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Hamiltonian systems

ẋ = {x, H}

• a geometric framework for conservative physical systems

• simplify relationships between symmetries and conservation

laws

• formulation of integrability

• quantization

• numerical algorithms

2



Integrable systems: commutative subalgebras in the Lie algebra

of Hamiltonian vector fields + completeness

Modern theory of integrable systems: discovery of integrability

in Hamiltonian systems with infinite number of degrees of

freedom

Evolutionary PDEs as dynamical systems:

ut = F (u, ux, uxx, . . .) (1)

Cauchy data

u|t=0 = u0(x)

Solution u(x, t) = “integral curve” of the vector field (1) on the

space of functions in x beginning at the point u0(x)
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Lecture 1

2.1. Reminders:

- Poisson brackets

- Hamiltonian vector fields, first integrals

- Poisson cohomology

- Formalism of supermanifolds

2.2. Bihamiltonian structures, Magri chains and hierarchies
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P be a N-dimensional smooth manifold. A Poisson bracket on P

is a structure of a Lie algebra on the ring of functions F := C∞(P )

f, g �→ {f, g},

{g, f} = −{f, g}, {af + bg, h} = a{f, h} + b{g, h}, (2)

a, b ∈ R, f, g, h ∈ F
{{f, g}, h} + {{h, f}, g} + {{g, h}, f} = 0 (3)

(Jacobi identity) satisfying the Leibnitz rule

{fg, h} = f{g, h} + g{f, h}
for arbitrary three functions f, g, h ∈ F.
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In a system of local coordinates x1, . . . , xN the Poisson bracket

reads

{f, g} = πij(x)
∂f

∂xi

∂g

∂xj
(4)

(summation over repeated indices will be assumed)

The bivector

πij(x) = −πji(x) = {xi, xj}
satisfies

{{xi, xj}, xk}+{{xk, xi}, xj}+{{xj, xk}, xi} ≡ ∂πij

∂xs
πsk+

∂πki

∂xs
πsj+

∂πjk

∂xs
πsi = 0 (5)

for any i, j, k (the Jacobi identity (3)). Such a bivector is called

a Poisson structure on P .
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Any bivector constant in some coordinate system is a Poisson

structure. Vice versa, locally all solutions to (5) of the constant

rank 2n = rk(πij) can be reduced to the normal form

π =

(
π̄ 0

0 0

)
(6)

with a constant nondegenerate antisymmetric 2n×2n matrix π̄ =

π̄ab. I.e., locally there exist coordinates y1, . . . , y2n (coordinates

on the symplectic leaves) and c1, . . . , ck (Casimir functions),

2n + k = N , s.t.

π̄ab = {ya, yb} = const

and

{f, cj} = 0, j = 1, . . . k (7)

for an arbitrary function f .
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For the case 2n = N the inverse matrix
(
πij(x)

)
=

(
πij(x)

)−1

defines on P a symplectic structure

Ω =
∑
i<j

πij(x)dxi ∧ dxj, Ωn �= 0.

For 2n < N one obtains on P a structure of symplectic foliation

P = ∪c0Pc0, c0 = (c10, . . . ck
0), of the codimension k = N − 2n

Pc0 := {x | c1(x) = c10, . . . , ck(x) = ck
0}. (8)
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Example Let g be n-dimensional Lie algebra. The Lie - Poisson

bracket on the dual space P = g∗ reads

{xi, xj} = c
ij
k xk. (9)

The Casimirs are functions on g∗ invariant with respect to the

co-adjoint action of the associated Lie group G. The symplectic

leaves = the orbits of the coadjoint action with the Berezin -

Kirillov - Kostant symplectic structure on them.

Linear inhomogeneous Poisson brackets

{xi, xj} = c
ij
k xk + c

ij
0 (10)

⇒ central extension of g. c
ij
0 is a 2-cocycle

c0(b, a) = −c0(a, b), c0([a, b], c) + c0([c, a], b) + c0([b, c], a) = 0
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A Poisson bracket defines an (anti)homomorphism

F → V ect(P )

H �→ XH := {·, H}, (11)

[XH1
, XH2

] = −X{H1,H2}.

XH is called Hamiltonian vector field. The corresponding dy-

namical system

ẋi = {xi, H} = πij(x)
∂H

∂xj
(12)

is called Hamiltonian system with the Hamiltonian H(x).
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• XH is a symmetry of the Poisson bracket

LieXH
{ , } = 0. (13)

• Any function F commuting with the Hamiltonian

{F, H} = 0

is a first integral of the Hamiltonian system (12). The Hamilto-

nian vector fields XH, XF commute.
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Poisson cohomology of (P, π) (introduced by Lichnerowicz).
Recall the Schouten - Nijenhuis bracket. Denote

Λk = H0(P,ΛkTP )

the space of multivectors on P . The Schouten - Nijenhuis bracket
is a bilinear pairing a, b �→ [a, b],

Λk × Λl → Λk+l−1

uniquely determined by the properties of supersymmetry

[b, a] = (−1)kl[a, b], a ∈ Λk, b ∈ Λl (14)

the graded Leibnitz rule

[c, a ∧ b] = [c, a] ∧ b + (−1)lk+ka ∧ [c, b], a ∈ Λk, c ∈ Λl (15)

and the conditions [f, g] = 0, f, g ∈ Λ0 = F,

[v, f ] = vi ∂f

∂xi
, v ∈ Λ1 = V ect(P ), f ∈ Λ0 = F ,

12



[v1, v2] = commutator of vector fields for v1, v2 ∈ Λ1. In particular

for a vector field v and a multivector a

[v, a] = Lieva.

Example. For two bivectors π = (πij) and ρ = (ρij) their

Schouten - Nijenhuis bracket is the following trivector

[π, ρ]ijk =
∂πij

∂xs
ρsk+

∂ρij

∂xs
πsk+

∂πki

∂xs
ρsj+

∂ρki

∂xs
πsj+

∂πjk

∂xs
ρsi+

∂ρjk

∂xs
πsi.

(16)

Observe that the l.h.s. of the Jacobi identity (5) reads

{{xi, xj}, xk} + {{xk, xi}, xj} + {{xj, xk}, xi} =
1

2
[π, π]ijk.



The Schouten - Nijenhuis bracket satisfies the graded Jacobi

identity

(−1)km[[a, b], c] + (−1)lm[[c, a], b] + (−1)kl[[b, c], a] = 0, (17)

a ∈ Λk, b ∈ Λl, c ∈ Λm. ⇒ for a Poisson bivector π the map

∂ : Λk → Λk+1, ∂a = [π, a] (18)

is a differential, ∂2 = 0. The cohomology of the complex (Λ∗, ∂)

is called Poisson cohomology of (P, π)

H∗(P, π) = ⊕k≥0Hk(P, π).
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In particular,

• H0(P, π) = the ring of Casimirs of the Poisson bracket,

• H1(P, π) = the quotient of the Lie algebra of infinitesimal

symmetries

v ∈ V ect(P ), Lievπ = 0

over the subalgebra of Hamiltonian vector fields,

• H2(P, π) = the quotient of the space of infinitesimal deforma-

tions of the Poisson bracket by those obtained by infinitesimal

changes of coordinates (i.e., by those of the form Lievπ for a

vector field v).
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On a symplectic manifold (P, π) Poisson cohomology coincides

with the de Rham one. The isomorphism is established by “low-

ering the indices”: for a cocycle a = (ai1...ik) ∈ Λk the k-form
∑

i1<...<ik

ωi1...ikdxi1 ∧ . . . ∧ dxik, ωi1...ik = πi1j1 . . . πikjk
aj1...jk

is closed. In particular, for P = ball the Poisson cohomology is

trivial.
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In the general case rk(πij) < dim P the Poisson cohomology does

not vanish even locally. A simple criterion of triviality of 1- and

2-cocycles:

Lemma 1.1.Let π = (πij(x)) be a Poisson structure of a con-

stant rank 2n < N on a sufficiently small ball U .

1). A one-cocycle v = (vi(x)) ∈ H1(U, π) is trivial iff the vector

field v is tangent to the leaves of the symplectic foliation (8).

2). A 2-cocycle f = (fij(x)) ∈ H2(U, π) is trivial iff

f(dc′, dc′′) = 0 (19)

for arbitrary two Casimirs of π.
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Language of supermanifolds: consider N = ΠT ∗P . Coordinates

x1, . . . , xN, θ1, . . . , θN, xjxi = xixj, θjθi = −θiθj

Bivector

π =
1

2
πij(x)

∂

∂xi
∧ ∂

∂xj
�→ 1

2
πij(x)θiθj =: π̂

(a superfunction on N = ΠT ∗P ). (Super)Poisson bracket on N

{P, Q} =
∂P

∂θi

∂Q

∂xi
+ (−1)|P |∂P

∂xi

∂Q

∂θi
(20)

|P | = parity of the superfunction |P |.

Claim: Jacobi identity for π ⇔ {π̂, π̂} = 0
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Proof.

{π̂, π̂} = πskθk
∂πij

∂xs
θiθj

=
1

3

(
∂πij

∂xs
πsk +

∂πki

∂xs
πsj +

∂πjk

∂xs
πsi

)
θiθjθk

More generally, for multivectors a ∈ Λk, b ∈ Λl,

â =
1

k!
ai1...ikθi1 . . . θik, b̂ =

1

l!
bj1...jlθj1 . . . θjl

the super-Poisson bracket

{â, b̂} = [a, b]̂

[a, b]= Schouten - Nijenhuis bracket.
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2.2. Bihamiltonian structures

Definition. A bihamiltonan structure on the manifold P is a 2-

dimensional linear subspace in the space of Poisson structures

on P .

Choosing two nonproportional Poisson structures π1 and π2 in

the subspace we obtain that the linear combination

a1π1 + a2π2 (21)

with arbitrary constant coefficients a1, a2 is again a Poisson

bracket. This reformulation is usually referred to as the compat-

ibility condition of the two Poisson brackets. It is spelled out as

vanishing of the Schouten - Nijenhuis bracket

[π1, π2] = 0. (22)
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An importance of bihamiltonian structures for recursive construc-
tions of integrable systems was discovered by F.Magri (1978) in
the analysis of the so-called Lenard scheme ( ≤1974) of con-
structing the KdV integrals. The basic idea of these construc-
tions is given by the following simple

Definition A sequence of functions H0, H1, . . . satisfying the
recursion relation

{ . , Hp+1}1 = { . , Hp}2, p = 0, 1, . . . (23)

is called Magri chain

Lemma 1.2.

{Hp, Hq}1 = {Hp, Hq}2 = 0, p, q = 0, 1, . . .



Proof. Let p < q. Using the recursion and antisymmetry of the
brackets we obtain

{Hp, Hq}1 = {Hp, Hq−1}2 = −{Hq−1, Hp}2 = −{Hq−1, Hp+1}1 = {Hp+1, Hq−1}1.

Assume q − p = 2m for some m > 0. Iterating we arrive at

{Hp, Hq}1 = . . . = {Hp+m, Hq−m}1 = 0

since p + m = q − m. Doing similarly in the case q − p = 2m + 1

we obtain

{Hp, Hq}1 = . . . = {Hn, Hn+1}1 = {Hn, Hn}2 = 0

where n = p + m = q − m − 1. The commutativity {Hp, Hq}2 = 0

easily follows from the recursion. The Lemma is proved.
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Two realizations of the recursive procedure (23).

The first case: the bihamiltonian structure is symplectic , i.e.

N = 2n and the Poisson structures of the affine line (21) do not

degenerate for generic a1, a2. Without loss of generality one may

assume nondegeneracy of π1. The recursion operator

R : TP → TP

is defined by

R := π2 · π−1
1 . (24)
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The main recursion relation (23) can be rewritten in the form

dHp+1 = R∗dHp, p = 0, 1, . . . (25)

where

R∗ : T ∗P → T ∗P
is the adjoint operator, or, for the Hamiltonian vector fields XHp

XHp+1
= RXHp (26)

Theorem The Hamiltonians

Hp :=
1

p + 1
trRp+1, p ≥ 0

satisfy the recursion (25).

Proof: exercise.
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Clearly there are at most n independent of these commuting

functions. We say that the bihamiltonian symplectic structure

is generic if exactly n of these functions are independent. Let

us denote λi = λi(x) the eigenvalues of the recursion operator.

Since the characteristic polynomial of R is a perfect square

det (R− λ) = const · det(π2 − λ π1) =
n∏

i=1

(λ − λi)
2.

only n of these eigenvalues can be distinct, say, λ1 = λ1(x), . . . ,

λn = λn(x). For generic bihamiltonian symplectic structure these

are independent functions on P � x.
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Theorem Let { , }1,2 be a generic symplectic bihamiltonian

structure. Then

1) All the commuting Hamiltonians

Hp =
1

p + 1
trRp+1 =

1

p + 1

n∑
i=1

λ
p+1
i (x), p = 0,1, . . . , n − 1

generate completely integrable systems on P .

2) The eigenvalues λi(x) can be included in a coordinate sys-

tem λ1, µ1, . . . , λn, µn reducing the two Poisson structures to a

block diagonal form where the i-th block in π1 and in π2 reads,

respectively(
0 1

− 1 0

)
,

(
0 λi

− λi 0

)
, i = 1, . . . , n.
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The last formula gives the normal form of a generic symplectic
bihamiltonian structure. Therefore all such structures are equiv-
alent w.r.t. the group of local diffeomorphisms.

Idea of the proof: check that the recursion operator has vanish-
ing Nijenhuis torsion

[R,R] = 0

where

[R,R](X, Y ) = [RX,RY ] −R[RX, Y ] −R[X,RY ] + R2[X, Y ]
(27)

for arbitrary two vector fields X, Y , or, in local coordinates

[R,R]ijk = Rp
jRi

k,p −Rp
kRi

j,p −Ri
p

(
Rp

k,j −Rp
j,k

)



Conversely, given a Poisson tensor π1 and a (1,1)-tensor R (not

a scalar) with vanishing Nijenhuis torsion ⇒ π1 and

π2 := Rπ1

define on P a bihamiltonian structure.

Exercise Given a (1,1)-tensor R such that all eigenvalues λ1(x),

. . . , λN(x) of R are pairwise distinct and [R,R] = 0 prove ex-

istence of local coordinates y1, . . . , yN such that R becomes

diagonal and

R ∂

∂yi
= λi(y

i)
∂

∂yi
, i = 1, . . . , N
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The degenerate situation.

Assume that the Poisson structure a1π1+a2π2 has constant rank

for generic a1 and a2. Without loss of generality we may assume

that

k = corankπ1 ≡ corank(π1 + ε π2) (28)

for an arbitrary sufficiently small ε.

Lemma 1.3 Then the Casimirs of π1 commute w.r.t. π2.
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Proof. Let 2m = rank of π1. Reduce the matrix of this bracket

to the canonical constant block diagonal form. Denote (πab) the

matrix of the second Poisson bracket in these coordinates. Let

us choose two integers i, j such that 2m < i < j ≤ N = 2m + k

and form a (2m +1)× (2m +1) minor of the matrix π1 + επ2 by

adding i-th column and j-th row to the principal 2m× 2m minor

standing in the first 2m columns and first 2m rows. The condition

(28) is equivalent to vanishing of the determinants of all these

minors. The determinant in question is equal to − ε πij + O(ε2).

Therefore πij = 0 for all pairs (i, j) greater than 2m.
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Corollary For a compatible pair of Poisson brackets of the con-

stant rank (π2 −λ π1) = rankπ1, λ → ∞,

π2 ∈ H2(P, π1) is a trivial cocycle.

Proof. What π2 is a cocycle w.r.t. the Poisson cohomology of

(P, π1) follows from [π1, π2] = 0. To prove triviality use com-

mutativity of the Casimirs of the first Poisson bracket and also

Lemma 1.1.
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Poisson pencil:

πλ := π2 − λπ1 (29)

(marked π1).

Poisson pencils of constant rank: the corank of πλ equals k for
λ → ∞. The recursive construction of the commuting flows in
this case is given by

Theorem 1.4 Under the assumption (28) the coefficients of the
Taylor expansion

cα(x, λ) = cα−1(x) +
cα
0(x)

λ
+

cα
1(x)

λ2
+ . . . , λ → ∞ (30)

of the Casimirs cα(x, λ), α = 1, . . . , k of the Poisson bracket { , }λ
commute with respect to both the Poisson brackets

{cα
p , cβ

q }1,2 = 0, α, β = 1, . . . , k, p, q ≥ −1.
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Proof. Spelling out the definition of the Casimirs

{ . , cα}λ = 0

for the coefficients of the expansion (30) we must have first that

{ . , cα−1}1 = 0. (31)

That is, the leading coefficients of the Taylor expansions are

Casimirs of { , }1. For the subsequent coefficients we get the

recursive relations

{ . , cα
p+1}1 = { . , cα

p}2, p = −1, 0, 1, . . . (32)

From (32) and Lemma 1.2 it follows that

{cα
p , cα

q }1,2 = 0, p, q ≥ −1.



The commutativity {cα
p , c

β
q }1,2 = 0 for α �= β easily follows from

the same recursion trick and from commutativity of the Casimirs

{cα−1, c
β
−1}2 = 0 (33)

proved in Lemma 1.3. The theorem is proved.



Example According to triviality of the cohomology class π2 ∈
H2(π1) there exists a vector field Z such that

LieZπ1 = π2.

We say that the bihamiltonian structure is exact if the vector

field Z can be chosen in such a way that

(LieZ)2 π1 = 0. (34)

For an exact bihamiltonian structure the generating functions

(30) of the commuting Hamiltonians cα
p (x) have the form

cα(x;λ) = exp (−Z/λ) cα−1(x) = cα−1(x)−
1

λ
∂Zcα−1(x)+

1

λ2
∂2

Zcα−1(x) . . .

(35)

for every α = 1, . . . , k (exercise!).
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Conversely, if, in a given coordinate system, { , }1 depends lin-

early on one of the coordinates and { , }2 does not depend on

this coordinate then the bihamiltonian structure is exact.

In particular for the standard linear Lie - Poisson structures on

the dual spaces to Lie algebras

{xi, xj} = c
ij
k xk �→ {xi, xj}λ = c

ij
k xk − λπij, πij = c

ij
k ak

xi �→ xi − λ ai

(the method of argument translation).
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A Poisson pencil of constant corank k ⇒ k chains of pairwise

commuting bihamiltonian flows

dx

dtα,p
= {x, cα

p}1 = {x, cα
p−1}2, α = 1, . . . , k, p = 0,1,2, . . . (36)

Labels of the chains α → the Casimirs cα−1 of the first Poisson

bracket.

The level p → the number of iterations of the recursive procedure
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All the family of commuting flows organized by the above recur-

sion procedure is called the hierarchy determined by the bihamil-

tonian structure.

Different choice of the second Poisson bracket in the pencil pro-

duces a triangular linear transformation of the commuting Hamil-

tonians, i.e., to the Hamiltonians of the level p it will be added

a linear combination of the Hamiltonians of the lower levels.
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