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Hamiltonian systems

x=A{z,H}

e a geometric framework for conservative physical systems

e Simplify relationships between symmetries and conservation
laws

e formulation of integrability
e quantization

e numerical algorithms



Integrable systems: commutative subalgebras in the Lie algebra
of Hamiltonian vector fields + completeness

Modern theory of integrable systems: discovery of integrability
in Hamiltonian systems with infinite number of degrees of
freedom

Evolutionary PDEs as dynamical systems:

ur = F'(u, ug, ugy,...) (1)
Cauchy data

ult=0 = up(x)

Solution u(xz,t) = “integral curve” of the vector field (1) on the
space of functions in x beginning at the point ug(x)



Lecture 1

2.1. Reminders:

Poisson brackets

Hamiltonian vector fields, first integrals
Poisson cohomology

Formalism of supermanifolds

2.2. Bihamiltonian structures, Magri chains and hierarchies



P be a N-dimensional smooth manifold. A Poisson bracket on P
is a structure of a Lie algebra on the ring of functions F := C°°(P)

fra—=1f, 9},

{9, f} = —{f .9}, {af + bg,h} = a{f, h} + b{g, h}, (2)
a, bERafv g, héf

Hfigh,hy +{{h, f}, 9y +{{g,h}, f} =0 (3)
(Jacobi identity) satisfying the Leibnitz rule

{fg,h} = f{g,h} + g{f, h}
for arbitrary three functions f, g, h € F.



In a system of local coordinates xl,...,azN the Poisson bracket

reads

_ i NOf 09
{f7g}_7rj(x)axzax]

(summation over repeated indices will be assumed)
The bivector

¥ (z) = -7 (x) = {z*, 2}
satisfies
({at, 29}, 8V + {2k, o), 29} + {2, %), ') = om ok y O, OT
oxs oxs oxs

(4)

7% =0 (5)

for any i, j, k (the Jacobi identity (3)). Such a bivector is called

a Poisson structure on P.



Any bivector constant in some coordinate system is a Poisson
structure. Vice versa, locally all solutions to (5) of the constant
rank 2n = rk(sx%) can be reduced to the normal form

™ O
= 6
T (o o> (6)
with a constant nondegenerate antisymmetric 2n x2n matrix = =
720 T.e., locally there exist coordinates y1,...,y?" (coordinates

on the symplectic leaves) and ¢l,... ¥ (Casimir functions),
2n+ k= N, s.t.

7% = {y® 4’} = const
and
{f,d}=0, j=1,...k (7)

for an arbitrary function f.



For the case 2n = N the inverse matrix (Wij(m)) = (wij(a:))_l
defines on P a symplectic structure
Q=> 7Tz'j($)dil3i Adzd, Q" # 0.
i<j
For 2n < N one obtains on P a structure of symplectic foliation
P = UcyPey, cog = (c},...ck), of the codimension k = N — 2n

Pey i={x | cl(z) = ccl), () = 018} (8)



Example Let g be n-dimensional Lie algebra. The Lie - Poisson
bracket on the dual space P = g* reads

{xi, xj} = cgack. (9)
The Casimirs are functions on g* invariant with respect to the
co-adjoint action of the associated Lie group G. The symplectic

leaves — the orbits of the coadjoint action with the Berezin -
Kirillov - Kostant symplectic structure on them.

Linear inhomogeneous Poisson brackets
{z' 27} = C;’gajk + cg (10)
= central extension of g. cg IS @ 2-cocycle

CO(ba CL) — _CO(aa b)7 CO([a7b]7C) + CO([Ca a’]ab) + CO([b7 C]aa’) =0



A Poisson bracket defines an (anti)homomorphism

F — Vect(P)
H— Xy = {-, H}, (11)

[ Xmy, X, = —X{Hy,Hy}

Xpg is called Hamiltonian vector field. The corresponding dy-
namical system

OH
— 12
5 (12)

is called Hamiltonian system with the Hamiltonian H(x).

it = {2, H} = 7Y ()
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e Xy is a symmetry of the Poisson bracket

L’ieXH{ ; } = 0.

e Any function F commuting with the Hamiltonian

(F,H} =0

(13)

is a first integral of the Hamiltonian system (12). The Hamilto-

nian vector fields Xy, Xp commute.
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Poisson cohomology of (P,w) (introduced by Lichnerowicz).
Recall the Schouten - Nijenhuis bracket. Denote

ANF = HO(P, AT P)

the space of multivectors on P. The Schouten - Nijenhuis bracket
is a bilinear pairing a,b — [a,b],

AF s ALy ARH-1
uniquely determined by the properties of supersymmetry
[b,a] = (=1)*[a,b], a € A* beA (14)
the graded Leibnitz rule
[c,anb]l = [c,al Ab~+ (=) TEg Ae,b], ac Af ce Al (15)
and the conditions [f,g] =0, f,g € A0 = F,

[v, f] = vi%, veN = Vect(P), f & A0 = F,
x
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[v1,v2] = commutator of vector fields for v1,v> € AL. In particular
for a vector field v and a multivector a

[v,a] = Lieya.

Example. For two bivectors = = (#¥) and p = (p¥) their
Schouten - Nijenhuis bracket is the following trivector
[71' p]ijk o' sk_|_apz°7 sk:_'_aﬂ-kZ 3]_|_8 k'z sg_|_ sz_l_apjk
’ a s x 8(1:8
(16)

Observe that the I.h.s. of the Jacobi identity (5) reads

{{z', 27}, 2"} + {{z", 2"}, 27} + {2/, 2"}, 2"} = %[W, m]o.



The Schouten - Nijenhuis bracket satisfies the graded Jacobi
identity

(—1)"™[[a,b],c] + (=1)"™[[c, a], b] + (—1)*[[b,c],a] = 0, (17)
ac N be A, ce AN, = for a Poisson bivector = the map
8:NF — AFTL 4 =[x, d] (18)

is a differential, 92 = 0. The cohomology of the complex (A*,9)
is called Poisson cohomology of (P, )

H*(P,7) = @p>0H (P, 7).
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In particular,

e HO(P, ) = the ring of Casimirs of the Poisson bracket,

e HI(P,©) = the quotient of the Lie algebra of infinitesimal
symmetries

v € Vect(P), Lieyzm =0

over the subalgebra of Hamiltonian vector fields,

e H2(P,7) = the quotient of the space of infinitesimal deforma-
tions of the Poisson bracket by those obtained by infinitesimal
changes of coordinates (i.e., by those of the form Lie,m for a
vector field v).
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On a symplectic manifold (P,7) Poisson cohomology coincides
with the de Rham one. The isomorphism is established by “low-
ering the indices”: for a cocycle a = (a’1--%) € A¥ the k-form

Z wil._.ikda: LA Adx'k, Wiy i — Tiqjq ...Wikjkajl Tk
11<...<1}
is closed. In particular, for P = ball the Poisson cohomology is
trivial.
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In the general case rk(n%) < dim P the Poisson cohomology does

not vanish even locally. A simple criterion of triviality of 1- and
2-cocycles:

Lemma 1.1.Let 7 = («%(z)) be a Poisson structure of a con-
stant rank 2n < N on a sufficiently small ball U.

1). A one-cocycle v = (v'(z)) € HY(U,r) is trivial iff the vector
field v is tangent to the leaves of the symplectic foliation (8).
2). A 2-cocycle f = (f¥(x)) € H2(U,r) is trivial iff

fldd',dd" =0 (19)

for arbitrary two Casimirs of .
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Language of supermanifolds: consider N = MT*P. Coordinates

xl,...,ZUN, (91,...,9]\[, :UJZUZZZBZZBJ, 93(9@:—929]
Bivector
1 .. 0] 0 1 . _
m=om @G A T o @0l =7
(a superfunction on N = MN7T*P). (Super)Poisson bracket on N
oOP 0Q p|OP 0Q
PQy= " "% 4 (—1)PIZ =¥ 20
P,Q) 89i8:c2+( ) dxt 00; (20)

|P| = parity of the superfunction |P|.

Claim: Jacobi identity for 7 < {7, 7} =0
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Proof.
R ontJ

R |
891657T T 8x57r T oxs

=1<Wj sk y O™ s, 8”jkw8i> 0,00
3

More generally, for multivectors a € A%, b e A,

- 1 ) ...- T 1 ) PR )
azaazl Zkeil...gik, bzl—lbjl Jl@jl"’ejl
the super-Poisson bracket
{a,b} = [a,b]

[a, b]= Schouten - Nijenhuis bracket.
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2.2. Bihamiltonian structures

Definition. A bihamiltonan structure on the manifold P is a 2-
dimensional linear subspace in the space of Poisson structures
on P.

Choosing two nonproportional Poisson structures w1 and w5 in
the subspace we obtain that the linear combination

a1m1 + apmo (21)

with arbitrary constant coefficients a1, ao is again a Poisson
bracket. This reformulation is usually referred to as the compat-
ibility condition of the two Poisson brackets. It is spelled out as
vanishing of the Schouten - Nijenhuis bracket

[m1,m2] = 0. (22)
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An importance of bihamiltonian structures for recursive construc-
tions of integrable systems was discovered by F.Magri (1978) in
the analysis of the so-called Lenard scheme ( <1974) of con-
structing the KdV integrals. The basic idea of these construc-
tions is given by the following simple

Definition A sequence of functions Hg, Hi, ...satisfying the
recursion relation
{.,Hp_l_l}lz{.,Hp}Q, p=20,1, ... (23)

iIs called Magri chain

Lemma 1.2.



Proof. Let p < ¢g. Using the recursion and antisymmetry of the
brackets we obtain

{Hp, Hy}1 = {Hp, Hy—1}2 = —{Hg-1, Hp}o = —{Hg-1, Hp41}1 = {Hp41, Hy—1}1.
Assume g — p = 2m for some m > 0. Iterating we arrive at
{Hp, H¢}1 = ... = {Hp—l—m7 Hy-m}1 =0

since p+m = q — m. Doing similarly in the case g —p=2m +1
we obtain

{Hp, Hq}1 = ... = {Hn, Hyq41}1 = {Hn, Hn}2 =0

where n = p+4+m = q—m — 1. The commutativity {Hp, Hg}» =0
easily follows from the recursion. The Lemma is proved.

20



Two realizations of the recursive procedure (23).

The first case: the bihamiltonian structure is symplectic , i.e.
N = 2n and the Poisson structures of the affine line (21) do not
degenerate for generic aq, a>. Without loss of generality one may
assume nondegeneracy of w1. The recursion operator

R:TP — TP
is defined by
R = 772-771_1. (24)

21



The main recursion relation (23) can be rewritten in the form
dH,1 1 = R*dHp, p=0,1,... (25)
where
R*: TP —-T*P
is the adjoint operator, or, for the Hamiltonian vector fields XHp

XHp+1 — RXHp (26)

T heorem T he Hamiltonians

1
Hp = trRPTL p>0
p+1

satisfy the recursion (25).

Proof: exercise.
22



Clearly there are at most n independent of these commuting
functions. We say that the bihamiltonian symplectic structure
IS generic if exactly n of these functions are independent. Let
us denote \; = \;(z) the eigenvalues of the recursion operator.
Since the characteristic polynomial of R is a perfect square

n
det (R — \) = const - det(ma — A7) = [[ (A — \)2.
i=1
only n of these eigenvalues can be distinct, say, A1 = \1(2), ...,
An = An(x). For generic bihamiltonian symplectic structure these
are independent functions on P > x.
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Theorem Let { , }12 be a generic symplectic bihamiltonian
Sstructure. Then

1) All the commuting Hamiltonians
1
Hy= —— trRrP+1 = Nt@), p=o0,1,. ~1
P41 p + 1. Z
generate completely integrab/e systems on P.

2) The eigenvalues \;(x) can be included in a coordinate sys-
tem X\, u1,..., \n, un reducing the two Poisson structures to a
block diagonal form where the i-th block in w1 and in ©m> reads,
respectively

0 1 0 A :
: , 1=1,...,n.
—1 0 —A; O
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The last formula gives the normal form of a generic symplectic
bihamiltonian structure. Therefore all such structures are equiv-
alent w.r.t. the group of local diffeomorphisms.

Idea of the proof: check that the recursion operator has vanish-
iINng Nijenhuis torsion

[R,R] =0
where

[R,RI(X,Y) =[RX,RY] - R[RX,Y] —R[X,RY] + R?[X,Y]
(27)
for arbitrary two vector fields X, Y, or, in local coordinates

- . o
(R, RIj), = RYRY, — RARSp = Ry, (RR; — Ri 1)



Conversely, given a Poisson tensor m1 and a (1, 1)-tensor R (not
a scalar) with vanishing Nijenhuis torsion = m; and

o = R mq

define on P a bihamiltonian structure.

Exercise Given a (1,1)-tensor R such that all eigenvalues \1(z),
..., Any(x) of R are pairwise distinct and [R,R] = O prove ex-
istence of local coordinates y1, ..., yN such that R becomes
diagonal and

0 .0 ,
Ra—ylL:Az(yz)a—yz, Zzl,...,N

25



The degenerate situation.

Assume that the Poisson structure a1m1 +aomo has constant rank
for generic a1 and ap. Without loss of generality we may assume
that

k = corankm; = corank(m 4+ em»o) (28)

for an arbitrary sufficiently small e.

Lemma 1.3 Then the Casimirs of w1 commute w.r.t. m».

26



Proof. Let 2m = rank of m1. Reduce the matrix of this bracket
to the canonical constant block diagonal form. Denote (7%) the
matrix of the second Poisson bracket in these coordinates. Let
us choose two integers 7, 3 such that2m <i < 3 < N =2m + k
and form a (2m+ 1) x (2m + 1) minor of the matrix w1 + em> by
adding -th column and j-th row to the principal 2m x 2m minor
standing in the first 2m columns and first 2m rows. T he condition
(28) is equivalent to vanishing of the determinants of all these
minors. The determinant in question is equal to — en + O(e?).
Therefore nJ = 0 for all pairs (i,§) greater than 2m.

27



Corollary For a compatible pair of Poisson brackets of the con-
stant rank (mp —Am1) =rankmy, A — oo,

> € H2(P,m) is a trivial cocycle.

Proof. What n» is a cocycle w.r.t. the Poisson cohomology of
(P,m1) follows from [x1,75] = 0. To prove triviality use com-
mutativity of the Casimirs of the first Poisson bracket and also
Lemma 1.1.

28



Poisson pencil:

Ty 1= Tp — AT (29)
(marked mq).
Poisson pencils of constant rank: the corank of m, equals k for

A — oo. ['he recursive construction of the commuting flows in
this case is given by

Theorem 1.4 Under the assumption (28) the coefficients of the
Taylor expansion

o o cg(z) | § (@)
(2, 0) = ey (@) + 2 + L5

of the Casimirs c*(x,\), a = 1,...,k of the Poisson bracket { , },
commute with respect to both the Poisson brackets

{63765}1,2207 a,B=1,...k, p,g=>—1.

4+ ..., A— o (30)
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Proof. Spelling out the definition of the Casimirs

{ : 7604})\ =0
for the coefficients of the expansion (30) we must have first that
{ . 7031}1 = 0. (31)

That is, the leading coefficients of the Taylor expansions are
Casimirs of { , }1. For the subsequent coefficients we get the
recursive relations

{. . ,ppr1th1=1{. .t »p=-1,0,1,... (32)
From (32) and Lemma 1.2 it follows that

{03763}1,2 =0, pg=>-1



The commutativity {Ca,cg}LQ = 0 for a % 3 easily follows from
the same recursion trick and from commutativity of the Casimirs

{1, }o=0 (33)

proved in Lemma 1.3. The theorem is proved.



Example According to triviality of the cohomology class m» €
H?(7w1) there exists a vector field Z such that

Lieymy = mo.

We say that the bihamiltonian structure is exact if the vector
field Z can be chosen in such a way that

(Liey)? m = 0. (34)

For an exact bihamiltonian structure the generating functions
(30) of the commuting Hamiltonians c¢j(xz) have the form

1 1
c(x; N) =exp(—=Z/N) c{(x) = c‘il(m)—xﬁzcgl(a:)—l—ﬁ(‘?%cgl(x) .
(35)
for every a =1, ...,k (exercise!).
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Conversely, if, in a given coordinate system, { , }1 depends lin-
early on one of the coordinates and { , }» does not depend on
this coordinate then the bihamiltonian structure is exact.

In particular for the standard linear Lie - Poisson structures on
the dual spaces to Lie algebras

{ij_ijk i oIV, — Ik oy i ij — 17 k
v, } =ca = {x, 2l ) = c; A, =cpa

zt— b —Na®

(the method of argument translation).
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A Poisson pencil of constant corank £k = Lk chains of pairwise
commuting bihamiltonian flows

dx
dte-P

={z,cp}1 ={z,¢p_1}2, a=1,...;k, p=0,1,2,... (36)

Labels of the chains a — the Casimirs c¢%; of the first Poisson
bracket.

Thelevel p — the number of iterations of the recursive procedure
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All the family of commuting flows organized by the above recur-
sion procedure is called the hierarchy determined by the bihamil-
tonian structure.

Different choice of the second Poisson bracket in the pencil pro-
duces a triangular linear transformation of the commuting Hamil-
tonians, i.e., to the Hamiltonians of the level p it will be added
a linear combination of the Hamiltonians of the lower levels.
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