional complex linear space endowed with a Hermitian
metric denoted by 〈, 〉. If v ∈ W then its norm is denoted by ‖v‖ =

√
〈v, v〉. Assume

that W is a Hermitian g0-module. In other words, the linear action of g0 on W is
via infinitesimal unitary (i.e. skew-adjoint) operators. W is a gC-module via the
identification gC = g0 ⊗R C. We have the decomposition W = W0 + W1, where
W1 = gC ·W (the image of the representation), and gC acts trivially on W0. Since
W1 is a gC-module, it is also a U(gC)-module. The action of Γ on W1 is invertible:
Γ ·W1 = W1, and we will denote by Γ−1 the inverse mapping.

Denote by g∗C the dual of gC, and by (e∗1, . . . , e
∗
m) the basis of g∗C dual to

(e1, . . . , em). If w ∈ g∗C ⊗ W is an 1-cochain and f : ∧2g∗C ⊗ W is a 2-cochain
with values in W , then we will define the norm of f and w as follows :

(3.50) ‖w‖ = max
i
‖w(ei)‖ , ‖f‖ = max

i,j
‖f(ei ∧ ej)‖ .

Since H2(g,K) = 0, there is a (unique) linear map h0 : ∧2g∗ → g∗ such that
if u ∈ ∧2g∗ is a 2-cocycle for the trivial representation of g in K (i.e. u([x, y], z) +
u([y, z], x) + u([z, x], y) = 0 for any x, y, z ∈ g), then u = δh0(u), i.e. u(x, y) =
h0(u)([x, y]). By complexifying h0 if K = R, and taking its tensor product with the
projection map P0 : W → W0, we get a map

(3.51) h0 ⊗ P0 : ∧2g∗C ⊗W → g∗C ⊗W0 .

Define another map

(3.52) h1 : ∧2g∗C ⊗W → g∗C ⊗W1

as follows : if f ∈ ∧2g∗C ⊗W then we put

(3.53) h1(f) =
∑

i

e∗i ⊗ (Γ−1 ·
∑

j

(ej · f(ei ∧ ej))) .

Then the map

(3.54) h = h0 ⊗ P0 + h1 : ∧2g∗C ⊗W → g∗C ⊗W

is an explicit homotopy operator , in the sense that if f ∈ ∧2g∗C⊗W is a 2-cocycle
(i.e. δf = 0 where δ denotes the differential of the Chevalley–Eilenberg complex
. . . → ∧kg∗C ⊗W → ∧k+1g∗C ⊗W → . . .), then f = δ(h(f)).

Similarly, the map h : g∗C ⊗W → W defined by

(3.55) h(w) = Γ−1 · (
∑

i

ei · w(ei))

is also a homotopy operator, in the sense that if w ∈ g∗C ⊗W is an 1-cocycle then
w = δ(h(w)).

When K = R, i.e. when gC is the complexification of g, then the above homo-
topy operators h are real, i.e. they map real cocycles into real cochains.

The above formulas make it possible to control the norm of a primitive of a
1-cocycle w or a 2-cocycle f in terms of the norm of w or f . More precisely, we
have the following lemma about normed vanishing of cohomology , which is a
normed version of Whitehead’s lemma which says that H1(g,W ) = H2(g,W ) = 0.
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Lemma 3.4.1 (Conn). There is a positive constant D (which depends on g but
does not depend on W ) such that with the above notations we have

(3.56) ‖h(f)‖ ≤ D‖f‖ and ‖h(w)‖ ≤ D‖w‖
for any 1-cocycle w and any 2-cocycle f of gC with values in W .

Remark 3.4.2. The above lemma is essentially due to Conn (see Proposition
2.1 of [53]). Conn stated the result only for some particular modules that he needed,
but his proof, which we give below, works without any change for other Hermitian
modules.

Proof (sketch). We can decompose W into an orthogonal sum (with respect
to the Hermitian metric of W ) of irreducible modules of g0. The above homotopy
operators decompose correspondingly, so it is enough to prove the above lemma for
the case when W is a non-trivial irreducible module, which we will now suppose.
Let λ 6= 0 denote the highest weight of the irreducible g0-module W , and by δ
one-half the sum of positive roots of g0 (with respect to a fixed Cartan subalgebra
and Weyl chamber). Then Γ acts on W by multiplication by the scalar 〈λ, λ + 2δ〉,
which is greater or equal to ‖λ‖2. Denote by J the weight lattice of g0, and
D = m(minγ∈J ‖γ‖)−1. Then D < ∞ does not depend on W , and ‖λ‖2 > m‖λ‖

D ,
which implies that the norm of the inverse of the action of Γ on W is smaller or
equal to D

m‖λ‖ . On the other hand, the norm of the action of ei on W is smaller or
equal to ‖λ‖ for each i = 1, . . . , m (recall that

√−1ei ∈ g0 and 〈ei, ei〉 = 1), hence
the norm of the operator

∑m
i=1 ei · Γ−1 : W → W is smaller or equal to D. Now

apply Formulas (3.53) and (3.55). The lemma is proved. ¤

Let us now apply the above lemma to g-modules Ol/Ol+1 and Y l
l/Y l

l+1 intro-
duced in the previous section. Recall that g is a Levi factor of l, the space of linear
functions in Kn, which is a Lie algebra under the linear Poisson bracket Π(1). g acts
on l by the (restriction of the) adjoint action, and on Kn by the coadjoint action.
By complexifying these actions if necessary, we get a natural action of gC on (Cn)∗

(the dual space of Cn) and on Cn. The elements x1, . . . , xm, y1, . . . , yn−m of the
original linear coordinate system in Kn may be view as a basis of (Cn)∗. Notice
that the action of gC on (Cn)∗ preserves the subspace spanned by (x1, . . . , xm) and
the subspace spanned by (y1, . . . , yn−m). Fix a basis (z1, . . . , zn) of (Cn)∗, such
that the Hermitian metric of (Cn)∗ for which this basis is orthonormal is preserved
by the action of g0, and such that

(3.57) zi =
∑

j≤m

Aijxj +
∑

j≤n−m

Ai,j+myj ,

with the constant transformation matrix (Aij) satisfying the following condition :

(3.58) Aij = 0 if (i ≤ m < j or j ≤ m < i) .

Such a basis (z1, . . . , zn) always exists, and we may view (z1, . . . , zn) as a linear
coordinate system on Cn. We will also define local complex analytic coordinate
systems (zl

1, . . . , z
l
n) as follows :

(3.59) zl
i =

∑

j≤m

Aijx
l
j +

∑

j≤n−m

Ai,j+myl
j .
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Let l be a natural number, ρ a positive number, and f a local complex analytic
function of n variables. Define the following ball Bl,ρ and L2-norm ‖f‖l,ρ, whenever
it makes sense :

(3.60) Bl,ρ =
{

x ∈ Cn |
√∑

|zl
i(x)|2 ≤ ρ

}
,

(3.61) ‖f‖l,ρ =

√
1
Vρ

∫

Sl,ρ

|f(x)|2dµl ,

where dµl is the standard volume form on the boundary Sl,ρ = ∂Bl,ρ of the complex
ball Bl,ρ with respect to the coordinate system (zl

1, . . . , z
l
n), and Vρ is the volume

of Sl,ρ, i.e. of a (2n− 1)-dimensional sphere of radius ρ.

We will say that the ball Bl,ρ is well-defined if it is analytically diffeomorphic
to the standard ball of radius ρ via the coordinate system (zl

1, . . . , z
l
n), and will use

‖f‖l,ρ only when Bl,ρ is well-defined. When Bl,ρ is not well-defined we simply put
‖f‖l,ρ = ∞. We will write Bρ and ‖f‖ρ for B0,ρ and ‖f‖0,ρ respectively. If f is a
real analytic function (the case when K = R), we will complexify it before taking
the norms.

It is well-known (see., e.g., Chapter 1 of [178]) that the L2-norm ‖f‖ρ is given
by a Hermitian metric, in which the monomial functions form an orthogonal basis
: if f =

∑
α∈Nn aα

∏
i zαi

i and g =
∑

α∈Nn bα

∏
i zαi

i then the scalar product 〈f, g〉ρ
is given by

(3.62) 〈f, g〉ρ =
∑

α∈Nn

α!(n− 1)!
(|α|+ n− 1)!

ρ2|α|aαb̄α ,

(where α! =
∏

i αi!, |a| =
∑

αi, and b̄ is the complex conjugate of b), and the norm
‖f‖ρ is given by

(3.63) ‖f‖ρ =

( ∑

α∈Nn

α!(n− 1)!
(|α|+ n− 1)!

|aα|2ρ2|α|
)1/2

.

The above scalar product turns Ol/Ol+1 into a Hermitian space, if we consider
elements of Ol/Ol+1 as polynomial functions of degree less or equal to 2l+1 and
which do not contain terms of order ≤ 2l. Of course, when K = R we will have to
complexify Ol/Ol+1, but will redenote (Ol/Ol+1)C by Ol/Ol+1, for simplicity.

For the space Y l of local vector fields of the type u =
∑n−m

i=1 ui∂/∂zl
i+m (due

to (3.58) and (3.59), this is the same as the space of vector fields of the type∑n−m
i=1 u′i∂/∂yl

i defined in the previous section, up to a complexification if K = R),
we define the L2-norms in a similar way:

(3.64) ‖u‖l,ρ =

√√√√ 1
Vρ

∫

Sl,ρ

n−m∑

i=1

|ui(x)|2dµl .

These L2-norms are given by Hermitian metrics similar to (3.62), which make
Y l

l/Y l
l+1 into Hermitian spaces.
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Remark that if u = (u1, . . . , un−m) then

(3.65)
∑

i

‖ui‖l,ρ ≥ ‖u‖l,ρ ≥ max
i
‖ui‖l,ρ .

It is an important observation that, since the action of g0 on Cn preserves
the Hermitian metric of Cn, its actions on Ol/Ol+1 and Y l

l/Y l
l+1, as given in the

previous section, also preserve the Hermitian metrics corresponding to the norms
‖f‖l,ρ and ‖u‖l,ρ (with the same l). Thus, applying Lemma 3.4.1 to these gC-
modules, we get:

Lemma 3.4.3. There is a positive constant D1 such that for any l ∈ N and any
positive number ρ there exist local analytic functions wl

1, . . . , wl
m, vl

1, . . . , vl
n−m,

which satisfy the relations of the previous section (in particular Relation (3.35) and
Relation (3.43)), and which have the following additional property whenever Bl,ρ is
well-defined :

(3.66) max
i
‖wl

i‖l,ρ ≤ D1. max
i,j

∥∥∥{xl
i, x

l
j} −

∑

k

ck
ijx

l
k

∥∥∥
l,ρ

and

(3.67) max
i
‖vl

i‖l,ρ ≤ D1. max
i,j

∥∥∥{xl
i − wl

i, y
l
j} −

∑

k

ak
ijy

l
k

∥∥∥
l,ρ

.

¤

3.5. Proof of analytic Levi decomposition theorem

Besides the L2-norms defined in the previous section, we will need the following
L∞-norms : If f is a local function then put

(3.68) |f |l,ρ = sup
x∈Bl,ρ

|f(x)| ,

where the complex ball Bl,ρ is defined by (3.60). Similarly, if g = (g1, . . . , gN ) is
a vector-valued local map then put |g|l,ρ = supx∈Bl,ρ

√∑
i |gi(x)|2. For simplicity,

we will write |f |ρ for |f |0,ρ.

For the Poisson structure Π, we will use the following norms :

(3.69) |Π|l,ρ := max
i,j=1,...,n

∣∣{zl
i, z

l
j}

∣∣
l,ρ

.

Due to the following lemma, we will be able to use the norms |f |ρ and ‖f‖ρ

interchangeably for our purposes, and control the norms of the derivatives:

Lemma 3.5.1. For any ε > 0 there is a finite number K < ∞ depending on
ε such that for any integer l > K, positive number ρ, and local analytic function
f ∈ Ol we have

(3.70) |f |(1+ε/l2)ρ ≥ exp(2l/2)|f |(1+ε/2l2)ρ ≥ ρ|df |ρ ,

and

(3.71) |f |(1−ε/l2)ρ ≤ ‖f‖ρ ≤ |f |ρ .

We will postpone the proof of Lemma 3.5.1 a little bit. Now we want to show
a key proposition which, together with a simple lemma, will imply Theorem 3.2.6.



70 3. LEVI DECOMPOSITION

Proposition 3.5.2. Under the assumptions of Theorem 3.2.6, there exists a
constant C, such that for any positive number ε < 1/4, there is a natural number
K = K(ε) and a positive number ρ = ρ(ε), such that for any l ≥ K we can construct
a local analytic coordinate system (xl

1, . . . , y
l
n−m) as in the previous sections, with

the following additional properties (using the previous notations) :

(i)l (Chains of balls) The ball Bl,exp(1/l)ρ is well-defined, and if l > K we have

(3.72) Bl−1,exp( 1
l− 2ε

l2
)ρ ⊂ Bl,exp(1/l)ρ ⊂ Bl−1,exp( 1

l + 2ε
l2

)ρ .

(ii)l (Norms of changes) If l > K then we have

(3.73) |ψl|l−1,exp( 1
l−1− ε

(l−1)2
)ρ < ρ .

(iii)l (Norms of the Poisson structure) :

(3.74) |Π|l,exp(1/l)ρ ≤ C. exp(−1/
√

l)ρ .

Theorem 3.2.6 follows immediately from the first part of Proposition 3.5.2 and
the following lemma:

Lemma 3.5.3. If there is a finite number K such that Condition (i)l of Propo-
sition 3.5.2 is satisfied for all l ≥ K, then the formal coordinate system

(x∞1 , . . . , x∞m , y∞1 , . . . , y∞n−m)

is convergent (i.e. locally analytic).

The main idea behind Lemma 3.5.3 is that, if Condition (i)l is true for any l ≥
K, then the infinite intersection

⋂∞
l=K Bl,exp(1/l)ρ contains an open neighborhood

of 0, implying a positive radius of convergence.

The second and third parts of Proposition 3.5.2 are needed for the proof of
the first part. Proposition 3.5.2 will be proved by recurrence : By taking ρ small
enough, we can obviously achieve Conditions (iii)K and (i)K (Condition (ii)K is
void). Then provided that K is large enough, when l ≥ K we have that Condition
(ii)l implies Conditions (i)l and (iii)l, and Condition (iii)l in turn implies Condition
(ii)l+1. In other words, Proposition 3.5.2 is a direct consequence of the following
three technical lemmas:

Lemma 3.5.4. There exists a finite number K (depending on ε) such that if
Condition (ii)l+1 is satisfied and l ≥ K then Condition (i)l+1 is also satisfied.

Lemma 3.5.5. There exists a finite number K (depending on ε) such that if
Condition (iii)l (of Proposition 3.5.2) is satisfied and l ≥ K then Condition (ii)l+1

is also satisfied.

Lemma 3.5.6. There exists a finite number K (depending on ε) such that if
Conditions (ii)l+1 and (iii)l are satisfied and l ≥ K then Condition (iii)l+1 is also
satisfied.

The lemmas of this section will be proved now, one by one. But first let us
mention here the main ingredients behind the last three ones: The proof of Lemma
3.5.4 and Lemma 3.5.6 is straightforward and uses only the first part of Lemma
3.5.1. Lemma 3.5.5 (the most technical one) follows from the estimates on the
primitives of cocycles as provided by Lemma 3.4.3.
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Proof of Lemma 3.5.1. Let f be a local analytic function in (Cn, 0). To
make an estimate on df , we use the Cauchy integral formula. For z ∈ Bρ, denote
by γi the following circle : γi = {v ∈ Cn | vj = zj if j 6= i , |vi − zi| = ερ/2l2}.
Then γi ⊂ B(1+ε/l2)ρ, and we have

∣∣∣∣
∂f

∂zi
(z)

∣∣∣∣ =
1
2π

∣∣∣∣
∮

γi

f(v)dv

(v − z)2

∣∣∣∣ ≤
2l2

ερ
|f |(1+ε/2l2)ρ ,

which implies that exp(2l/2)|f |(1+ε/2l2)ρ ≥ ρ|df | when l is large enough.

Now let f ∈ Ol such that |f |(1+ε/l2)ρ < ∞. We want to show that if x ∈
B(1+ε/2l2)ρ then |f(x)| ≤ exp(2l/2)|f |(1+ε/l2)ρ (provided that l is large enough com-
pared to 1/ε). Fix a point x ∈ B(1+ε/2l2)ρ and consider the following holomorphic
function of one variable : g(z) = f( x

|x|z). This function is holomorphic in the
complex 1-dimensional disk B1

(1+ε/l2)ρ of radius (1 + ε/l2)ρ, and is bounded by

|f |(1+ε/l2)ρ in this disk. Because f ∈ Ol, we have that g(z) is divisible by z2l

, that
is g(z)/z2l

is holomorphic in B1
(1+ε/l2)ρ. By the maximum principle we have

|f(x)|
|x|2l =

∣∣∣∣
g(|x|)
|x|2l

∣∣∣∣ ≤ max
|z|=(1+ε/l2)ρ

∣∣∣∣
g(z)
z2l

∣∣∣∣ ≤
|f |(1+ε/l2)ρ

((1 + ε/l2)ρ)2l ,

which implies that

|f(x)| ≤
(

1 + ε/2l2

1 + ε/l2

)2l

|f |(1+ε/l2)ρ ≈ exp(− 2l

2εl2
)|f |(1+ε/l2)ρ ≤

≤ exp(−2l/2)|f |(1+ε/l2)ρ

(when l is large enough). Thus we have proved that there is a finite number K
depending on ε such that

|f |(1+ε/l2)ρ ≥ exp(2l/2)|f |(1+ε/2l2)ρ

for any l > K and any f ∈ Ol.

To compare the norms of f , we use Cauchy-Schwartz inequality: for f =∑
α∈Nk cα

∏
i zαi

i and |z| = (1− ε/2l2)ρ we have

|f(z)| ≤
∑

α∈Nk

|cα|
∏

i

|zi|αi ≤

≤
(∑

α

|cα|2 α!(n− 1)!
(|α|+ n− 1)!

ρ2|α|
)1/2 (∑

α

(|α|+ n− 1)!
α!(n− 1)!

ρ−2|α|∏

i

|zi|2α

)1/2

=

= ‖f‖ρ

(
1−

∑

i

|zi|2
ρ2

)−n/2

= ‖f‖ρ

(
1− (1− ε/2l2)2

)−n/2 ≤ (2l)n

εn/2
‖f‖ρ .

It means that for any local analytic function f we have

|f |(1−ε/2l2)ρ ≤
(2l)n

εn/2
‖f‖ρ .

Now if f ∈ Ol, we can apply Inequality (3.70) to get

|f |(1−ε/l2)ρ ≤ exp(−2l/2)|f |(1−ε/2l2)ρ ≤
(2l)n

εn/2
exp(−2l/2)‖f‖ρ ≤ ‖f‖ρ ,
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provided that l is large enough compared to 1/ε. Lemma 3.5.1 is proved. ¤

Proof of Lemma 3.5.3. The main point is to show that the limit
⋂∞

l=K Bl,ρ

contains a ball Br of positive radius centered at 0. Then for x ∈ Br, we have
x ∈ Bl,ρ, implying ‖(zl

1(x), . . . , zl
n(x))‖ < ρ is uniformly bounded, which in turn

implies that the formal functions z∞i = liml→∞ zl
i are analytic functions inside

Br (recall that (zl
1, . . . , z

l
n) is obtained from (xl

1, . . . , y
l
n−m) by a constant linear

transformation (Aij) which does not depend on l).

Recall the following fact of complex analysis, which is a consequence of the
maximum principle : if g is a complex analytic map from a complex ball of radius
ρ to some linear Hermitian space such that g(0) = 0 and |g(x)| ≤ C for all |x| < ρ
and some constant C, then we have |g(x)| ≤ C|x|/ρ for all x such that |x| < ρ. If
l1, l2 ∈ N and r1, r2 > 0, s > 1, then applying this fact we get:

(3.75) If Bl1,r1 ⊂ Bl2,r2 then Bl1,r1/s ⊂ Bl2,r2/s .

(Here r1 plays the role of ρ, r2 plays the role of C, and the coordinate transformation
from (zl1

1 , . . . , zl1
n ) to (zl2

1 , . . . , zl2
n ) plays the role of g in the previous statement).

Using Formula (3.75) and Condition (i)l recursively, we get

Bl,ρ ⊃ Bl−1,exp(−1/l2)ρ ⊃ Bl−2,exp(−1/l2−1/(l−1)2)ρ ⊃
⊃ . . . ⊃ BK,exp(−Pl

k=K 1/k2)ρ .

Since c = exp(−∑∞
k=K 1/k2) is a positive number, we have

⋂∞
l=K Bl,ρ ⊃ BK,cρ,

which clearly contains an open neighborhood of 0. Lemma 3.5.3 is proved. ¤

Proof of Lemma 3.5.4. Suppose that Condition (ii)l+1 is satisfied. For
simplicity of exposition, we will assume that the coordinate system (zl

1, . . . , z
l
n)

coincides with the coordinate system (xl
1, . . . , y

l
n−m) (The more general case, when

(zl
1, . . . , z

l
n) is obtained from (xl

1, . . . , y
l
n−m) by a constant linear transformation, is

essentially the same). Suppose that we have

|ψl+1|l,exp(1/l−ε/l2)ρ < ρ .

Then it follows from Lemma 3.5.1 that, provided that l is large enough:

|dψl+1|l,exp(1/l−2ε/l2)ρ <
1
2n

.

(In order to define |dψl+1|l,exp(1/l−2ε/l2)ρ, consider dψl+1 as an n2-vector valued
function in variables (zl

1, . . . , z
l
n)). Hence the map φl+1 = Id + ψl+1 is injective

in Bl,exp(1/l−2ε/l2)ρ : if x, y ∈ Bl,ρl
, x 6= y, then ‖φl+1(x) − φl+1(y)‖ ≥ ‖x − y‖ −

‖ψl+1(x)−ψl+1(y)‖ ≥ ‖x−y‖−n|dψl+1|exp(1/l−2ε/l2)ρ‖x−y‖ ≥ (1−1/2)‖x−y‖ > 0.
(Here (x−y) means the vector (zl

1(x)−zl
1(y), . . . , zl

n(x)−zl
n(y)), i.e. their difference

is taken with respect to the coordinate system (zl
1, . . . , z

l
n)).

It follows from Lemma 3.5.1 that

|φl+1|l,exp(1/l−2ε/l2)ρ = |Id + ψl+1|l,exp(1/l−2ε/l2)ρ ≤
≤ |Id|l,exp(1/l−2ε/l2)ρ + |ψl+1|l,exp(1/l−2ε/l2)ρ <

< exp(1/l − 2ε/l2)ρ +
ε

4l2
exp(1/l − 2ε/l2)ρ < exp(1/l − ε/l2)ρ .
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In other words, we have

(3.76) φl+1(Bl,exp(1/l−2ε/l2)ρ) ⊂ Bl,exp(1/l−ε/l2)ρ .

Applying Formula (3.75) to the above relation, noticing that 1/l − 2ε/l2 >
1/(l + 1), and simplifying the obtained formula a little bit, we get

(3.77) φl+1(Bl,exp(1/(l+1)−2ε/(l+1)2)ρ) ⊂ Bl,exp(1/(l+1))ρ .

We will show that φ−1
l+1 is well-defined in Bl,exp(1/(l+1))ρ, and

(3.78) φ−1
l+1(Bl,exp(1/(l+1))ρ) = Bl+1,exp(1/(l+1))ρ ⊂ Bl,exp(1/(l+1)+2ε/(l+1)2)ρ .

Indeed, denote by Sl,exp(1/l−2ε/l2)ρ the boundary of Bl,exp(1/l−2ε/l2)ρ. Then

φl+1(Sl,exp(1/l−2ε/l2)ρ) ⊂ Bl,exp(1/l−ε/l2)ρ

and is homotopic to Sl,exp(1/l−2ε/l2)ρ via a homotopy which does not intersect
Bl,exp(1/(l+1))ρ. It implies, via the classical Brower’s fixed point theorem, that
φl+1(Bl,exp(1/l−2ε/l2)ρ) must contain Bl,exp(1/(l+1))ρ. Because φl+1 is injective in
(Bl,exp(1/l−2ε/l2)ρ), it means that the inverse map is well-defined in Bl,exp(1/(l+1))ρ,
with

φ−1
l+1(Bl,exp(1/(l+1))ρ) ⊂ Bl,exp(1/l−2ε/l2)ρ .

In particular, Bl+1,exp(1/(l+1))ρ = φ−1
l+1(Bl,exp(1/(l+1))ρ) is well-defined. Lemma 3.5.4

then follows from (3.77) and (3.78). ¤

Proof of Lemma 3.5.5. Suppose that Condition (iii)l is satisfied. Then
according to (3.28) we have :

(3.79) ‖f l
ij‖l,exp(1/l)ρ ≤ |f l

ij |l,exp(1/l)ρ =
∣∣∣{xl

i, x
l
j} −

∑

k

ck
ijx

l
k

∣∣∣
l,exp(1/l)ρ

≤

≤ C1|Π|l,exp(1/l)ρ +
∑

k

|ck
ij‖xl

k|l,ρ ≤ C1.C.ρ + C2. exp(1/l)ρ
∑

k

|ck
ij | < C3ρ ,

where C3 is some positive constant (which does not depend on l).

We can apply the above inequality ‖f l
ij‖l,exp(1/l)ρ < C3ρ and Lemma 3.4.3 to

find a positive constant C4 (which does not depend on l) and a solution wl
i of (3.37),

such that

(3.80)
∥∥wl

i

∥∥
l,exp(1/l)ρ

< C4ρ .

Together with Lemma 3.5.1, the above inequality yields

(3.81)
∣∣dwl

i

∣∣
l,exp(1/l−ε/2l2)ρ

< C4,

provided that l is large enough. Applying Lemma 3.5.1 and the assumption that
|Π|l,exp(1/l)ρ < Cρ to the above inequality, we get

∣∣{wl
i, y

l
j}

∣∣
l,exp(1/l−ε/2l2)ρ

< C5ρ

for some constant C5 (which does not depend on l). Using this inequality, and
inequalities similar to (3.79), we get that the norm ‖.‖l,exp(1/l−ε/2l2)ρ of the 1-
cocycle given in Formula (3.41) is bounded from above by C6ρ, where C6 is some
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constant which does not depend on L. Using Lemma 3.4.3, we find a solution vL
i

to Equation 3.43 such that

(3.82)
∥∥vl

i

∥∥
l,exp(1/l−ε/2l2)ρ

< C6ρ ,

where C6 is some constant which does not depend on l. Lemma 3.5.5 (fr l large
enough compared to C6) now follows directly from Inequalities (3.80), (3.82) and
Lemma 3.5.1. ¤

Proof of Lemma 3.5.6. Suppose that Condition (ii)l+1 is satisfied. By
Lemma 3.5.4, Condition (i)l+1 is also satisfied. In particular,

Bl+1,exp(1/(l+1))ρ ⊂ Bl,exp(1/(l+1)+2ε/(l+1)2)ρ ⊂ Bl,exp(1/l−2ε/l2)ρ

(for ε < 1/4 and l large enough). Thus we have

|{zl+1
i , zl+1

j }|l+1,exp(1/(l+1))ρ ≤ |{zl+1
i , zl+1

j }|l,exp(1/l−2ε/l2)ρ ≤ T 1 + T 2 + T 3 + T 4

where

T 1 = |{zl
i, z

l
j}|l,exp(1/l−2ε/l2)ρ ,

T 2 = |{zl+1
i − zl

i, z
l+1
j }|l,exp(1/l−2ε/l2)ρ ,

T 3 = |{zl+1
i , zl+1

j − zl
j}|l,exp(1/l−2ε/l2)ρ ,

T 4 = |{zl+1
i − zl

i, z
l+1
j − zl

j}|l,exp(1/l−2ε/l2)ρ .

For the first term, we have

T 1 ≤ |{zl
i, z

l
j}|l,exp(1/l)ρ ≤ |Π|l,exp(1/l)ρ ≤ C. exp(−1/

√
l)ρ .

Notice that C exp(−1/
√

l + 1)ρ−C exp(−1/
√

l)ρ > C
l2 ρ (for l large enough). So to

verify Condition (iii)l+1, it suffices to show that T 2 + T 3 + T 4 < C
l2 ρ. But this last

inequality can be achieved easily (provided that l is large enough) by Conditions
(ii)l+1, (iii)l and Lemma 3.5.1. Lemma 3.5.6 is proved. ¤

3.6. The smooth case

In this section we will give a sketch of the proof of Theorem 3.2.9, referring the
reader to [152] for the details, which are quite long. Or rather, we will show what
modifications to be made to the proof of the analytic Levi decomposition theorem
3.2.6 in order to obtain the proof of Theorem 3.2.9.

In this section, g will be a compact semisimple Lie algebra. Denote by (ξ1, . . . , ξm)
a fixed basis of g, which is orthonormal with respect to a fixed positive definite in-
variant metric on g. Denote by ck

ij the structural constants of g with respect to this
basis:

(3.83) [ξi, ξj ] =
∑

k

ck
ijξk .

Since g is compact, we may extend (ξ1, . . . , ξm) to a basis

(ξ1, . . . , ξm, y1, . . . , yn−m)

of l such that the corresponding Euclidean metric is preserved by the adjoint action
of g. The algebra g acts on l∗ = Rn via the coadjoint action of l ζ(z) := ad∗ζ(z) for
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ζ ∈ g ⊂ l, z ∈ Rn = l∗. The basis (ξ1, . . . , ξm, y1, . . . , yn−m) of l may be viewed as
a coordinate system (x1, . . . , xm, y1, . . . , yn−m) on Rn (with xi = ξi).

Denote by G the compact simply-connected Lie group whose Lie algebra is
g. Then the above action of g on Rn integrates into an action of G on Rn (the
coadjoint action). The action of G on Rn preserves the Euclidean metric of Rn

given by ‖z‖2 =
∑ |xi(z)|2 +

∑ |yj(z)|2.
For each positive number r > 0, denote by Br the closed ball of radius r in Rn

centered at 0. The group G (and hence the algebra g) acts linearly on the space of
functions on Br via its action on Br: for each function F and element g ∈ G we
put

(3.84) g(F )(z) := F (g−1(z)) = F (Ad(g−1)z).

In the smooth case, we will use Ck-norms and Sobolev norms. For each non-
negative integer k ≥ 0 and each pair of real-valued functions F1, F2 on Br, we
will define the Sobolev inner product of F1 with F2 with respect to the Sobolev
Hk-norm as follows:

(3.85) 〈F1, F2〉Hk,r :=
∑

|α|≤k

∫

Br

( |α|!
α!

)(
∂|α|F1

∂zα
(z)

) (
∂|α|F2

∂zα
(z)

)
dµ(z).

The Sobolev Hk-norm of a function F on Br is

(3.86) ‖F‖H
k,r :=

√
〈F, F 〉Hk,r .

We will denote by Cr the subspace of the space C∞(Br) of smooth real-valued
functions on Br, which consists of functions vanishing at 0 whose first derivatives
also vanish at 0. Then the action of G on Cr defined by (3.84) preserves the Sobolev
inner products (3.85).

Denote by Yr the space of smooth vector fields on Br of the type

(3.87) u =
n−m∑

i=1

ui∂/∂yi ,

such that ui vanish at 0 and their first derivatives also vanish at 0. Then Yr is a
g-module under the following action :

(3.88) ξi ·
∑

j

uj∂/∂yj :=
[∑

jk

ck
ijxk

∂

∂xj
+

∑

jk

ak
ijyk

∂

∂yj
,

∑

j

uj∂/∂yj

]
,

where Xi =
∑

jk ck
ijxk∂/∂xj +

∑
jk ak

ijyk∂/∂yj are the linear vector fields which
generate the linear orthogonal coadjoint action of g on Rn.

Equip Yr with Sobolev inner products:

(3.89) 〈u, v〉Hk,r :=
n−m∑

i=1

〈ui, vi〉k,r ,

and denote by YH
k,r the completion of Yr with respect to the corresponding Hk,r-

norm. Then YH
k,r is a separable real Hilbert space on which g and G act orthogonally.

The Ck-norms can be defined as follows:
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(3.90) ‖F‖k,r := sup
|α|≤k

sup
z∈Br

|DαF (z)|

for F ∈ Cr, where the sup runs over all partial derivatives of degree |α| at most k.
Similarly, for u =

∑n−m
i=1 ui∂/∂yi ∈ Yr we put

(3.91) ‖u‖k,r := sup
i

sup
|α|≤k

sup
z∈Br

|Dαui(z)|

The Ck norms ‖.‖k,r are related to the Sobolev norms ‖.‖H
k,r as follows:

(3.92) ‖F‖k,r ≤ C‖F‖H
k+s,r and ‖F‖H

k,r ≤ C(n + 1)k‖F‖k,r

for any F in Cr or Yr and any k ≥ 0, where s = [n
2 ]+1 and C is a positive constant

which does not depend on k. In other words, Ck norms and Sobolev norms are
“tamely equivalent”. A priori, the constant C depends on r, but later on we will
always assume that 1 ≤ r ≤ 2, and so may assume C to be independent of r. The
above inequality is a version of the classical Sobolev’s lemma for Sobolev spaces.

Similarly to the analytic case, we will need the following normed version of
Whitehead’s lemma (cf. Proposition 2.1 of [54]):

Lemma 3.6.1 (Conn). For any given positive number r, and W = Cr or Yr

with the above action of g, consider the (truncated) Chevalley-Eilenberg complex

W
δ0→ W ⊗ ∧1g∗ δ1→ W ⊗ ∧2g∗ δ2→ W ⊗ ∧3g∗

Then there is a chain of operators

W
h0← W ⊗ ∧1g∗ h1← W ⊗ ∧2g∗ h2← W ⊗ ∧3g∗

such that

(3.93) δ0 ◦ h0 + h1 ◦ δ1 = IdW⊗∧1g∗ ,
δ1 ◦ h1 + h2 ◦ δ2 = IdW⊗∧2g∗ .

Moreover, there exist a constant C > 0, which is independent of the radius r of Br,
such that

(3.94) ‖hj(u)‖H
k,r ≤ C‖u‖H

k,r j = 0, 1, 2

for all k ≥ 0 and u ∈ W ⊗ ∧j+1g∗. If u vanishes to an order l ≥ 0 at the origin,
then so does hj(u).

Strictly speaking, Conn [54] proved the above lemma only in the case when
g = l and for the module Cr, but his proof is quite general and works perfectly in
our situation without any modification. In fact, in order to prove Lemma 3.6.1, it
is sufficient to show that W is a infinite direct sum of finite-dimensional orthogonal
modules, and then repeat the proof of Lemma 3.4.1. ¤

For simplicity, in the sequel we will denote the homotopy operators hj in the
above lemma simply by h. Homotopy relation (3.93) will be rewritten simply as
follows:

(3.95) Id− δ ◦ h = h ◦ δ .
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The meaning of the last equality is as follows: if u is an 1-cocycle or 2-cocycle, then
it is also a coboundary, and h(u) is an explicit primitive of u: δ(h(u)) = u. If u is
a “near cocycle” then h(u) is also a “near primitive” for u.

Combining Inequality (3.94) with Sobolev inequalities, we get the following
estimate for the homotopy operators h with respect to Ck norms:

(3.96) ‖h(u)‖k,r ≤ C(n + 1)k+s‖u‖k+s,r ∀ j = 0, 1, 2

for all k ≥ 0 and u ∈ W ⊗ ∧j+1g∗ where W = Cr or Yr. Here s = [n
2 ] + 1, C is a

positive constant which does not depend on k (and r provided that 1 ≤ r ≤ 2).

It is well-known that the space C∞(Br) with Ck norms (3.90) is a tame
Fréchet space (see, e.g., [103] for the theory of tame Fréchet spaces). Since
Cr is a tame direct summand of C∞(Br), it is also a tame Fréchet space. Simi-
larly, Yr with norms (3.91) is a tame Frechet space as well. What we will use here
is the fact that tame Fréchet spaces admit smoothing operators and interpolation
inequalities:

For each t > 1 there is a linear operator S(t) = Sr(t) from Cr to itself, called a
smoothing operator , with the following properties:

(3.97) ‖S(t)F‖p,r ≤ Cp,qt
(p−q)‖F‖q,r

and

(3.98) ‖(Id− S(t))F‖q,r ≤ Cp,qt
(q−p)‖F‖p,r

for any F ∈ Cr, where p, q are any nonnegative integers such that p ≥ q, Id denotes
the identity map, and Cp,q denotes a constant which depends on p and q.

The second inequality means that S(t) is close to identity and tends to identity
when t → ∞. The first inequality means that F becomes “smoother” when we
apply S(t) to it. That’s why S(t) is called a smoothing operator. A priori, the
constants Cp,q also depend on the radius r. But later on, we will always have
1 ≤ r ≤ 2, and so we may choose Cp,q to be independent of r.

There is a similar smoothing operator from Yr to itself, which by abuse of
language we will also denote by S(t) or Sr(t). We will assume that inequalities
(3.97) and (3.98) are still satisfied when F is replaced by an element of Yr.

For any F in Cr or Yr, and nonnegative integers p1 ≥ p2 ≥ p3, we have the
following interpolation inequality :

(3.99) (‖F‖p2,r)p3−p1 ≤ Cp1,p2,p3(‖F‖p1,r)p3−p2(‖F‖p3,r)p2−p1 ,

where Cp1,p2,p3 is a positive constant which may depend on p1, p2, p3.

Similarly to the analytic case, in order to prove Theorem 3.2.9, we will con-
struct by recurrence a sequence of local smooth coordinate systems (xd, yd) :=
(xd

1, . . . , x
d
m, yd

1 , . . . , yd
n−m), which converges to a local coordinate system (x∞, y∞) =

(x∞1 , . . . , x∞m , y∞1 , . . . , y∞n−m), in which the Poisson structure Π has the desired form.
Here (x0, y0) = (x1, . . . , xm, y1, . . . , yn−m) is the original linear coordinate system.

For simplicity of exposition, we will assume that Π is C∞-smooth. However, in
every step of the proof of Theorem 3.2.9, we will only use differentiability of Π up
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to some finite order, and that’s why our proof will also work for finitely (sufficiently
highly) differentiable Poisson structures.

We will denote by Θd the local diffeomorphisms of (Rn, 0) such that

(3.100) (xd, yd)(z) = (x0, y0) ◦Θd(z) ,

where z denotes a point of (Rn, 0).

Denote by Πd the Poisson structure obtained from Π by the action of Θd:

(3.101) Πd = (Θd)∗Π .

Of course, Π0 = Π. Denote by {., .}d the Poisson bracket with respect to the
Poisson structure Πd. Then we have

(3.102) {F1, F2}d(z) = {F1 ◦Θd, F2 ◦Θd}(Θd
−1(z)) .

Assume that we have constructed (xd, yd) = (x, y) ◦Θd. Let us now construct
(xd+1, yd+1) = (x, y) ◦Θd+1. Similarly to the analytic case, this construction con-
sists of two steps : 1) find an “almost Levi factor”, i.e. coordinates xd+1

i such
that the error terms {xd+1

i , xd+1
j }−∑

k ck
ijx

d+1
k are small, and 2) “almost linearize”

it, i.e. find the remaining coordinates yd+1 such that in the coordinate system
(xd+1, yd+1) the Hamiltonian vector fields of the functions xd+1

i are very close to
linear ones. In fact, we will define a local diffeomorphism θd+1 of (Rn, 0) and
then put Θd+1 = θd+1 ◦ Θd. In particular, we will have Πd+1 = (θd+1)∗Πd and
(xd+1, yd+1) = (xd, yd) ◦ (Θd)−1 ◦ θd+1 ◦Θd.

Similarly to the analytic case, consider the 2-cochain

(3.103) fd =
∑

ij

fd
ij ⊗ ξ∗i ∧ ξ∗j

of the Chevalley-Eilenberg complex associated to the g-module Cr, where now

(3.104) fd
ij(x, y) = {xi, xj}d −

m∑

k=1

ck
ijxk,

and r = rd depends on d and can be chosen as follows:

(3.105) rd = 1 +
1

d + 1
.

In particular, r0 = 2, rd/rd+1 ∼ 1 + 1
d2 , and limd→∞ rd = 1 is positive. This choice

of radii rd means in particular that we will be able to arrange so that the Poisson
structure Πd = (Θd)∗Π is defined in the closed ball of radius rd. (For this to hold,
we will have to assume that Π is defined in the closed ball of radius 2, and show by
recurrence that Brd

⊂ θd(Brd−1) for all d ∈ N).

Put

(3.106) ϕd+1 :=
∑

i

ϕd+1
i ⊗ ξ∗i = S(td)

(
h(fd)

)
,

where h is the homotopy operator as given in Lemma 3.6.1, S is the smoothing
operator and the parameter td is chosen as follows: take a real constant t0 > 1
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(which later on will be assumed to be large enough) and define the sequence (td)d≥0

by td+1 = t
3/2
d . In other words, we have

(3.107) td = exp

((
3
2

)d

ln t0

)
, ln t0 > 0 .

The above choice of smoothing parameter td is a standard one in problems involving
the Nash-Moser method, see, e.g., [102, 103]. The number 3

2 in the above formula
is just a convenient choice. The main point is that this number is greater than 1 (so
we have a very fast increasing sequence) and smaller than 2 (where 2 corresponds
to the fact that we have a fast convergence algorithm which “quadratizes” the error
term at each step, i.e. go from an “ε-small” error term to an “ε2-small” error term).

According to Inequality (3.96), in order to control the Ck-norm of h(fd) we
need to control the Ck+s-norm of fd, i.e. we face a “loss of differentiability”. That’s
why in the above definition of ϕd+1 we have to use the smoothing operator S, which
will allow us to compensate for this loss of differentiability. This is a standard trick
in the Nash-Moser method.

Next, consider the 1-cochain

(3.108) ĝd =
∑

i


∑

α

{xi − h(fd)i, yα}d −
n−m∑

β=1

aβ
iαyβ

∂

∂yα


⊗ ξ∗i

of the Chevalley-Eilenberg complex associated to the g-module Yr, where r = rd =
1 + 1

d+1 , and put

(3.109) ψd+1 :=
∑
α

ψd+1
α

∂

∂yα
= S(td)

(
h(ĝd)

)
,

where h is the homotopy operator as given in Lemma 3.6.1, and S(td) is the smooth-
ing operator (with the same td as in the definition of ϕd+1).

Now define θd+1 to be a local diffeomorphism of Rn given by

(3.110) θd+1 := Id− (ϕd+1
1 , . . . , ϕd+1

m , ψd+1
1 , . . . , ψd+1

n−m) .

This finishes our construction of Θd+1 = θd+1 ◦Θd and (xd+1, yd+1) = (x, y) ◦
Θd+1. This construction is very similar to the analytic case, except mainly for the
use of the smoothing operator. Another difference is that, for technical reasons, in
the smooth case we use the original coordinate system and the transformed Poisson
structures Πd for determining the error terms, while in the analytic case the original
Poisson structure and the transformed coordinate systems are used. In particular,
the closed balls used here are always balls with respect to the original coordinate
system – this allows us to easily compare the Sobolev norms of functions on them,
i.e. bigger balls correspond to bigger norms.

The technical part of the proof (see [152]) consists of a series of lemmas which
show that the above construction actually yields a smooth Levi normalization in
the limit, provided that Π is defined on the closed ball of radius 2 and is sufficiently
close to its linear part there. If Π does not satisfy these conditions, then we may
use the following homothety trick to make it satisfy: replace Π by Πt = 1

t G(t)∗Π
where G(t) : z 7→ tz is a homothety, t > 0. The limit limt→∞Πt is equal to the
linear part of Π. So by choosing t high enough, we may assume that Πt is defined
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on the closed ball of radius 2 and is sufficiently close to its linear part there. If Θ
is a local smooth Levi normalization for Πt, then G(1/t) ◦Θ ◦G(t) will be a local
smooth Levi normalization for Π.

Remark 3.6.2. In [152] there is also an abstract Nash–Moser normal form
theorem, which can be applied to the problem of smooth Levi decomposition of
Poisson structures, and hopefully to other smooth normal form problems as well.



CHAPTER 4

Linearization of Poisson structures

4.1. Nondegenerate Lie algebras

Let Π be a Poisson structure which vanishes at a point z: Π(z) = 0. Denote by

(4.1) Π = Π(1) + Π(2) + . . . ,

the Taylor expansion of Π in a local coordinate system centered at z, where Π(k) is
a homogeneous 2-vector field of degree k. Recall that, the terms of degree k of the
equation [Π, Π] = 0 give

(4.2)
k∑

i=1

[
Π(i),Π(k+1−i)

]
= 0.

In particular, [Π(1), Π(1)] = 0, i.e. the linear part Π(1) of Π is a linear Poisson
structure. One says that Π is locally smoothly (resp. analytically, resp. formally)
linearizable if there is a local smooth (resp. analytic, resp. formal) diffeomorphism
φ (a coordinate transformation) such that φ∗Π = Π(1).

Definition 4.1.1 ([205]). A finite-dimensional Lie algebra g is called formally
(resp. analytically, resp. smoothly) nondegenerate if any formal (resp. analytic,
resp. smooth) Poisson structure Π which vanishes at a point and whose linear
part at that point corresponds to g is formally (resp. analytically, resp. smoothly)
linearizable.

In other words, a Lie algebra is nondegenerate if any Poisson structure, whose
linear part corresponds to this algebra, is completely determined by its linear part
up to local isomorphisms.

The above definition begs the question: which Lie algebras are nondegenerate
and which are degenerate? This question is the main topic of this chapter. One
of the main tools for studying it is the Levi decomposition, treated in the previous
chapter. The question is still largely open, though we now know of several series of
nondegenerate Lie algebras, and many degenerate ones (it is much easier in general
to find degenerate Lie algebras than to find nondegenerate ones).

As explained in Chapter 2, formal deformations of Poisson structures are gov-
erned by Poisson cohomology, and for linear Poisson structures Poisson cohomology
is a special case of Chevalley-Eilenberg cohomology of the corresponding Lie alge-
bras. In particular, if l is a Lie algebra such that H2(l,Skl) = 0 ∀ k ≥ 2, then it
is formally nondegenerate (Theorem 2.3.8). Let us recall here a special case of this
result:

Theorem 4.1.2 ([205]). Any semisimple Lie algebra is formally nondegenerate.

81
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In general, it is much more difficult to study smooth or analytic nondegeneracy
of Lie algebras than to study their formal nondegeneracy, because the former prob-
lem involves not only algebra (cohomology of Lie algebras) but also geometry and
analysis (to show the analyticity or smoothness of coordinate transformations).

The first significant results about analytic and smooth nondegenerate Lie alge-
bras are due to Conn [53, 54], and are already mentioned in Chapter 3 as special
cases of Levi decomposition theorems. Let us recall here Conn’s results.

Theorem 4.1.3 ([53]). Any semisimple Lie algebra is analytically nondegen-
erate.

Theorem 4.1.4 ([54]). Any compact semisimple Lie algebra is smoothly non-
degenerate.

On the other hand, most non-compact real semisimple Lie algebras are smoothly
degenerate (see Section [207]).

Related to the notion of (formal) nondegeneracy is the notion of rigidity of
Lie algebras, mentioned in Subsection 2.3.3, and also the notion of strong rigidity
[25]. Recall that H2(g, g) is the cohomology group which governs infinitesimal
deformations of a Lie algebra g. This group is somehow related to the group
⊕k≥2H

2(g, Skg), but they are not the same. Not surprisingly, there are Lie algebras
which are rigid but degenerate (e.g. saff(2), see Example 4.1.5), Lie algebras which
are non-rigid but nondegenerate (e.g. a 3-dimensional solvable Lie algebra KnAK2,
where A is a nonresonant 2× 2 matrix, see Theorem 4.2.2), Lie algebras which are
both rigid and nondegenerate (e.g. semisimple Lie algebras), and Lie algebras which
are both non-rigid and degenerate (e.g. Abelian Lie algebras).

Example 4.1.5. Denote by saff(2,K) = sl(2,K) n K2 the Lie algebra of in-
finitesimal area-preserving affine transformations on K2. Then saff(2,K) is rigid
but degenerate. The linear Poisson structure corresponding to saff(2) has the form
Π(1) = 2e∂h ∧ ∂e − 2f∂h ∧ ∂f + h∂e ∧ ∂f + y1∂h ∧ ∂y1 − y2∂h ∧ ∂y2 + y1∂e ∧
∂y2 + y2∂f ∧ ∂y1 in a natural system of coordinates. Now put Π = Π(1) + Π̃ with
Π̃ = (h2 + 4ef)∂y1 ∧ ∂y2. Then Π is a Poisson structure, vanishing at the origin,
with a linear part corresponding to saff(2). For Π(1) the set where the rank is less
or equal to 2 is a codimension 2 linear subspace (given by the equations y1 = 0 and
y2 = 0). For Π the set where the rank is less or equal to 2 is a 2-dimensional cone
(the cone given by the equations y1 = 0, y2 = 0 and h2 + 4ef = 0). So these two
Poisson structures are not isomorphic, even formally. The rigidity of saff(2) will be
left to the reader as an exercise (see [173, 40]).

Example 4.1.6. The Lie algebra e(3) = so(3) n R3 of rigid motions of the
Euclidean space R3 is degenerate and non-rigid. The linear Poisson structure cor-
responding to e(3) has the form Π(1) = x1∂x2 ∧ ∂x3 +x2∂x3 ∧ ∂x1 +x3∂x1 ∧ ∂x2 +
y1∂x2∧∂y3+y2∂x3∧∂y1+y3∂x1∧∂y2 in a natural system of coordinates. Now put
Π = Π(1)+Π̃ with Π̃ = (x2

1+x2
2+x2

3)(x1∂x2∧∂x3+x2∂x3∧∂x1+x3∂x1∧∂x2). For
Π(1) the set where the rank is less or equal to 2 is a dimension 3 subspace (given by
the equation y1 = y2 = y3 = 0), while for Π the set where the rank is less or equal to
2 is the origin. A Lie algebra not isomorphic to e(3) but adjacent to e(3) is so(3, 1),
the Lie algebra of infinitesimal linear automorphisms of the Minkowski space. Here
the adjective adjacent means that, in the variety of all Lie algebra structures of
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dimension 6 (see Subsection 2.3.3), the GL(6)-orbit which corresponds to e(3) lies
in the closure (with respect to the Euclidean topology) of the GL(6)-orbit which
corresponds to so(3, 1) . One also says that e(3) is a contraction of so(3, 1). If a
Lie algebra is a contraction of another Lie algebra, then it is not rigid.

A strongly rigid Lie algebra is a Lie algebra g whose universal enveloping
algebra U(g) is rigid as an associative algebra [25]. It is easy to see that if g is
strongly rigid then it is rigid. A sufficient condition for g to be strongly rigid is
H2(g, Skg) = 0 ∀ k ≥ 0, and if this condition is satisfied then g is called infinitesi-
mally strongly rigid [25]. Obviously, if g is infinitesimally strongly rigid, then it
is formally nondegenerate. In fact, we have the following result, due to Bordemann,
Makhlouf and Petit:

Theorem 4.1.7 ([25]). If g is a strongly rigid Lie algebra then it is formally
nondegenerate.

We refer to [25] for the proof of the above theorem, which is based on Kont-
sevich’s theorem [121] on the existence of deformation quantization of Poisson
structures.

4.2. Linearization of low-dimensional Poisson structures

4.2.1. Two-dimensional case.

Up to isomorphisms, there are only two Lie algebras of dimension 2: the trivial,
i.e. Abelian one, and the solvable Lie algebra KnK, which has a basis (e1, e2) with
[e1, e2] = e1. This Lie algebra is isomorphic to the Lie algebra of infinitesimal affine
transformations of the line, so we will denote it by aff(1).

The Abelian Lie algebra of dimension 2 is of course degenerate. For example,
the quadratic Poisson structure (x2

1 + x2
2)

∂
∂x1

∧ ∂
∂x2

is non-trivial and is not locally
isomorphic to its linear part, which is trivial.

On the other hand, we have:

Theorem 4.2.1 ([5]). The Lie algebra aff(1) is formally, analytically and
smoothly nondegenerate.

Proof. We begin with {x, y} = x + . . . . Putting x′ = {x, y}, y′ = y, we obtain
{x′, y′} = ∂x′

∂x {x, y} = x′a(x′, y′), where a is a function such that a(0) = 1. We
finish with a second change of coordinates x′′ = x′, y′′ = f(x′, y′), where f is a
function such that ∂f

∂y′ = 1/a. ¤

4.2.2. Three dimensional case.

Every Lie algebra of dimension 3 over R or C is of one of the following three
types, where (e1, e2, e3) denote a basis:

• so(3) with brackets [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.
• sl(2) with brackets [e1, e2] = e3, [e1, e3] = e1, [e2, e3] = −e2. (Recall that

so(3,R) � sl(2,R), so(3,C) ∼= sl(2,C)).
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• semi-direct products KnAK2 where K acts linearly on K2 by a matrix A.
In other words, we have brackets [e2, e3] = 0, [e1, e2] = ae2 + be3, [e1, e3] =
ce2+de3, and A is the 2×2-matrix with coefficients a, b, c and d. (Different
matrices A may correspond to isomorphic Lie algebras).

The Lie algebras sl(2) and so(3) are simple, so they are formally and analyti-
cally nondegenerate, according to Weinstein’s and Conn’s theorems.

The fact that the compact simple Lie algebra so(3,R) is smoothly nondegener-
ate (it is a special case of Conn’s Theorem 4.1.4) is due to Dazord [62]. In Chapter
??, we will extend this result of Dazord to the case of elliptic singularities of Nambu
structures, using arguments similar to his.

On the other hand, sl(2,R) is known to be smoothly degenerate (see [205]).
A simple construction of a smooth non-linearizable Poisson structure whose linear
part corresponds to sl(2,R) is as follows: In a linear coordinate system (y1, y2, y3),
write

Π(1) = y3
∂

∂y1
∧ ∂

∂y2
− y2

∂

∂y1
∧ ∂

∂y3
− y1

∂

∂y2
∧ ∂

∂y3
= X ∧ Y,

where X = y2
∂

∂y3
− y3

∂
∂y2

, and Y = ∂
∂y1

+ y1
y2
2+y2

3

(
y2

∂
∂y2

+ y3
∂

∂y3

)
. This linear

Poisson structure corresponds to sl(2,R) and has C = y2
2 + y2

3 − y2
1 as a Casimir

function. Denote by Z a vector field on R3 such that Z = 0 when y2
2 + y2

3 − y2
1 ≥ 0,

and Z =
√

G(C)√
y2
2+y2

3

(
y2

∂
∂y2

+ y3
∂

∂y3

)
when y2

2 +y2
3−y2

1 > 0, where G is a flat function

such that G(0) = 0 and G(C) > 0 when C > 0. Then Z is a flat vector field such
that [Z, X] = [Z, Y ] = 0. Hence Π = X∧(Y −Z) is a Poisson structure whose linear
part is Π(1) = X∧Y . While Y is a periodic vector field, the integral curves of Y −Z
in the region {y2

2 + y2
3 − y2

1 > 0} are spiraling towards the cone {y2
2 + y2

3 − y2
1 = 0}.

Thus, while almost all the symplectic leaves of Π(1) are closed, the symplectic
leaves of Π in the region {y2

2 + y2
3 − y2

1 > 0} contain the cone {y2
2 + y2

3 − y2
1 = 0} in

their closure (also locally in a neighborhood of 0). This implies that the symplectic
foliation of Π is not locally homeomorphic to the symplectic foliation of Π(1). Hence
Π can’t be locally smoothly equivalent to Π(1).

For solvable Lie algebras KnA K2, we have the following result:

Theorem 4.2.2 ([69]). The Lie algebra R2 ×A R is smoothly (or formally)
nondegenerate if and only if A is nonresonant in the sense that there are no relations
of the type

(4.3) λi = n1λ1 + n2λ2 (i = 1 or 2),

where λ1 and λ2 are the eigenvalues of A, n1 and n2 are two nonnegative integers
with n1 + n2 > 1.

Proof. Let Π be a Poisson structure on a 3-dimensional manifold which van-
ishes at a point with a linear part corresponding to R2×AR with a nonresonant A.
In a system of local coordinates (x, y, z), centered at the considered point, we have

(4.4) {z, x} = ax + by + O(2), {z, y} = cx + dy + O(2), {x, y} = O(2),

where a, b, c, d are the coefficients of A, and O(2) means terms of degree at least
2. It follows that the curl vector field DΩΠ (see Section 2.5), with respect to any
volume form Ω, has the form (a + c)∂/∂z + Y , where Y is a vector field vanishing
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at the origin. But the non-resonance hypothesis imposes that the trace of A is not
zero; so DΩΠ doesn’t vanish in a neighborhood of the origin. We can straighten it
and suppose that the coordinates (x, y, z) are chosen such that DΩΠ = ∂z.

Now the 3-dimensional hypothesis implies Π ∧Π = 0 and, using formula

[Π, Π] = DΩ(Π ∧Π)±DΩ(Π) ∧Π

(see Section 2.5), we obtain
DΩ(Π) ∧Π = 0.

In the above coordinates this gives ∂/∂z ∧Π = 0 and, so,

Π = ∂/∂z ∧X,

where X is a vector field. Now we recall the basic formula

[DΩ(Π), Π] = 0

which have the consequence that we can suppose that X depends only on the
coordinates x and y.

Because of the form of the linear part of Π, X is a vector field which vanishes
at the origin but with a nonresonant linear part. Hence, up to a smooth (or formal)
change of coordinates x and y, we can linearize X (see Appendix ??). This gives
the smooth (or formal) nondegeneracy of R2 ×A R.

To prove the “only if” part, we start with a linear Poisson structure

Π(1) = ∂/∂z ∧X(1),

where X(1) is a linear resonant vector field. Every resonance relation permits
the construction of a polynomial perturbation X of X(1) which is not smoothly
isomorphic to X(1), even up to a product with a function (see Appendix ??). Then
it is not difficult to prove that ∂/∂z∧X is a polynomial perturbation of Π(1) which
is not equivalent to it. ¤

Remark 4.2.3. The same proof shows that algebras of type K2 ×A K (where
K = R or C) are analytic nondegenerate if we add to the non-resonance condition
a Diophantine condition on the eigenvalues of A (see Appendix ??).

4.2.3. Four-dimensional case.

The results on (non)degeneracy of 4-dimensional Lie algebras presented in this
subsection are taken from Molinier’s thesis [149].

According to [170], every 4-dimensional Lie algebra over K, where K = R or
C, belongs to (at least) one of the following four types:

Type 1: direct products K × L3 where L3 is a 3-dimensional algebra (see the
preceding paragraph for a classification)

Type 2: semi-direct products KnAK3, where K3 is the commutative Lie algebra
of dimension 3, and K acts on K3 by a matrix A.

Type 3: semi-direct products KnA H3, where H3 is the 3-dimensional Heisen-
berg Lie algebra: H3 has a basis (x, y, z) such that [x, y] = z, [x, z] = [y, z] = 0.

Type 4: semi-direct products K2 nK2.
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In the first type we have K × sl(2) and K × so(3), which are the same when
K = C, and the cases where L3 is a semi-direct product KnK2. The Levi decom-
position theorems from Chapter 3 imply that K× sl(2) and K× so(3) are formally
and analytically nondegenerate, and that R× so(3,R) is smoothly nondegenerate.
However, R × sl(2,R) is smoothly degenerate: just repeat the proof, given in the
previous subsection, of the fact that sl(2) is smoothly degenerate. The case where
L3 is a semi-direct product is degenerate (formally, analytically and smoothly): if
we choose coordinates (u, v, x, y) such that the corresponding linear Poisson tensor
has the form

(4.5) (ax + by)
∂

∂u
∧ ∂

∂x
+ (cx + dy)

∂

∂v
∧ ∂

∂y
,

then we can add a quadratic term v2 ∂
∂u∧ ∂

∂v to get a non-linearizable Poisson tensor.

Every algebra of the second type is degenerate. To prove this we choose coordi-
nates (u, x1, x2, x3) such that in these coordinates the corresponding linear Poisson
structure has brackets {u, xi} =

∑
j aj

ixj , (the others brackets are trivial), where
aj

i are the coefficients of the matrix A. Up to isomorphisms, we can suppose that
A is in Jordan form and we can also replace A by λA where λ is any non vanishing
constant. So we have the following list of cases:

{u, x1} = 0, {u, x2} = x1, {u, x3} = x2;(4.6)
{u, x1} = ax1, {u, x2} = x2, {u, x3} = x2 + x3;(4.7)
{u, x1} = x1, {u, x2} = 0, {u, x3} = x2;(4.8)
{u, x1} = x1, {u, x2} = x1 + x2, {u, x3} = x2 + x3;(4.9)
{u, x1} = x1, {u, x2} = ax2, {u, x3} = bx3;(4.10)
{u, x1} = ax1, {u, x2} = bx2 − x3, {u, x3} = x2 + bx3.(4.11)

Each of the above cases can be perturbed to a non-linearizable Poisson structure by
adding a quadratic term: ∂x3 ∧ (x2

1∂x1 + x1x2∂x2) for (4.6); x2
2∂x3 ∧ ∂x2 for (4.7)

and (4.8); x2
1∂x3 ∧ ∂x2 for (4.9); x2x3∂x3 ∧ ∂x2 for (4.10); and (x2

2 + x2
3)∂x3 ∧ ∂x2

for (4.11).

Similarly, every algebra of the third type is also degenerate. To prove this
we choose coordinates (u, x1, x2, x3) such that the corresponding linear Poisson
structure has brackets {x3, x2} = x1, {u, xi} =

∑
j aj

ixj , (the other brackets are
zero), where aj

i are the coefficients of the matrix A. Up to isomorphisms, we have
the following cases:

{u, x1} = 2x1, {u, x2} = x2, {u, x3} = x2 + x3;(4.12)
{u, x1} = (1 + b)x1, {u, x2} = x2, {u, x3} = bx3;(4.13)
{u, x1} = 2ax1, {u, x2} = ax2 − x3, {u, x3} = x2 + ax3.(4.14)

Each case can be perturbed to a non-linearizable Poisson structure by adding a
quadratic term: x2

2∂x3∧∂x2 for (4.12); x2x3∂x3∧∂x2 for (4.13); and (x2
2+x2

3)∂x3∧
∂x2 for (4.14).

Finally, if g is a Lie algebra of the last type, which does not belong to the
previous three types, then it admits a basis (u, v, x, y), with either the brackets

(4.15) [u, x] = x, [v, y] = y;
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or the brackets

(4.16) [u, x] = x, [u, y] = y , [v, x] = −y, [v, y] = x.

WhenK = C then the above two cases are the same and are isomorphic to aff(1,C)×
aff(1,C). When K = R, these are the two real versions of aff(1,C)× aff(1,C). We
will see in Section 4.3 that (4.15) is formally, analytically and smoothly nonde-
generate, and therefore (4.16) is also formally and analytically nondegenerate. We
don’t know whether (4.16) is smoothly nondegenerate.

4.3. Nondegeneracy of aff(n)

As an application of the Levi decomposition, we will prove the following:

Theorem 4.3.1 ([75]). For any natural number n, the Lie algebra aff(n,K) =
gl(n,K)nKn of affine transformations of Kn, where K = R or C, is formally and
analytically nondegenerate.

Proof. We will prove the above theorem in the analytic case. The formal case
is absolutely similar, if not simpler. Denote by l = g n r a Levi decomposition
for a (real or complex) Lie algebra l, where s is semisimple and r is the solvable
radical of l. Let Π be an analytic Poisson structure vanishing at a point 0 in a
manifold whose linear part at 0 corresponds to l. According to the analytic Levi
decomposition theorem 3.2.6, there exists a local analytic system of coordinates
(x1, . . . , xm, y1, . . . , yd) in a neighborhood of 0, where m = dim g and d = dim r,
such that in these coordinates we have

(4.17) {xi, xj} =
∑

ck
ijxk , {xi, yr} =

∑
as

iry
s ,

where ck
ij are structural constants of s and as

ir are constants. This gives what we
call a semi-linearization for Π. Note that the remaining Poisson brackets {yr, ys}
are nonlinear in general.

We now restrict our attention to the case where l = aff(n), m = n2−1, d = n+1,
g = sl(n), r = R(Id)nKn where Id acts on Kn by the identity map. The following
lemma says that we may have a semi-linearization associated to the decomposition
aff(n) = gl(n)nKn (which is slightly better than the Levi decomposition).

Lemma 4.3.2. There is a local analytic coordinate system

(x1, . . . , xn2−1, y0, y1, . . . , yn)

which satisfy Relations (4.17), with the following extra properties: {y0, yr} = yr for
r = 1, . . . , n; {xi, y0} = 0 ∀i.

Proof. We can assume that the coordinates yr are chosen so that Relations
(4.17) are already satisfied, and y0 corresponds to Id in R(Id) n Kn. Then the
Hamiltonian vector fields Xxi are linear and form a linear action of sl(n). Because
of (4.17), we have that {xi, y0} = 0, which implies that [Xxi , Xy0 ] = 0, i.e. Xy0

is invariant under the sl(n) action. Moreover we have Xy0(xi) = 0 (i.e. Xy0

does not contain components ∂/∂xi), and Xy0 =
∑n

1 yi∂/∂yi+ nonlinear terms.
Hence we can use (the parametrized equivariant version of) Poincaré linearization
theorem to linearize Xy0 in a sl(n)-invariant way. After this linearization, we have
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that Xy0 =
∑n

1 yi∂/∂yi. In other words, Relations (4.17) are still satisfied, and
moreover we have {y0, yi} = Xy0(yi) = yi. ¤

Remark 4.3.3. Lemma 4.3.2 still holds if we replace aff(n) by any Lie algebra
of the type (g⊕Ke0)nn where g is semisimple and e0 acts on n by the identity map
(or any matrix whose corresponding linear vector field is nonresonant and satisfies
a Diophantine condition).

We will redenote y0 in Lemma 4.3.2 by xn2 . Then Relations (4.17) are still
satisfied. We will work in a coordinate system (x1, . . . , xn2 , y1, . . . , yn) provided by
this lemma . We will fix the variables x1, . . . , xn2 , and consider them as linear func-
tions on gl∗(n) (they give a Poisson projection from our (n2 +n)-dimensional space
to gl∗(n)). Denote by F1, . . . , Fn the n basic Casimir functions for gl∗(n). (If we
identify gl(n) with its dual via the Killing form, then F1, . . . , Fn are basic symmetric
functions of the eigenvalues of n × n matrices). We will consider F1(x), . . . , Fn(x)
as functions in our (n2 + n)-dimensional space, which do not depend on variables
yi. Denote by X1, . . . , Xn the Hamiltonian vector fields of F1, . . . , Fn.

Lemma 4.3.4. The vector fields X1, . . . , Xn do not contain components ∂/∂xi.
They form a system of n linear commuting vector fields on Kn (the space of y =
(y1, . . . , yn)) with coefficients which are polynomial in x = (x1, . . . , xn2). The set of
x such that they are linearly dependent everywhere in Kn is an analytic space of
complex codimension strictly greater than 1 (when K = C).

Proof. The fact that the Xi are y-linear with x-polynomial coefficients follows
directly from Relations (4.17). Since Fi are Casimir functions for gl(n), we have
Xi(xk) = {Fi, xk} = 0, and [Xi, Xj ] = X{Fi,Fj} = 0.

One checks that, for a given x, X1 ∧ · · · ∧ Xn = 0 identically on Kn if and
only if x is a singular point for the map (F1, . . . , Fn) from gl∗(n) to Kn. The set
of singular points of the map (F1, . . . , Fn) in the complex case is of codimension
greater than 1 (in fact, it is of codimension 3). ¤

Lemma 4.3.5. Write the Poisson structure Π in the form Π = Π(1) + Π̃, where
Π(1) is the linear part and Π̃ denote the higher order terms. Then Π̃ is a Poisson
structure which can be written in the form

(4.18) Π̃ =
∑

i<j

fijXi ∧Xj ,

where the functions fij are analytic functions which depend only on the variables x,
and they are Casimir functions for gl∗(n) (if we consider the variables x as linear
functions on gl∗(n)).

Proof. We work first locally near a point (x, y) where the vector fields Xk

are linearly independent point-wise. As Π̃ is a 2-vector field in Kn = {y} (with
coefficient depending on x) we have a local formula Π̃ =

∑
i<j fijXi ∧ Xj where

fij are analytic functions in variables (x, y). Since Xk are Hamiltonian vector fields
for Π and also for Π(1), we have [Xk, Π̃] = [Xk, Π]− [Xk, Π(1)] = 0 for k = 1, . . . , n.
This leads to Xk(fij) = 0 ∀ k, i, j. Hence, because the Xk generate Kn, the functions
fij are locally independent of y. Using analytic extension, Hartog’s theorem and
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the fact that the set of x such that X1, . . . , Xn are linearly dependent point-wise
everywhere in Kn is of complex codimension greater than 1, we obtain that fij are
local analytic functions in a neighborhood of 0 which depend only on the variables
x. The fact that Π̃ is a Poisson structure, i.e. [Π̃, Π̃] = 0, is now evident, because
Xk(fij) = 0 and [Xi, Xj ] = 0.

Relations [Xxk
, Π̃] = [Xxi

, Π]− [Xxi
, Π(1)] = 0 imply that Xxk

(fij) = 0, which
means that fij are Casimir functions for gl∗(n). ¤

Remark 4.3.6. Lemma 4.3.5 is still valid in the formal case. In fact, every
homogeneous component of Π̃ satisfies a relation of type (4.18).

Lemma 4.3.7. There exists a vector field Y of the form Y =
∑n

i=1 αiXi, where
the analytic functions αi depend only on the variables x and are Casimir functions
for gl∗(n), such that

(4.19) [Y, Π(1)] = −Π̃ , [Y, Π̃] = 0.

Proof. Since the functions fij of Lemma 4.3.5 are analytic Casimir functions
for gl(n), we have fij = φij(F1, . . . , Fn) where φij(z1, . . . , zn) are analytic functions
of n variables. On the other hand, since Π(1), Π̃ and Π = Π(1) + Π̃ are Poisson
structures, they are compatible, i.e. we have [Π(1), Π̃] = 0. Decomposing this
relation, we get ∂φij

∂zk
+ ∂φjk

∂zi
+ ∂φki

∂zj
= 0 ∀ i, j, k. This is equivalent to the fact that

the 2-form φ :=
∑

ij φijdzi∧dzj is closed. By Poincaré’s lemma we get φ = dα with
an 1-form α =

∑
i αidzi. Then we put Y :=

∑
i αi(F1, . . . , Fn)Xi. An elementary

calculation proves that Y is the desired vector field. ¤

Return now to the proof of Theorem 4.3.1. Consider a path of Poisson struc-
tures given by Πt := Π(1) + tΠ̃. As we have [Y, Πt] = Π̃ = d

dtΠt, the time-1 map
of the vector field Y moves Π(1) = Π0 into Π = Π1. This shows that Π is locally
analytically linearizable, thus proving our theorem. ¤

Remark 4.3.8. For any n ∈ N, the algebra aff(n) is a Frobenius Lie algebra ,
in the sense that its coadjoint representation has an open orbit. In other words, its
corresponding linear Poisson structure has rank equal to the dimension of the alge-
bra almost everywhere. One may think that there must be some links between the
nondegeneracy and the property of being a Frobenius Lie algebra. Unfortunately,
the search for new nondegenerate Lie algebras among Frobenius Lie algebras, car-
ried out by Wade and Zung [202], didn’t bring up any new nondegenerate example
so far, though some of the degenerate Frobenius Lie algebras turn out to be finitely
determined (see Subsection ??).

In the above proof of Theorem 4.3.1, we implicitly showed that

(4.20) H2
CE(aff(n),Sk(aff(n))) = 0 ∀ k ≥ 2,

where Sk denotes the symmetric product of order k and HCE denotes the Chevalley–
Eilenberg cohomology (it is hidden in the last two lemmas). A purely algebraic
proof of this fact was obtained independently by Bordemann, Makhlouf and Petit
in [25], who showed that aff(n) is infinitesimally strongly rigid, i.e.

(4.21) H2
CE(aff(n),Sk(aff(n))) = 0 ∀ k ≥ 0.
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They also verified that

(4.22) H1
CE(aff(n),Sk(aff(n))) = 0 ∀ k ≥ 1

and

(4.23) H1
CE(aff(n),K) = K.

Since aff(n) is a Frobenius Lie algebra, we also have

(4.24) H0
CE(aff(n),Sk(aff(n))) = 0 ∀ k ≥ 1

(geometrically, it means that aff∗(n) can’t admit a homogeneous Casimir function
of degree k ≥ 1, because it has an open symplectic leaf), and

(4.25) H0
CE(aff(n),K) = K.

Theorem 4.3.9. Any finite direct sum l =
⊕

li, where each li is either simple
or isomorphic to aff(ni) for some ni ∈ N, is formally nondegenerate.

Proof (sketch). Using the above formulas, Whitehead’s lemmas, and Hochschild–
Serre spectral sequence, one can show that H2

CE(l, Skl) = 0 for any k ≥ 1. ¤

Remark 4.3.10. The Lie algebra aff(n)⊕ g (n ∈ N, g semisimple) is infinites-
imally strongly rigid, but the Lie algebra aff(n1) ⊕ aff(n2) (n1, n2 ∈ N) is not
infinitesimally strongly rigid, because H2

CE(aff(n1)⊕ aff(n2),K) = K (see [25]).

Conjecture 4.3.11. Any finite direct sum l =
⊕

li, where each li is either
simple or isomorphic to aff(ni) for some ni ∈ N, is analytically nondegenerate.

Theorem 4.3.1 shows that the above conjecture is true when l = aff(n). It is
also true when l = g ⊕ aff(n), g being semisimple, with the same proof. Another
case where we know that the conjecture is true is the following:

Theorem 4.3.12 (Dufour–Molinier [71]). The direct product

aff(1,K)× . . .× aff(1,K)

of n copies of aff(1,K) is formally and analytically nondegenerate for any natural
number n.

Proof (sketch). Denote l = aff(1)× . . .× aff(1) (n times). As discussed about,
simple direct computations show that H2

CE(l,Skl) = 0 ∀ k ≥ 2, so l is formally
nondegenerate.

Consider now an analytic Poisson structure Π whose linear part Π(1) corre-
sponds to l. Consider the set

Σ = {x ∈ (K2n, 0) | rank Π(x) < 2n}
of singular points of Π. This set is given by the analytic equation

det(Πij(x))2n
i,j=1 = 0 ,

where Πij are the coefficients of Π in a coordinate system.

When Π is linear, Σ is just a union of n hyperplanes in K2n in generic position.
Since Π is formally linearizable, there are n formal hyperplanes in generic position
which are formal solutions of det(Πij(x))2n

i,j=1 = 0. Applying Artin’s theorem [8]
about approximation of formal solutions of analytic equations by analytic solutions,
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we obtain that the equation det(Πij(x))2n
i,j=1 = 0 admits n local hypersurfaces in

generic position near 0 as its solutions. Thus, locally, Σ is a union of n analytic
hypersurfaces. So there is a local analytic coordinate system (x1, y1, . . . , xn, yn)
such that

Σ =
n⋃

i=1

{xi = 0} .

It is easy to see that in such a coordinate system we have

{xi, xj} = xixjσij(x, y), {xi, yj} = xiβij(x, y) .

A first change of coordinates of the type x′i = xiνi(x, y), y′j = yj leads to {xi, xj} =
0. Then another change of coordinates of the type x′i = xi, y′j = yj + bj(x, y) gives
{xi, yj} = δijxi. Finally, we obtain {yi, yj} = 0 after a change of coordinates of the
type x′i = xi, y′j = yj + cj(x). ¤

Remark 4.3.13. It is also shown in [71] that aff(1,R) × aff(1,R) is C∞-
nondegenerate. We don’t know if other Lie algebras of the type

⊕
i aff(ni) are

smoothly nondegenerate or not.





APPENDIX A

A.1. Moser’s path method

A smooth time dependent vector field X = (Xt)t∈]a,b[ on a manifold M is
a smooth path of smooth vector fields Xt on M , parametrized by a parameter t
(the time parameter) taken in some interval ]a, b[. Any smooth path (φt)t∈]a,b[ of
diffeomorphisms determines a time dependent vector field X by the formula

(A.1) Xt(φt(x)) =
∂φt

∂t
(x).

Conversely, the classical theory of ordinary differential equations says that,
given a smooth time dependent vector field X = (Xt)t∈]a,b[, in a neighborhood
of any (x0, t0) in M×]a, b[, we can define a unique smooth map (x, t) 7→ φt(x),
called the flow of X starting at time t0, with φt0(x) ≡ x and which satisfies
Equation (A.1). Because φt0 is locally the identity, φt are local diffeomorphisms
for t sufficiently near t0. In some circumstances, for example when X has compact
support, these local diffeomorphisms extend to global diffeomorphisms. Taking
then t0 = 0, we can get by this procedure a path of (local) diffeomorphisms (φt)t

with φ0 = Id.

Suppose that we want to prove that two tensors Λ and Λ′, on a manifold M, are
isomorphic, i.e. we want show the existence of a diffeomorphism φ of the ambient
manifold such that

(A.2) φ∗(Λ′) = Λ.

Sometimes, this isomorphism problem can be solved with the help of the
Moser’s path method , which consists of the following:

• First, construct an adapted smooth path (Λt)t∈[0,1] of such tensors, with
Λ0 = Λ and Λ1 = Λ′.

• Second, try to construct a smooth path (φt)t∈[0,1] of diffeomorphisms of
M with φ0 =Id and

(A.3) φ∗t (Λt) = Λ0 ∀ t ∈ [0, 1],

or equivalently,

(A.4) ∂(φ∗t (Λt))/∂t = 0 ∀ t ∈ [0, 1].

One tries to construct a time-dependent vector field X = (Xt) whose flow
(starting at time 0) gives φt. Equation (A.4) is then translated to the
following equation on (Xt):

(A.5) LXt(Λt) = −∂Λt

∂t
.

93



94 A. APPENDIX

If this last equation can be solved, then one can define φt by integrating X, and
φ = φ1 will solve Equation (A.2).

The Moser’s path method works best for local problems because time-dependent
vector fields can always be integrated locally. In global problems, one usually needs
an additional compactness condition to assure that φ = φ1 is globally defined.

The method is named after Jurgen Moser, who first used it to prove the fol-
lowing result:

Theorem A.1.1 ([153]). Let ω and ω′ be two volume forms on a manifold M
which coincide everywhere except on a compact subset K. If we have ω − ω′ = dα
where the form α has its support in K, then there is a diffeomorphism φ of M,
which is identity on M \K, such that φ∗(ω′) = ω.

Proof. We have ω′ = fω where f is a strictly positive function on M (f = 1
on M \ K). Then ωt = ftω, with ft = tf + 1 − t, t ∈ [0, 1], is a path of volume
forms on M. Now Equation (A.5) reduces to

(A.6) diXtωt = ω − ω′.

The hypothesis of the theorem allows us to replace Equation (A.6) by

(A.7) iXtωt = α.

But this last equation has a unique solution Xt. Since the support of Xt lies in
K, we can integrate this time-dependent vector field to a path of diffeomorphisms
φt on M which is identity on M \K, and such that φ∗1(ω

′) = ω. ¤

In particular, when M = K we get the following corollary:

Corollary A.1.2 ([153]). Two volume forms on a compact manifold are iso-
morphic if and only if they have the same total volume.

It was pointed out by Weinstein [203, 204] that the path method works very
well in the local study of symplectic manifolds. A basic result in that direction is
the following.

Theorem A.1.3. Let (ωt)t∈[0,1] be a smooth path of symplectic forms on a
manifold M. If we have ∂ωt/∂t = dγt for a smooth path γt of 1-forms with compact
support, then there is a diffeomorphism φ of M with φ∗ω1 = ω0.

Proof. Equation (A.5) follows from the equation iXtωt = −γt, which has a
solution (Xt)t because ωt is nondegenerate, so the path method works in this case.
¤

Theorem A.1.4 (see [142]). Let Kbe a compact submanifold of a manifold
M. Suppose that ω0 and ω1 are two symplectic forms on M which coincide at each
point of K. Then there exist neighborhoods N0 and N1 of K and a diffeomorphism
φ : N0 −→ N1, which fixes K, such that φ∗ω1 = ω0.

Proof. Consider the path ωt = (1 − t)ω0 + tω1 of symplectic forms in a
neighborhood of K. Similarly to the proof of the previous theorem, it is sufficient
to find an 1-form γ such that γ(x) = 0 for any x ∈ K and

(A.8) dγ = ∂ωt/∂t = ω1 − ω0.
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The existence of such a γ is a generalization of Poincaré’s lemma which says
that a closed form is exact on any contractible open subset of a manifold. It can be
proved by the following method, inspired by the Moser’s path method. Choose a
sufficiently small tubular neighborhood T of K in M and denote by ψt the mapping
from T into T which is the linear contraction v 7→ tv along the fibers of T. With
θ = ω1 − ω0, we have

(A.9) θ = ψ∗1(θ)− ψ∗0(θ) =
∫ 1

0

∂ψ∗t θ

∂t
dt,

because ψ1 is the identity and ψ0 has its range in K. Now, if we denote by Yt the
time dependent vector field associated by Formula (A.1) to the path (ψt)t∈]0,1], we
get

(A.10)
∂ψ∗t θ

∂t
= ψ∗tLYt

θ = dγt,

with γt = ψ∗t ιYtθ. The path γt is, a priori, defined only for t > 0, but it extends
clearly to t = 0; also it vanishes on K. So Equation (A.9) gives θ = dγ with
γ =

∫ 1

0
γtdt, and leads to the conclusion. ¤

A direct corollary of Theorem A.1.4 is the following result of Weinstein:

Theorem A.1.5 ([203]). Let L be a compact Lagrangian submanifold of the
symplectic manifold (M, ω). There is a neighborhood N1 of L in M, a neighborhood
N0 of L (identified with the zero section) in T ∗L and a diffeomorphism φ : N0 −→
N1, which fixes L, such that φ∗ω is the canonical symplectic form on T ∗L.

Proof (sketch). Choose a Lagrangian complement Ex to each TxL in TxM in
order to get a fiber bundle E over L complement to TL in TM |L. We construct
a fiber bundle isomorphism f : E −→ T ∗L by f(v)(w) = ω(v, w). As E realizes a
normal bundle to L, we can consider that f gives a diffeomorphism from a tubular
neighborhood of L in M to a neighborhood of L in T ∗L which sends ω|L to the
canonical symplectic form of T ∗L (restricted to L). So we can suppose that ω is
defined on a neighborhood of L in T ∗L and is equal to the canonical symplectic
form at every point on L. Then we achieve our goal using Theorem A.1.4. ¤

When the compact submanifold K is just one point, we recover from Theorem
A.1.4 the classical Darboux’s theorem:

Theorem A.1.6 (Darboux). Every point of a symplectic manifold admits a
neighborhood with a local system of coordinates (p1, . . . , pn, q1, . . . , qn) (called Dar-
boux coordinates or canonical coordinates) in which the symplectic form has
the standard form ω =

∑n
i=1 dpi ∧ dqi.

Proof. We can suppose that we work with a symplectic form ω near the origin
0 in R2n. Moreover we can suppose, up to a linear change, that a first system of
coordinates is chosen such that ω(0) = ω0(0) where ω0 =

∑n
i=1 dpi ∧ dqi. Then we

apply Theorem A.1.4 to the case K = {0}. ¤

In fact, Moser’s path method gives a simple proof of the following equivariant
version of Darboux’s theorem [204], which would be very hard (if not impossible)
to prove by the classical method of coordinate-by-coordinate construction.
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Theorem A.1.7 (Equivariant Darboux theorem). Let G be a compact Lie group
which acts symplectically on a symplectic manifold (M,ω) and which fixes a point
z ∈ M . Then there is a local canonical system of coordinates (p1, . . . , pn, q1, . . . , qn)
in a neighborhood of z in M , with respect to which the action of G is linear.

Proof. One first linearize the action of G near z using Bochner’s Theorem ??.
Then, after a linear change, one arrive at a system of coordinates (p1, . . . , pn, q1, . . . , qn)
in which the action of G is linear, and such that ω(0) = ω0(0) where ω0 =∑n

i=1 dpi ∧dqi. One then uses the path method to move ω to ω0 in a G-equivariant
way. To do this, one must find an 1-form γ such that ω − ω0 = dγ as in the proof
of Theorem A.1.3, and moreover γ must be G-invariant in order to assure that the
resulting flow φt is G-invariant (i.e. it preserves the action of G). Note that both
ω and ω0 are G-invariant. In order to find such a G-invariant 1-form γ, one starts
with an arbitrary 1-form γ̂ such that ω−ω0 = dγ̂, and then average it by the action
of G:

(A.11) γ =
∫

G

ρ(g)∗γ̂dµ,

where ρ denotes the action of G, and dµ denotes the Haar measure on G. ¤

The Moser’s path method has also become an essential tool in the study of
singularities of smooth maps. In that domain we often have to construct equiva-
lences between two maps f0 and f1, e.g. relations g ◦ φ = f (right equivalence), or
g ◦ φ = ψ ◦ f (right-left equivalence), or more general equivalences (contact equiva-
lence, etc.), which are given by some diffeomorphisms (φ, ψ, etc.). To use the path
method we first construct an appropriate path (ft) which connects f0 to f1. Then
we try to find a path of diffeomorphisms which gives the corresponding equivalence
between ft and f0. Differentiating the equation with respect to t, we get a version
of Equation (A.5). For example, in the case of right-left equivalence we fall on the
following equation:

(A.12) dft(Xt(x)) + Yt(ft(x)) = −∂ft(x)
∂t

,

where the unknown are time-dependent vector fields Xt and Yt on the source and
the target spaces respectively. The singularists have developed various methods
to solve these equations, such as the celebrated preparation theorem (see, e.g.,
[94, 7]). The Tougeron’s theorem that we present below is typical of the use of the
path method in this domain.

Let C∞0 (Rn) be the algebra of germs at the origin of smooth functions f : Rn →
R. We denote by the same letter such a function and its germ at the origin. Let
∆(f) ⊂ C∞0 (Rn) be the ideal generated by the partial derivatives ∂f

∂x1
, . . . , ∂f

∂xn
of

f. The codimension of f ∈ C∞0 (Rn) is, by definition, the dimension of the real
vector space C∞0 (Rn)/∆(f).

We say that f ∈ C∞0 (Rn) is k-determinant if every g ∈ C∞0 (Rn), such that f
and g have the same Taylor expansion at the origin up to order k, is right equivalent
to f.

Theorem A.1.8 (Tougeron [193]). If f ∈ C∞0 (Rn) has finite codimension k
then it is (k + 1)-determinant.
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Proof. Denote by M ⊂ C∞0 (Rn) the ideal of germs of functions vanishing at
the origin. Consider the following sequence of inequalities:

(A.13) dim C∞0 (Rn)/(M + ∆(f)) ≤ dim C∞0 (Rn)/(M2 + ∆(f)) ≤ · · ·
≤ dim C∞0 (Rn)/(Mm + ∆(f)) ≤ dim C∞0 (Rn)/(Mm+1 + ∆(f)) ≤ · · · ≤ k.

It follows that there is a number q ∈ Z, 0 ≤ q ≤ k, such that Mq + ∆(f) =
Mq+1+∆(f), and hence Mq ⊂ Mq+1+∆(f). Applying Nakayama’s lemma (Lemma
A.1.9) to this relation, we get Mq ⊂ ∆(f), which implies that

(A.14) Mk+2 ⊂ M2∆(f).

Let g ∈ C∞0 (Rn) be a function with the same (k + 1)-Taylor expansion as f.
We consider the path ft = (1 − t)f + tg and, following the path method, try to
construct a path of local diffeomorphisms (φt)t which fixes the origin and such that
ft ◦ φt = f. Here the equation to solve (Equation (A.5)) becomes

(A.15)
n∑

i=1

∂ft

∂xi
(x)Xi(t, x) = (f − g)(x),

where the unknown functions Xi(t, x) must be such that Xi(t, 0) = 0. In fact, we
will try to find Xi such that Xi(t, .) ∈ M2 for any t, so the differential of the
resulting diffeomorphisms φt at 0 will be equal to identity.

By compactness of the interval [0, 1], we need only be able to construct (φt)t

for t near any fixed t0 ∈ [0, 1],, i.e. we need to solve Equation (A.15) only for t
near t0 (and x near 0). We denote by A the ring of germs at (t0, 0) of smooth
functions of (t, x) ∈ R × Rn; C∞0 (Rn) is considered naturally as a subring of A.
Then Equation (A.15) (with Xi ∈ M2, where M is now the ideal of A generated
by germs of functions f such that f(t, 0) = 0 for any t near t0) can be replaced by

(A.16) Mk+2 ⊂ M2∆(ft),

where ∆(ft) is now the ideal of A generated by the functions h(t, x) = ∂ft(x)
∂xi

(recall
that f − g belongs to Mk+2).

Now, because ∂ft

∂xi
= ∂f

∂xi
modulo Mk+1A, we have ∆(f) ⊂ ∆(ft) + Mk+1A,

and Relation (A.14) leads to

(A.17) Mk+2A ⊂ M2∆(ft) + Mk+3A,

or

(A.18) Mk+2A ⊂ M2∆(ft) + I ·Mk+2A,

where I is the ideal of A consisting of germs of functions vanishing at (t0, 0). Ap-
plying again Nakayama’s lemma, we get Mk+2A ⊂ M2∆(ft), i.e. Relation (A.16),
which leads to the result. ¤

Lemma A.1.9 (Nakayama’s lemma). Let R be a commutative ring with unit
and I an ideal of R such that, for any x in I, 1 + x is invertible. If M and N are
two R-modules, M being finitely generated, then the relation M ⊂ N + IM implies
that M ⊂ N.
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Proof. Choose a system of generators m1, . . . , mq for M. Then M ⊂ N + IM

gives a linear system
∑

j=1...q aj
imj = ni where ni are elements of N, i = 1, . . . , q

and aj
i are elements of R of the form aj

i = δj
i + νj

i , where δj
i is the Kronecker

symbol and νj
i are in I. As the matrix (aj

i ) is invertible, we can write the mi as
linear combinations of the nj and obtain M ⊂ N. ¤

A special case of the preceding Tougeron’s theorem with k = 1 is the Morse
lemma which says that, near any singular point with invertible Hessian matrix, a
smooth function is right equivalent to (x1, . . . , xn) 7→ c +

∑
i=1...n±x2

i .

The Moser’s path method is also useful in the study of contravariant tensors,
e.g. vector fields and Poisson structures. In the case of vector fields, we fall on the
equation

(A.19) [Xt, Zt] = −∂Zt

∂t
,

where (Zt)t is a given path of vector fields and (Xt)t is the unknown (see, e.g.,
[176]).

For Poisson structures, we get a similar equation:

(A.20) [Xt, Πt] = −∂Πt

∂t
,

where (Πt)t is a path of Poisson structures. However, the use of Moser’s path
method in the study of Poisson structures is rather tricky, because it is not easy
to find a path of Poisson structures which connects two given Poisson structures,
even locally, due to the Jacobi condition. One needs to make some preparatory
work first, for example to make the two original Poisson structures have the same
characteristic foliation (then it will become easier to find a path connecting the two
structures). The equivariant splitting theorem for Poisson structures can be proved
using this approach, see [146].

A.2. The neighborhood of a symplectic leaf

In this section, following Vorobjev [200], we will give a description of a Poisson
structure in the neighborhood of a symplectic leaf in terms of geometric data, and
then use these geometric data to study the problem of linearization of Poisson
structures along a symplectic leaf.

A.2.1. Geometric data and coupling tensors.

First let us recall the notion of an Ehresmann (nonlinear) connection. Let
p : E −→ S be a submersion over a manifold S. Denote by TV E the vertical
subbundle of the tangent bundle TE of E, and by V1

V (E) the space of vertical
tangent vector fields (i.e. vector fields tangent to the fibers of the fibration) of
E. An Ehresmann connection on E is a splitting of TE into the direct sum of
TV E and another tangent subbundle THE, called the horizontal subbundle of
E. It can be defined by a V1

V (E)-valued 1-form Γ ∈ Ω1(E) ⊗ V1
V (E) on E such

that Γ(Z) = Z for every Z ∈ TV E. Then the horizontal subbundle is the kernel
of Γ: THE := {X ∈ TE, Γ(X) = 0}. For every vector field u ∈ V1(S) on S,
there is a unique lifting of u to a horizontal vector field Hor(u) ∈ V1

H(E) on E
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(whose projection to S is u). The curvature of an Ehresmann connection is a
V1

V (E)-valued 2-form on S, CurvΓ ∈ Ω2(S)⊗ V1
V (E), defined by

(A.21) CurvΓ(u, v) := [Hor(u),Hor(v)]−Hor([u, v]), u, v ∈ V1(S),

and the associated covariant derivative ∂Γ : Ωi(S)⊗ C∞(E) −→ Ωi+1(S)⊗ C∞(E)
is defined by an analog of Cartan’s formula:

(A.22) ∂ΓK(u1, . . . , uk+1) =
∑

i

(−1)i+1LHor(ui)(K(u1, . . . , ûi, . . . , uk+1))

+
∑

i<j

(−1)i+jK([ui, uj ], u1, . . . , ûi, . . . , ûj , . . . , uk+1).

Remark that ∂Γ ◦ ∂Γ = 0 if and only if Γ is a flat connection, i.e. CurvΓ = 0.

Suppose now that S is a symplectic leaf in a Poisson manifold (M, Π), and E
is a small tubular neighborhood of S with a projection p : E −→ S. Then there
is a natural Ehresmann connection Γ ∈ Ω1(E) ⊗ V1

V (E) on E, whose horizontal
subbundle is spanned by the Hamiltonian vector fields Xf◦p, f ∈ C∞(S). The
Poisson structure Π splits into the sum of its horizontal part and its vertical part,

(A.23) Π = V +H,

where V = ΠV ∈ V2
V (E) and H = ΠH ∈ V2

H(E) (there is no mixed part). The
horizontal 2-vector field H is nondegenerate on THE. Denote by F its dual 2-form;
it is a section of ∧2T ∗HE which can be defined by the following formula:

(A.24) F(Xf◦p, Xg◦p) = 〈Π, p∗df ∧ p∗dg〉, f, g ∈ C∞(S),

(recall that Xf◦p, Xg◦p ∈ V1
H(E)). Via the horizontal lifting of vector fields, F may

be viewed as a nondegenerate C∞(E)-valued 2-form on S, F ∈ Ω2(S)⊗ C∞(E).

The above triple (V, Γ,F) is called a set of geometric data for (M, Π) in a
neighborhood of S.

Conversely, given a set of geometric data (V, Γ,F), one can define a 2-vector
field Π on E by the formula Π = V +H, where H is the horizontal 2-vector field
dual to F. A natural question arises: how to express the condition [Π,Π] = 0, i.e.
Π is a Poisson structure, in terms of geometric data (V, Γ,F) ? The answer to this
question is given by the following theorem:

Theorem A.2.1 (Vorobjev [200]). A triple of geometric data (V,Γ,F) on a
fibration p : E −→ S, where Γ is an Ehresmann connection on E, V ∈ V2

V (E) is
a vertical 2-vector field, and F ∈ Ω2(S)⊗ C∞(E) is a nondegenerate C∞(E)-valued
2-form on S, determines a Poisson structure on E (by the above formulas) if and
only if it satisfies the following four compatibility conditions:

[V,V] = 0,(A.25)
LHor(u)V = 0 ∀ u ∈ V1(S),(A.26)
∂ΓF = 0,(A.27)

CurvΓ(u, v) = V](d(F(u, v))) ∀ u, v ∈ V1(S),(A.28)

where V] means the map from T ∗E to TE defined by 〈V](α), β〉 = 〈V, α ∧ β〉.



100 A. APPENDIX

Remark A.2.2. Equations (A.25) and (A.26) mean that the vertical part V
of Π is a Poisson structure (on each fiber of E) which is preserved under parallel
transport. This gives another proof of Theorem 1.6.1 which says that the transverse
Poisson structure to a symplectic leaf is unique up to local isomorphisms.

Remark A.2.3. In the above theorem, E is not necessarily a tubular neighbor-
hood of S. The symplectic case (E is a symplectic manifold) of the above theorem
was obtained by Guillemin, Lerman and Sternberg in [98]. In fact, the proof of
the symplectic case can be easily adapted to the Poisson case because a Poisson
manifold is just a singular foliation by symplectic manifolds. The Poisson structure
Π is called the coupling tensor of (V, Γ,F) (it couples a horizontal tensor with a
vertical tensor via a connection).

Proof. Consider a local system of coordinates (x1, . . . , xm, y1, . . . , yn−m) on E,
where y1, . . . , yn−m are local functions on a fiber and x1, . . . , xm are local functions
on S (m = dim S is even). Denote the horizontal lifting of the vector field ∂xi :=
∂/∂xi from S to E by ∂xi. Then we can write Π = V +H, where

(A.29) V =
1
2

∑

ij

aij∂yi ∧ ∂yj (aij = −aji),

and

(A.30) H =
1
2

∑

ij

bij∂xi ∧ ∂xj (bij = −bji)

is the dual horizontal 2-vector field of F.

The condition [Π,Π] = 0 is equivalent to

(A.31) 0 = [V,V] + 2[V,H] + [H,H] = A + B + C + D,

where

A = [V,V],(A.32)

B = 2
∑

i

[V, ∂xi] ∧Xi, where Xi =
∑

j

bij∂xj ,(A.33)

C =
∑

ij

[V, bij ] ∧ ∂xi ∧ ∂xj +
∑

ij

∂xi ∧ ∂xj ∧ (
∑

kl

bikbjl[∂xk, ∂xl]),(A.34)

D =
∑

ijkl

bij∂xj(bkl) ∂xi ∧ ∂xk ∧ ∂xl.(A.35)

Notice that A,B, C, D belong to complementary subspaces of V3(E), so the
condition A + B + C + D = 0 means that A = B = C = D = 0.

The equation A = 0 is nothing but Condition (A.25): [V,V] = 0.

The equation B = 0 means that [V, ∂xi] = 0 ∀ i, i.e. L∂xi
V = 0 ∀ i, which is

equivalent to Condition (A.26).

The equation D = 0 means that
∮

ikl

∑
j bij∂xj(bkl) = 0 ∀ i, k, l, where

∮
ikl

denotes the cyclic sum. Let us show that this condition is equivalent to Condition
(A.27). Notice that F(∂xi, ∂xj) = cij , where (cij) is the inverse matrix of (bij), and
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∂ΓF(∂xi, ∂xj , ∂xk) =
∮

ijk
∂xi(cjk). By direct computations, we have

(A.36) ∂ΓF(
∑
α

biα∂xα,
∑

β

bjβ∂xβ ,
∑

γ

bkγ∂xγ) = 2
∮

ijk

∑

l

bil∂xl(bjk).

Thus the condition D = 0 is equivalent to the condition

(A.37) ∂ΓF(
∑
α

biα∂xα,
∑

β

bjβ∂xβ ,
∑

γ

bkγ∂xγ) = 0 ∀ i, j, k.

Since the matrix (bij) is invertible, the last condition is equivalent to ∂ΓF = 0.

Similarly, by direct computations, one can show that the condition C = 0 is
equivalent to Condition (A.28). ¤

Theorem A.2.4 (Vorobjev [200]). Let E be a sufficiently small neighborhood E
of a symplectic leaf S of a Poisson manifold (M, Π), together with a given projection
p : E −→ S. Denote by (V,Γ,F) the associated geometric data in E. Consider an
arbitrary tensor field φ ∈ Ω1(S) ⊗ C∞(E) whose restriction to Ω1(S) = Ω1(S) ⊗
C∞(S) via the inclusion S ↪→ E is trivial, and the following new set of geometric
data:

V ′ = V,(A.38)

Γ′ = Γ− V](dp∗φ),(A.39)
F′ = F− ∂Γφ− {φ, φ}V .(A.40)

Then the coupling tensor Π′ of (V ′,Γ′,F′) is also a Poisson tensor, and there is
a diffeomorphism f between neighborhoods of S, which fixes every point of S and
such that f∗Π = Π′.

In the above theorem, V](dp∗φ) means an element of Ω1(E) ⊗ V1
V (E) defined

by the formula V](dp∗φ)(w) = V](d(φ(p∗w)), w ∈ TE, where p∗w is the projection
of w to S, φ(p∗w) is viewed as a function on the fiber TxE over the origin x of p∗w,
and V](d(φ(p∗w)) is the Hamiltonian vector field with respect to V on TxE of the
function φ(p∗w). Similarly, {φ, φ}V means an element of Ω2(S) ⊗ C∞(E) defined
by {φ, φ}V(u, v) = {φ(u), φ(v)}V , where u, v ∈ V1(S), and the bracket is taken with
respect to V.

Proof (sketch). We will use Moser’s path method. Consider the following
family of geometric data,

Vt = V,

Γt = Γ− tV](dp∗φ),
Ft = F− t∂Γφ− t2{φ, φ}V ,

and the corresponding family of coupling tensors Πt, t ∈ [0, 1]. Define a time-
dependent vector field X = (Xt)t∈[0,1] as follows: Xt is the unique horizontal
vector field with respect to Γt which satisfies the equation

XtyFt = −φ

(where φ and Ft are considered as differential forms on E by lifting). One verifies
directly that we have

(A.41) [Xt, Πt] = −∂Πt

∂t
.
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It implies that the time-1 flow ϕ1
X of X = (Xt) moves Π = Π0 to Π′ = Π1. As a

consequence, Π′ is automatically a Poisson tensor. Note that X vanishes on S, so
ϕ1

X fixes every point of S. ¤

Remark A.2.5. The flow ϕt
X in the above proof preserves the symplectic leaves

of Π (so Π and Π′ have the same foliation though not the same symplectic forms on
the leaves). What the flow does is to change the projection map p. It also allows us
to compare different geometric data of the same Poisson structure but with respect
to different projection maps.

A.2.2. Linear models.

Consider the geometric data (V,Γ,F) of a Poisson structure in a neighborhood
E of a symplectic leaf S with respect to a projection p : E → S. We will embed
E in the normal bundle NS of S by a fiber-wise embedding which maps S to the
zero section in NS and which projects to the identity map on S. Then we can view
(V, Γ,F) as geometric data in a neighborhood of S (identified with the zero section)
in NS.

Denote by V(1) the fiber-wise linear part of V, Γ(1) the fiber-wise linear part of
Γ, and F(1) the fiber-wise affine part of F in NS. For example, if X,Y ∈ TxS, then
F(X, Y ) is a function on a neighborhood of zero in NxS, and F(1)(X,Y ) is the sum
of the constant part and the linear part of F(X,Y ) on Nx. By looking at the fiber-
wise linear terms of the equations in Theorem A.2.1, we obtain immediately that
(V(1),Γ(1),F(1)) also satisfy these equations, which implies that the coupling tensor
Π(1) of (V(1), Γ(1),F(1)) is also a Poisson structure, defined in a neighborhood of S
in NS. We will call Π(1) the Vorobjev linear model of Π along the symplectic
leaf S.

Theorem A.2.6. Up to isomorphisms, the Vorobjev linear model of a Poisson
structure Π along a symplectic leaf S is uniquely determined by Π and S (and does
not depend on the choice of the projection).

Proof. We will fix a projection p : E → S, and linearize the fibers of E
by an embedding from E to NS which is compatible with p. This way we may
consider the linear model Π(1) of Π with respect to p as living in E. Consider now
another arbitrary projection p1. We can find a smooth path of projections pt with
p0 = p and p1 = p1. There is a unique time-dependent vector field Y = (Yt) in
a neighborhood of S which satisfies the following properties: Yt is tangent to the
symplectic leaves of Π, is symplectically orthogonal to the intersections of the fibers
of pt with the symplectic leaves, vanishes on S, and the flow ϕt

Y of Y moves the
fibers of p0 to the fibers of pt: pt ◦ ϕt

Y = p0. Denote Πt = (ϕt
Y )−1Π. Denote by

Π(1)
t the Vorobjev linear model of Πt with respect to the projection p (Π(1)

t also
lives in E via the fixed linearization of E). To prove the theorem, it is sufficient to
show that Π(1)

1 is isomorphic to Π(1) by a diffeomorphism in a neighborhood of S.

Denote by (Vt, Γt,Ft) the geometric data of Πt with respect to p. Note that
∂Πt

∂t = −[Yt,Πt] by construction. Similarly to the proof of Theorem A.2.4, we have

Vt = V,
∂Γt

∂t
= −V](dp∗φt),

∂Ft

∂t
= −∂Γtφt,
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where φt a family of elements of Ω1(S)⊗ C∞(E) defined by φt = −YtyFt. Looking
only at the fiber-wise linear terms of the above equations, we get

V(1)
t = V(1),

∂Γ(1)
t

∂t
= −(V(1))](dp∗φ(1)

t ),
∂F(1)

t

∂t
= −∂

Γ
(1)
t

φ
(1)
t ,

which implies that
∂Π(1)

t

∂t
= −[Zt, Π

(1)
t ],

where Z = (Zt) is the time-dependent vector field defined by the formula φ
(1)
t =

−ZtyF(1)
t . As a consequence, the time-1 flow of (Zt) moves Π(1) to Π(1)

1 . ¤

Remark A.2.7. The linear model of a Poisson structure along a symplectic leaf
can also be constructed from the transitive Lie algebroid which is the restriction
of the cotangent algebroid to the symplectic leaf, see [200]. We will leave it as an
exercise for the reader to show that Vorobjev’s original construction via transitive
Lie algebroids is equivalent to the above construction.

The following simple example shows that, in general, one can’t hope to find a
local isomorphism between a Poisson structure and its Vorobjev linear model along
a symplectic leaf, even if the leaf is simply-connected, the normal bundle is trivial
and the transverse Poisson structure is linearizable.

Example A.2.8. Put M = S2×R3 with Poisson structure Π = fΠ1+Π2, where
Π1 is a nondegenerate Poisson structure on S2, Π2 = x∂y∧∂z+y∂z∧∂x+y∂x∧∂y
is the Lie-Poisson structure on R3 corresponding to so(3), and f = f(x2 + y2 + z2)
is a Casimir function on (R3, Π2). Since the linear part of f on R3 is trivial, the
linear model of Π is f(0)Π1 +Π2. If f is not a constant then Π can’t be isomorphic
to Π(1) near S for homological reasons: the regular symplectic leaves are S2 × S2,
the integral of the symplectic form over the first component S2 is a constant (does
not depend on the leaf) in the linear model Π(1), but is not a constant when the
symplectic form comes from Π.

If one wants to linearize only V and Γ but not F, then the situation becomes
more reasonable. See [30] for some results in that direction.

A.3. Dirac structures

An almost Dirac structure on a manifold M is a subbundle L of the bundle
TM ⊕ T ∗M , which is isotropic with respect to the natural indefinite symmetric
scalar product on TM ⊕ T ∗M ,

(A.42) 〈(X1, α1), (X2, α2)〉 :=
1
2
(〈α1, X2〉+ 〈α2, X1〉)

for (X1, α1), (X2, α2) ∈ Γ(TM ⊕ T ∗M), and such that the rank of L is maximal
possible, i.e. equal to the dimension of M .

For example, if ω is an arbitrary differential 2-form on M , then its graph
Lω = {(X, iXω) | X ∈ TM} is an almost Dirac structure. Furthermore, an almost
Dirac structure L is the graph of a 2-form if and only if Lx ∩ ({0} ⊕ T ∗x M) = {0}
for any x ∈ M . Similarly, if Λ is an arbitrary 2-vector field on M , then the set
LΛ = {(iαΛ, α) | α ∈ T ∗M} is also an almost Dirac structure.
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A Dirac structure is an almost Dirac structure plus an integrability condition.
To formulate this condition, consider the following bracket on Γ(TM⊕T ∗M), called
the Courant bracket [55]:

(A.43) [(X1, α1), (X2, α2)]C = ([X1, X2],LX1α2 − iX2dα1).

An almost Dirac structure L is called a Dirac structure if it is close under the
Courant bracket, i.e. [(X1, α1), (X2, α2)]C ∈ Γ(L) for any (X1, α1), (X2, α2) ∈ Γ(L).
In this case, the pair (M, L) is called a Dirac manifold .

Example A.3.1. If ω is a 2-form on M then the almost Dirac structure Lω =
{(X, Xyω) |X ∈ TM} is a Dirac structure if and only if ω is closed. Similarly, if Λ is
a 2-vector field on M then the almost Dirac structure LΛ = {(αyΛ, α) | α ∈ T ∗M}
is a Dirac structure if and only if Λ is a Poisson structure. In other words, Dirac
structures generalize both presymplectic structures and Poisson structures.

Example A.3.2. If L is a Dirac structure on M such that its canonical pro-
jection pr1 : L → M to M vanishes at a point x0 ∈ M , then for x near x0 we have
Lx ∩ (TxM ⊕ {0}) = {0}, which implies that locally L = LΛ is the graph of a 2-
vector field Λ, and the integrability of L means that Λ satisfies the Jacobi identity.
Thus locally a Dirac structure whose projection to TM vanishes at a point is the
same as a Poisson structure which vanishes at that point.

The Courant bracket (A.43) is not anti-symmetric nor does it satisfy the Jacobi
identity on Γ(TM ⊕T ∗M). But if L is a Dirac structure, then one can verify easily
that the restriction of the Courant bracket to Γ(L) is anti-symmetric and satisfies
the Jacobi identity, and it turns L into a Lie algebroid over M whose anchor map
is the canonical projection pr1 : L → TM from L to TM , see [55]. For example,
when L = LΛ comes from a Poisson structure, then this Lie algebroid is naturally
isomorphic to the cotangent algebroid associated to Λ.

In particular, if L is a Dirac structure, then its associated distribution DL on
M, (DL)x = pr1(Lx), is integrable and gives rise to the associated foliation FL on
M . Furthermore, there is a 2-form ωL defined on each leaf of this foliation by the
formula

(A.44) ΩL(X,Y ) = 〈α, Y 〉 ∀ (X,α), (Y, β) ∈ Lx.

The fact that L is isotropic assures that ΩL is well-defined and skew-symmetric.
Moreover, we have:

Theorem A.3.3 ([55]). If L is a Dirac structure on M then dΩL = 0 on any
leaf of the associated singular foliation FL of L.

The meaning of the above proposition is that, roughly speaking, a Dirac struc-
ture is a singular foliation by presymplectic leaves. Its proof is a straightforward
verification similar to the Poisson case. Note that L is completely determined by
DL and ΩL.

A submanifold of a Poisson manifold is not a Poisson manifold in general, but
is a Dirac manifold under some mild assumptions. More generally, we have:

Proposition A.3.4 ([55]). Let Q be a submanifold of a Dirac manifold (M,L).
If Lq ∩ (TqQ ⊕ T ∗q M) has constant dimension (i.e. its dimension does not depend
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on q ∈ Q), then there is a natural induced Dirac structure LQ on Q defined by the
formula

(A.45) (LQ)q =
Lq ∩ (TqQ⊕ T ∗q M)
Lq∩({0} ⊕ (TQ)0)

.

A special case of the above proposition is when Q = N is a slice, i.e. a local
transversal to a presymplectic leaf O at a point x0. Then the condition of the
theorem is satisfied, so N admits an induced Dirac structure, whose projection to
TN vanishes at x0, thus in fact N admits a Poisson structure which vanishes at x0,
and one can talk about the transverse Poisson structure to a presymplectic leaf in
a Dirac manifold – provided that it is unique up to local isomorphisms.

Vorobjev’s (semi)local description of Poisson structures via coupling tensors
(see Subsection A.2.1) can be naturally extended to the case of Dirac structures.
More precisely, given a triple of geometric data (V, Γ,F) on a manifold E with
a submersion p : E → S, where Γ is an Ehresmann connection, V is a vertical
2-vector field, and F is a (maybe degenerate) C∞(E)-valued 2-form on S, denote
by L = L(V, Γ,F) the associated subbundle of TE ⊕ T ∗E, which is generated by
sections of the types (α, iαV) and (X, iXF), where X ∈ V1

HE is a horizontal vector
field and α is a vertical 1-form, i.e. α|THE = 0. Here iXF means the contraction
of F, considered as a horizontal 2-form on E, with X. Then L is an almost Dirac
structure on E.

Theorem A.3.5 ([74]). Given a set of geometric data (V,Γ,F) for a submer-
sion p : E → S such as above, the corresponding almost Dirac structure L(V,Γ,F)
is a Dirac structures if and only if the following four conditions (the same as in
Theorem A.2.1) are satisfied:

[V,V] = 0,(A.46)
LHor(u)V = 0 ∀ u ∈ V1(S),(A.47)
∂ΓF = 0,(A.48)

CurvΓ(u, v) = V](d(F(u, v))) ∀ u, v ∈ V1(S).(A.49)

Conversely, if E is a sufficiently small tubular neighborhood of a presymplectic leaf
S with a projection map p : E → S in a Dirac manifold (M, L), then there is a
unique triple of geometric data (V,Γ,F) on (E, p) such that L = L(V,Γ,F) on E.
Moreover, the vertical Poisson structure V vanishes on S, and the restriction of F
to S is the presymplectic form of S induced from L.

The proof of Theorem A.3.5 is absolutely similar to the Poisson case. (The
only difference between the Dirac case and the Poisson case is that the horizontal
2-form F may be degenerate in the Dirac case). A direct consequence of Theorem
A.3.5 is that, similarly to the Poisson case, the transverse Poisson structure to a
presymplectic leaf in a Dirac manifold is well-defined, i.e. up to local isomorphisms
it does not depend on the choice of the slice. Another simple consequence is that the
dimensions of the presymplectic leaves of a Dirac structure have the same parity.

Dirac and almost Dirac structures provide a convenient setting in which to
study dynamical systems with constraints (holonomic and non-holonomic) and con-
trol theory, and there is a theory of symmetry and reduction of (almost) Dirac
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structures, which generalizes the theory for symplectic and Poisson structures. See,
e.g., [55, 68, 59, 19, 20, 21] and references therein.

For a generalization of the notion of Dirac structures to Lie algebroids, see
[129]. In a different development, the complex version of Dirac structures (L is a
complex subbundle of (TM ⊕ T ∗M)⊗ C which satisfies the same conditions as in
the real case) leads to generalized complex structures, see, e.g., [107, 96].
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39. Roger Carles, Sur la structure des algèbres de Lie rigides, Ann. Inst. Fourier (Grenoble) 34
(1984), no. 3, 65–82.
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and integrable systems, Sémin. Sud- Rhodan. Geom. VI, Berkeley/CA (USA) 1989, Math.
Sci. Res. Inst. Publ. 20, 137-150 , 1991.

71. J.-P. Dufour and J.-Ch. Molinier, Une nouvelle famille d’algèbres de Lie non dégénérées,
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no. Numero Hors Serie, 257–271.

124. A.G. Kushnirenko, Linear-equivalent action of a semisimple Lie group in the neighborhood
of a stationary point, Funkts. Anal. Prilozh. 1 (1967), no. 1, 103–104.

125. Jeroen S. W. Lamb and John A. G. Roberts, Time-reversal symmetry in dynamical systems:
a survey, Phys. D 112 (1998), no. 1-2, 1–39.
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150. Pierre Molino, Structure transverse aux orbites de la représentation coadjointe: le cas des or-
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155. Robert Moussu, Sur l’existence d’intégrales premières pour un germe de forme de Pfaff,
Ann. Inst. Fourier 26 (1976), no. 2, 170–220.

156. J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45
(1949), 99–124.

157. Shingo Murakami, Sur la classification des algèbres de Lie réelles et simples, Osaka J. Math.
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182. J. A. Schouten, Über Differentialkonkomitanten zweier kontravarianter Größen, Indag.
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