Summer School and Conference on Poisson Geometry

(4 - 22 July 2005)

Poisson-Lie groups and Poisson groupoids

Ping Xu
Pennsylvania State University
University Park, PA 16802
United States of America
1 Poisson groups and Lie bialgebras

1.1 From Poisson groups to Lie bialgebras

Definition 1.1. A Poisson group is a Lie group endowed with a Poisson structure $\pi \in \mathfrak{X}^2(G)$ such that the multiplication $m : G \times G \rightarrow G$ is a Poisson map, where $G \times G$ is equipped with the product Poisson structure.

Example 1.1. The reader may have in mind the following two trivial examples.

1. For any Lie algebra \mathfrak{g}, its dual $(\mathfrak{g}^*, +)$ is a Poisson group where (i) the Lie group structure is given by the addition (ii) the Poisson structure is the linear Poisson structure, i.e., Lie-Poisson structure.

2. Any Lie group G is a Poisson group with respect to the trivial Poisson bracket.

To impose that $m : G \times G \rightarrow G$ is a Poisson map is equivalent to impose any of the following two conditions

1. $\forall g, h \in G, m_* (\pi_g + \pi_h) = \pi_{gh}$ or,

2. $\forall g, h \in G, (R_h)_* \pi_g + (L_g)_* \pi_h = \pi_{gh}$.

This leads to the following definition:

Definition 1.2. A bivector field π on G is said to be multiplicative if

$$(R_h)_* \pi_g + (L_g)_* \pi_h = \pi_{gh}, \quad \forall g, h \in G. \quad (1)$$

In particular, $\pi \in \mathfrak{X}^2(G)$ is a Poisson group if and only if $i)$ the identity $[\pi, \pi] = 0$ holds and $ii)$ π is multiplicative.

Remark 1.1. Any multiplicative bivector π vanishes in $g = 1$, where 1 is the unit element of the group G. This can be seen from Eq. (1) by letting $g = h = 1$.
It is sometimes convenient to consider \(\bar{\pi}(g) = (R_g)^{-1}\pi_g \), which is, by definition, a smooth map from \(G \) to \(\wedge^2 g \) (where, implicitly, we have identified the Lie algebra \(g \) with the tangent space in \(g = 1 \) of the Lie group \(G \)). When written with the help of \(\bar{\pi} \), the condition \((R_h)_*\pi_g + (L_g)_*\pi_h = \pi_{gh} \) reads

\[
\bar{\pi}(g) = (R_g)^{-1}[\bar{(R_h)_*\pi_g + (L_g)_*\pi_h}] = \bar{\pi}(gh)
\]

I.e., \(\bar{\pi} : G \to \wedge^2 g \) is a Lie group 1-cocycle, where \(G \) acts on \(\wedge^2 g \) by adjoint action.

Now, differentiating a Lie group 1-cocycle at the identity, one gets a Lie algebra 1-cocycle \(g \to \wedge^2 g \). For example, the 1-cocycle \(\delta : g \to \wedge^2 g \) associated to the Poisson structure \(\bar{\pi} \) is given by \(\forall X \in g \)

\[
\delta(X) = \frac{d}{dt}|_{t=0} \bar{\pi}(\exp(tX)) = \frac{d}{dt}|_{t=0} (R_{\exp(-tX)}\pi_{\exp(tX)}) = \bar{\pi}(\phi_t) \]

where \(\bar{X} \) is the left invariant vector field on \(G \) corresponding to \(X \) and \(\phi_t \) is its flow.

We have therefore determined \(L_{\bar{X}}\pi \) at \(g = 1 \), we now try to compute it at other points.

For all \(g \in G \), since \(\pi \) is multiplicative, we have \(\forall X \in g \),

\[
\pi_{g \exp(tX)} = (R_{\exp(-tX)}\pi_{\exp(tX)}) = \pi_g + (R_{\exp(-tX)})(L_g)\pi_{\exp(tX)}
\]

Taking the derivative of the previous identity at \(t = 0 \), one obtains:

\[
(L_{\bar{X}}\pi)_g = (L_g)_{\bar{X}}\pi|_1 = (L_g)_*\delta(X)
\]

which implies that \(L_{\bar{X}}\pi \) is left invariant. For all \(Y \in \wedge^k g \), by \(\bar{Y} \) (resp. \(\bar{Y}^r \)) the left (resp. right) invariant \(k \)-vector field on \(G \) equal to \(Y \) at \(g = 1 \). Then we obtain the following formula:

\[
L_{\bar{X}}\pi = \bar{\delta}(X)
\]

and, for similar reasons

\[
L_{\bar{X}}\pi = \bar{\delta}(X).
\]

We can now extend \(\delta : g \to \wedge^2 g \) to a derivation of degree +1 of the graded commutative associative algebra \(\wedge^\bullet g \) that we denote by the same symbol \(\delta : \wedge^\bullet g \to \wedge^{\bullet+1} g \).

Lemma 1.1.

1. The derivation \(\delta \) has square zero.
2. \(\delta[X, Y] = [\delta X, Y] + [X, \delta Y], \ \forall X, Y \in g \)

Proof. (1) For all \(X \in g \),

\[
[[X, [\pi, \pi]] = 2[[[X, \pi], \pi] = 2[\delta(X), \pi] = 2\delta^2(X)
\]
But $[\pi, \pi] = 0$, hence $\delta^2(X) = 0$.

(2) follows from the graded Jacobi identity:

$$[[X, Y], \pi] = [[X, Y], \pi] = [[X, \pi], Y] + [X, [\pi, Y]]$$

\[\square\]

Definition 1.3. A Lie bialgebra is a Lie algebra \mathfrak{g} equipped with a degree 1-derivation δ of the graded commutative associative algebra $\wedge^* \mathfrak{g}$ such that

1. $\delta([X, Y]) = [\delta(X), Y] + [X, \delta(Y)]$ and
2. $\delta^2 = 0$.

Remark 1.2. Recall that a Gerstenhaber algebra $A = \oplus_{i \in \mathbb{N}} A^i$ is a graded commutative algebra s.t. $A = \oplus_{i \in \mathbb{N}} A^{(i)}$ where $A^{(i)} = A^{i+1}$ is a graded Lie algebra with the compatibility condition

$$[a, bc] = [a, b]c + (-1)^{|a|+1}b[a, c]$$

for any $a \in A^{|a|}$, $b \in A^{|b|}$ and $c \in A^{|c|}$.

A differential Gerstenhaber algebra is a Gerstenhaber algebra equipped with a degree 1 derivation of square zero.

The Lie bracket on \mathfrak{g} can be extended to a graded Lie bracket on $\wedge^* \mathfrak{g}$ so that $(\wedge^* \mathfrak{g}, \wedge, [\cdot, \cdot])$ is a Gerstenhaber algebra. Using this terminology, a Lie bialgebra is nothing else than a differential Gerstenhaber algebra $(\wedge^* \mathfrak{g}, \wedge, [\cdot, \cdot], \delta)$.

Given a Lie bialgebra (\mathfrak{g}, δ), let us consider the dual $\delta^*: \wedge^2 \mathfrak{g}^* \to \mathfrak{g}^*$ of the derivation δ.

Let $[\xi, \eta]_{\mathfrak{g}^*} = \delta^*(\xi \wedge \eta)$ for all $\xi, \eta \in \mathfrak{g}^*$. The bilinear map $(\xi, \eta) \to [\xi, \eta]_{\mathfrak{g}^*}$ is skew-symmetric and

$$\delta^2 = 0 \iff [\cdot, \cdot]_{\mathfrak{g}^*} \text{ satisfies the Jacobi identity}$$

Therefore, the dual \mathfrak{g}^* of a Lie bialgebra (\mathfrak{g}, δ) is a Lie algebra again (which justifies the name). Conversely, a Lie bialgebras can be described again by:

Proposition 1.2. A Lie bialgebra is equivalent to a pair of Lie algebras $(\mathfrak{g}, \mathfrak{g}^*)$ compatible in the sense that the following relation is satisfied: the coadjoint action of \mathfrak{g} on \mathfrak{g}^* is a derivation of the bracket $[\cdot, \cdot]_{\mathfrak{g}^*}$, i.e.,

$$ad^*_{\alpha}[\beta]_{\mathfrak{g}^*} = [ad^*_{\alpha}\beta]_{\mathfrak{g}^*} + [\alpha, ad^*_{\beta}\beta]_{\mathfrak{g}^*} \text{ for all } X \in \mathfrak{g}, \alpha, \beta \in \mathfrak{g}^*.$$

Remark 1.3. Note that Lie bialgebras are in duality: namely $(\mathfrak{g}, \mathfrak{g}^*)$ is a Lie bialgebra if and only if $(\mathfrak{g}^*, \mathfrak{g})$ is a Lie bialgebra. This picture can be seen more naturally using Manin triples, which will be discussed in the next lecture.
1.2 \(r \)-matrices

We now turn our attention to a particular class of Lie bialgebras, i.e., those coming from \(r \)-matrices.

We start from a Lie algebra \(g \). Assume that we are given an element \(r \in \wedge^2 g \). Then define \(\delta \) by, for all \(X \in \wedge^\ast g \), \(\delta(X) = [r, X] \). As can easily be checked, \(\delta \) is a derivation of \(\wedge^\ast g \). Note that, in terms of (Chevalley-Eilenberg) cohomology, \(\delta \) is the coboundary of \(r \).

The condition \(\delta^2(X) = 0 \) is equivalent to the relation \([X, [r, r]] = 0 \), which itself holds if and only if \([r, r] \) is \(\text{ad} \)-invariant. Conversely, any \(r \in \wedge^2 g \) such that \([r, r] \) is \(\text{ad} \)-invariant defines a Lie bialgebra. Such an \(r \) is called an \(r \)-matrix. If moreover \([r, r] = 0 \), then this Lie bialgebra is called triangular.

Here are two well-known examples of \(r \)-matrices.

Example 1.2. 1. Consider \(g \) a semi-simple Lie algebra of rank \(k \) over \(\mathbb{C} \) with Cartan sub-algebra \(h \). Let \(\{e_\alpha, f_\alpha, \alpha \in \Delta_+\} \cup \{h_i, i = 1, \ldots, k\} \) be a Chevalley basis. Then \(r = \sum_{\alpha \in \Delta_+} \lambda_\alpha e_\alpha \wedge f_\alpha \) with \(\lambda_\alpha = \frac{1}{(e_\alpha, f_\alpha)} \) is an \(r \)-matrix.

2. Consider now \(k \) a compact semi-simple Lie algebra over \(\mathbb{R} \). Let \(\{e_\alpha, f_\alpha, \alpha \in \Delta_+\} \cup \{t_i, i = 1, \ldots, k\} \) be a Chevalley basis (over \(\mathbb{C} \)) of the complexified Lie algebra \(g = k^\mathbb{C} \), that we assume to be constructed such that the family \(\{X_\alpha, Y_\alpha, \alpha \in \Delta_+\} \cup \{t_i, i = 1, \ldots, k\} \) is a basis of \(k \) (over \(\mathbb{R} \)) where

\[
\begin{align*}
X_\alpha &= e_\alpha - f_\alpha \quad \text{for all } \alpha \in \Delta_+ \\
Y_\alpha &= \sqrt{-1}(e_\alpha + f_\alpha) \quad \text{for all } \alpha \in \Delta_+ \\
t_i &= \sqrt{-1}h_i \quad \text{for all } i = 1, \ldots, k
\end{align*}
\]

Let \(\hat{r} = \sqrt{-1}r = \sqrt{-1} \sum_{\alpha \in \Delta_+} \lambda_\alpha e_\alpha \wedge f_\alpha \). Then \(\hat{r} \) is, according to the first example above, an \(r \)-matrix of \(g = k^\mathbb{C} \). However, by a direct computation, one checks that

\[
\hat{r} = \frac{1}{2} \sum_{\alpha \in \Delta_+} \lambda_\alpha X_\alpha \wedge Y_\alpha
\]

so that \(\hat{r} \) is indeed an element of \(\wedge^2 k \), and therefore is an \(r \)-matrix on \(k \). Hence, it defines a Lie bialgebra structure on the real Lie algebra \(k \).

1.3 Lie bialgebras and simply-connected Lie groups

We have already explained how to get a Lie bialgebra from a Poisson group. The inverse is true as well when the Lie group is connected and simply-connected.

Theorem 1.3 (Drinfeld). Assume that \(G \) is a connected and simply-connected Lie group. Then there exists a one-to-one correspondence

\[
\text{Poisson groups } (G, \pi) \leftrightarrow \text{Lie bialgebra } (g, \delta).
\]

Example 1.3. In particular, for a Lie bialgebra coming from an \(r \)-matrix \(r \), the corresponding Poisson structure on \(G \) is the bivector field \(\bar{r} - \bar{r} \).

Applying the theorem above to the previous two examples, we are lead to
Proposition 1.4. 1. Any complex semi-simple Lie group admits a natural (complex) Poisson group structure.

2. Soibelman, Lu-Weinstein Any compact semi-simple Lie group admits a natural Poisson group structure, called the Bruhat-Poisson structure.

Remark 1.4. Poisson groups come in pairs in the following sense. Given a Poisson group \((G, \pi)\), let \((g, g^\ast)\) be its Lie bialgebra, then we know \((g^\ast, g)\) is also a Lie bialgebra which gives rise to a Poisson group denoted \((G^\ast, \pi')\).

Example 1.4. On the Lie group \(G = SU(2)\), define complex coordinates \(\alpha, \beta\) by
\[
g = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}
\]
Note that these coordinates are not "free" since \(|\alpha|^2 + |\beta|^2 = 1\). The Bruhat-Poisson structure is given by
\[
\{\alpha, \bar{\alpha}\} = 2\sqrt{-1} \beta \bar{\beta}
\]
\[
\{\alpha, \beta\} = -\sqrt{-1} \alpha \beta
\]
\[
\{\alpha, \bar{\beta}\} = -\sqrt{-1} \alpha \bar{\beta}
\]
\[
\{\beta, \bar{\beta}\} = 0
\]

Example 1.5. Below are two examples of duals of Poisson groups.

1. For the Poisson group \(G = SU(2)\), equipped with the Bruhat-Poisson structure, the dual group \(G^\ast\) is \(SB(2)\), i.e. the subgroup of two-by-two matrices of the form
\[
G^\ast = SB(2) \simeq \left\{ \begin{pmatrix} a & b + \sqrt{-1}c \\ 0 & \frac{1}{a} \end{pmatrix} \middle| b, c \in \mathbb{R}, a \in \mathbb{R}^+ \right\}
\]
Using these coordinates, the Poisson structure on \(G^\ast\) is given explicitly by
\[
\{b, c\} = a^2 - \frac{1}{a^2}
\]
\[
\{a, b\} = ab
\]
\[
\{a, c\} = ac
\]

2. For the Poisson group \(G = SL_C(n)\), equipped with the Poisson bracket constructed in Example 1.2, the dual group is
\[
G^\ast = B_+ \times B_- \simeq \left\{ (A, B) \middle| \begin{array}{c} A \text{ upper triangular with determinant 1,} \\ B \text{ lower triangular with determinant 1,} \\ \text{s.t. } \text{diag}(A) \cdot \text{diag}(B) = 1 \end{array} \right\}
\]

1.4 Poisson group actions

Definition 1.4. Let \(G\) be a Poisson group. Assume that \(G\) acts on a Poisson manifold \(X\). The action is said to be a Poisson action if the action map
\[
G \times X \rightarrow X \\
(g, x) \rightarrow g \cdot x
\]
is a Poisson map, where \(G \times X\) is equipped with the product Poisson structure.
Warning Note that in general, this definition does not imply that, for a fixed \(g \) in \(G \), the action \(x \to g \cdot x \) is a Poisson automorphism of \(X \). The reader should not confuse Poisson actions with actions preserving the Poisson structure! Note, however, that when the Poisson structure on the Lie group \(G \) is the trivial one, then a Poisson action is an action of \(G \) on \(X \) which preserves the Poisson structure.

Example 1.6. Any Lie group \(G \) acts on itself by left translation. If \(G \) is a Poisson group then this action is a Poisson action.

Proposition 1.5 (Lu-Weinstein). Let \(G \) be a Poisson group with Lie bialgebra \((\mathfrak{g}, \delta)\). Assume that \(G \) acts on a manifold \(X \) and let \(\rho : \mathfrak{g} \to \mathfrak{X}(X) \) be the infinitesimal action. The action of \(G \) on \(X \) is a Poisson action if and only if the following diagram commutes

\[
\begin{array}{ccc}
\mathfrak{g} & \xrightarrow{\rho} & \mathfrak{X}(X) \\
\downarrow \delta & & \downarrow [\pi, \cdot] \\
\wedge^2 \mathfrak{g} & \xrightarrow{\rho} & \mathfrak{X}^2(X)
\end{array}
\]

In terms of Gerstenhaber algebras, the commutativity of the previous diagram has a clear meaning: it simply means that \(\rho : \wedge^\bullet \mathfrak{g} \to \mathfrak{X}^\bullet(X) \) is a morphism of differential Gerstenhaber algebra.

Example 1.7. For the dual \(SL_\mathbb{C}(3)^* = B_+ \ast B_- \) of \(G = SL_\mathbb{C}(3) \). Consider the Poisson manifold

\[
X = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \bigg| x, y, z \in \mathbb{C} \right\}
\]
equipped with the Poisson bracket

\[
\{x, y\} = xy - 2z \\
\{y, z\} = yz - 2x \\
\{z, x\} = zx - 2y
\]
The Lie group \(G^* = B_+ \ast B_- \) acts on \(X \) by

\[
(A, B) \cdot U \to AUB^T
\]
with \((A, B) \in B_+ \ast B_- \cong G^* \) and \(U \in X \). This action turns to be a Poisson action.

2 Poisson groupoids and Lie bialgebroids

Idea Let \(\Gamma \rightrightarrows M \) be a Lie groupoid. A Poisson groupoid structure on \(\Gamma \) should be a multiplicative Poisson structure on \(\Gamma \).

Recall In the Poisson group case,

\[
\pi \text{ is multiplicative} \iff m : G \times G \to G \text{ is a Poisson map} \iff \{(x, y, xy)|x, y \in G\} \subset G \times G \times \overline{G} \text{ is coisotropic}
\]
where \(\overline{G} \) denotes \((G, \pi)\). This motivates the following definition.
Definition 2.1. A groupoid Γ with a Poisson structure π is said to be a Poisson groupoid if the graph of the groupoid multiplication

$$
\Lambda = \{(x, y, xy) | (x, y) \in \Gamma \times \Gamma \text{ composable pair} \} \subset \Gamma \times \Gamma \times \Gamma
$$

is coisotropic. Here $\bar{\Gamma}$ means that Γ is equipped with the opposite Poisson structure $-\pi$.

Example 2.1. 1. If P is a Poisson manifold, then $P \times \bar{P} \Rightarrow P$ is a Poisson groupoid.

2. Let A be the Lie algebroid of a Lie groupoid Γ and $\Lambda \in \Gamma(\wedge^2 A)$ be an element satisfying $L_X[\Lambda, \Lambda] = 0, \forall X \in \Gamma(A)$. Then $\pi = \Lambda - \bar{\Lambda}$ defines a Poisson groupoid structure on Γ.

Definition 2.2. A symplectic groupoid is a Poisson groupoid $(P \Rightarrow M, \pi)$ such that π is non-degenerate. In other words, $\Lambda \subset \Gamma \times \Gamma \times \Gamma$ is a Lagrangian submanifold.

Example 2.2. 1. $T^*M \Rightarrow M$ with the canonical cotangent symplectic structure is a symplectic groupoid.

2. If G is a Lie group, then $T^*G \Rightarrow g^*$ is a symplectic groupoid. Here the symplectic structure on T^*G is the canonical cotangent symplectic structure. The groupoid structure is as follows. Right translations give an isomorphism between T^*G and the transformation groupoid $G \times g^*$ where G acts on g^* by coadjoint action.

3. In general, if $\Gamma \Rightarrow M$ is a Lie groupoid with Lie algebroid A, then $T^*\Gamma \Rightarrow A^*$ is a symplectic groupoid. Let $\Lambda \subset \Gamma \times \Gamma \times \Gamma$ denote the graph of the multiplication and $N^*\Lambda \subset T^*\Gamma \times T^*\Gamma \times T^*\Gamma$ its conormal space.

Exercise 2.1. Show that $N^*\Lambda = \{(\xi, \eta, \delta) | (\xi, \eta, -\delta) \in N^*\Lambda \}$ is the graph of a groupoid multiplication on $T^*\Gamma$ with corresponding unit space isomorphic to $A^* \cong N^*M$. This defines a groupoid structure on $T^*\Gamma \Rightarrow A^*$.

Question Why symplectic groupoids?

Symplectic groupoids are used in

1. quantization

2. symplectic realization

Given a Poisson manifold M, can one embed the Poisson algebra $C^\infty(M)$ into a Poisson subalgebra of $C^\infty(S)$ where S is some symplectic manifold?

$$
C^\infty(M) \hookrightarrow C^\infty(S)
$$

Note that locally, there exists local coordinates $(p_1, \ldots, p_k, q_1, \ldots, q_k)$ in which the Poisson bracket on $C^\infty(S)$ has the following form: $\{p_i, q_j\} = \delta_{ij}$, $\{p_i, p_j\} = 0 = \{q_i, q_j\}$.

This question was first investigated in 1890 by Sophus Lie under the name of "Function groups". It leads to the following definition.

Definition 2.3. A symplectic realization of a Poisson manifold (M, π) consists of a pair (X, Φ), where X is a symplectic manifold and $\Phi : X \rightarrow M$ is a Poisson map which is a surjective submersion.
Given a Poisson manifold, does there exist a symplectic realization. And if so, is it unique?

1. Local existence:
 (a) Lie (regular Poisson)
 (b) Weinstein 1983 (using splitting theorem)

2. Global existence: Karasev and Weinstein 1987
 (a) Symplectic realizations exist globally for any Poisson manifold.
 (b) There exists a distinguished symplectic realization, which admits a compatible local groupoid structure, i.e. a symplectic local groupoid.

Idea Find local symplectic realizations. Patch them together.

Puzzle Why do symplectic and groupoid structures arise in the context of Poisson manifolds in such a striking manner?
Recall that in the case of a Poisson group \((G, \pi)\), the associated infinitesimal object is a Lie bialgebra \((g, \delta)\).
Half-way between Poisson groups and symplectic groupoids, there should be a notion of Poisson groupoids. Such a notion could help to better understand symplectic groupoids by imitating Poisson group theory.

Poisson groupoids \{ Poisson groups, symplectic groupoids \}

Theorem 2.1. Let \(\Gamma \xrightarrow{a} M\) be a Lie groupoid. Let \(\pi \in \mathfrak{X}^2(\Gamma)\) be a Poisson tensor. Then \((\Gamma, \pi)\) is a Poisson groupoid if and only if all the following hold.

1. For all \((x, y) \in \Gamma_2\),
 \[\pi(xy) = R_Y \pi(x) + L_X \pi(y) - R_Y L_X \pi(w),\]
 where \(w = \beta(x) = \alpha(y)\) and \(X, Y\) are (local) bisections through \(x\) and \(y\) respectively.

2. \(M\) is a coisotropic submanifold of \(\Gamma\)

3. For all \(x \in \Gamma\), \(\alpha_* \pi(x)\) and \(\beta_* \pi(x)\) only depend on the base points \(\alpha(x)\) and \(\beta(x)\) respectively.

4. For all \(\alpha, \beta \in C^\infty(M)\), one has \(\{\alpha^* f, \beta^* g\} = 0\), \(\forall f, g \in C^\infty(M)\).

5. The vector field \(X_{\beta^* f}\) is left invariant for all \(f \in C^\infty(M)\).

Remark 2.1. If \(M\) is a point, then

1. \(\Leftrightarrow\) multiplicativity condition,

2. \(\Leftrightarrow\pi(1) = 0\),
3. is automatic,
4. is automatic,
5. is automatic.

And one gets the characterization of a Poisson group: a Lie group equipped with a multiplicative Poisson tensor.

Question What is the infinitesimal object associated to a Poisson groupoid?

Corollary 1. Given a Poisson groupoid \((\Gamma \rightrightarrows M, \pi)\), we have

1. for all \(X \in \Gamma(A)\), \([\overline{X}, \pi]\) is still left invariant
2. \(\pi_M := \alpha_* \pi \) (or \(-\beta_* \pi\)) is a Poisson tensor on \(M\)

Proof. For all \(X \in \Gamma(A)\), take \(\xi_t = \text{exp}_tX \in U(\Gamma)\) (the space of bisections of \(\Gamma\)), \(u_t = (\text{exp}_tX)(u)\) and \(x \in \Gamma\) with \(\beta(x) = u\). In other words, \(u_t\) is the flow of \(\overline{X}\) initiated at \(u\). Let \(K\) be any bisection through \(x\). One gets

\[
\pi(xu_t) = R_{\xi_t}\pi(x) + L_K\pi(u_t) - L_KR_{\xi_t}\pi(u)
\]

\[
\Rightarrow R_{\xi^{-1}_t}\pi(xu_t) = \pi(x) + L_KR_{\xi^{-1}_t}\pi(u_t) - L_K\pi(u) \in \wedge^2 T_x\Gamma
\]

and, differentiating with respect to \(t\) at 0,

\[
(L_{\overline{X}}\pi)(x) = L_K((L_{\overline{X}}\pi)(u)).
\]

This implies that \(L_{\overline{X}}\pi\) is left invariant.

Now, we can define \(\delta : \Gamma(\wedge^i A) \to \Gamma(\wedge^{i+1} A)\). For \(i = 0\),

\[
C^\infty(M) \to \Gamma(A) : f \mapsto X_{\beta_* f} = [\beta^* f, \pi].
\]

For \(i = 1\),

\[
\Gamma A \to \Gamma(\wedge^2 A) : X \mapsto \overline{\delta X} = [\overline{X}, \pi].
\]

The following lemma can be easily verified.

Lemma 2.2. 1. \(\delta(fg) = g\delta f + f\delta g\), \(\forall f, g \in C^\infty(M)\)
 2. \(\delta(fX) = f \wedge X + f\delta X\), \(\forall f \in C^\infty(M)\) and \(X \in \Gamma(A)\)
 3. \(\delta [X, Y] = [\delta X, Y] + [X, \delta Y]\), \(\forall X, Y \in \Gamma(A)\)
 4. \(\delta^2 = 0\)

Definition 2.4. A Lie bialgebroid is a Lie algebroid \(A\) equipped with a degree 1 derivation \(\delta\) of the associative algebra \((\Gamma(\wedge^i A), \wedge)\) satisfying conditions 3 and 4 of the previous lemma.

Exercise 2.2. Show that a Lie bialgebroid structure is equivalently characterized as a degree 1 derivation \(\delta\) of the Gerstenhaber algebra \((\Gamma(\wedge^i A), \wedge, [\cdot, \cdot])\) such that \(\delta^2 = 0\). This is also called a differential Gerstenhaber algebra.
Remark 2.2. Given a Lie bialgebroid \((A, \delta)\), there is a natural Lie algebroid structure on \(A^*\) defined as follows.

1. The anchor map \(\rho_\star : A^* \to TM\) is
 \[\langle \rho_\star \xi, f \rangle = \langle \xi, \delta f \rangle, \quad \forall f \in C^\infty(M). \]

2. The bracket \([,]\) is given by
 \[\langle [\xi, \eta], X \rangle = (\delta X)(\xi, \eta) + (\rho_\star \xi) \langle X, \eta \rangle - (\rho_\star \eta) \langle X, \xi \rangle, \quad \forall \xi, \eta \in \Gamma(A^*), \forall X \in \Gamma(A). \]

Indeed, equivalently, a Lie bialgebroid is a pair of Lie algebroids \((A, A^*)\) such that
\[
\delta [X, Y] = [\delta X, Y] + [X, \delta Y], \quad \forall X, Y \in \Gamma(A),
\]
where \(\delta : \Gamma(A) \to \Gamma(\wedge^2 A)\) is defined by the above equation \((2)\).

Remark 2.3. If \((A, A^*)\) is a Lie bialgebroid, then \((A^*, A)\) is also a Lie bialgebroid and it is called its dual.

Example 2.3. 1. If \(\pi\) is a Poisson tensor on \(M\), then \(A = TM\) with \(\delta = [\pi, \cdot] : \mathfrak{X}^*(M) \to \mathfrak{X}^{*+1}(M)\) is a Lie bialgebroid. In this case, \(A^* = T^*M\) is the canonical cotangent Lie algebroid.

2. The dual to the previous one: \(A = T^*M\), the cotangent Lie algebroid of a Poisson manifold \((M, \pi)\), together with \(\delta^\star = d_{DR} : \Omega^*(M) \to \Omega^{*+1}(M)\).

3. Coboundary Lie bialgebroid. Take \(A\) a Lie algebroid admitting a \(\Lambda \in \Gamma(\wedge^2 A)\) satisfying
 \[\mathcal{L}_X [\Lambda, \Lambda] = 0, \forall X \in \Gamma(A). \]
 Let \(\delta = [\Lambda, \cdot] : \Gamma(\wedge^* A) \to \Gamma(\wedge^{*+1} A)\). Then \((A, \delta)\) defines a Lie bialgebroid.

4. Dynamical \(r\)-matrix. Consider the Lie algebroid \(A = T\mathfrak{h}^* \oplus \mathfrak{g} \to \eta\) where \(\mathfrak{h}\) is an abelian subalgebra of \(\mathfrak{g}\) and the Lie algebroid structure on \(A\) is the product Lie algebroid. Choose a map \(r : \mathfrak{h}^* \to \wedge^2 \mathfrak{g}\) and consider it as a element \(\Lambda\) of \(\Gamma(\wedge^2 A)\). Then \(L_X [\Lambda, \Lambda] = 0\) if and only if
 \[
 \sum h_i \wedge \frac{dr}{\partial \lambda_i} + \frac{1}{2} [r, r] \in (\wedge^3 \mathfrak{g})^0
 \]
 is a constant function over \(\mathfrak{h}^*\). Here \(\{h_1, \ldots, h_k\}\) is a basis of \(\mathfrak{h}\) and \((\lambda_1, \ldots, \lambda_k)\) are the dual coordinates on \(\mathfrak{h}^*\).
 In particular, if \(\mathfrak{g}\) is a simple Lie algebra and \(\mathfrak{h} \subset \mathfrak{g}\) is a Cartan subalgebra, one can take
 \[r(\lambda) = \sum_{\alpha \in \Delta^+} \frac{\lambda_\alpha}{(\alpha, \lambda)} e_\alpha \wedge f_\alpha \]
or
 \[r(\lambda) = \sum_{\alpha \in \Delta^+} \lambda_\alpha \coth (\alpha, \lambda) e_\alpha \wedge f_\alpha, \]
 where \((e_\alpha, f_\alpha, h_i)\) is a Chevalley basis.