

SMR1665/14

Summer School and Conference on Poisson Geometry

(4 -22 July 2005)

Poisson-Lie groups and Poisson groupoids

Ping Xu Pennsylvania State University University Park, PA 16802 United States of America

Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Poisson-Lie groups and Poisson groupoids

Ping Xu Pennsylvania State University University Park, PA 16802 ping@math.psu.edu

ICTP Trieste, July 2005

1 Poisson groups and Lie bialgebras

1.1 From Poisson groups to Lie bialgebras

Definition 1.1. A Poisson group is a Lie group endowed with a Poisson structure $\pi \in \mathfrak{X}^2(G)$ such that the multiplication $m: G \times G \to G$ is a Poisson map, where $G \times G$ is equipped with the product Poisson structure.

Example 1.1. The reader may have in mind the following two trivial examples.

- 1. For any Lie algebra \mathfrak{g} , its dual $(\mathfrak{g}^*, +)$ is a Poisson group where *(i)* the Lie group structure is given by the addition *(ii)* the Poisson structure is the linear Poisson structure, i.e., Lie-Poisson structure.
- 2. Any Lie group G is a Poisson group with respect to the trivial Poisson bracket.

To impose that $m: G \times G \to G$ is a Poisson map is equivalent to impose any of the following two conditions

- 1. $\forall g, h \in G, m_*(\pi_g + \pi_h) = \pi_{gh}$ or,
- 2. $\forall g, h \in G, (R_h)_* \pi_g + (L_g)_* \pi_h = \pi_{gh}.$

This leads to the following definition:

Definition 1.2. A bivector field π on G is said to be multiplicative if

$$(R_h)_*\pi_g + (L_g)_*\pi_h = \pi_{gh}, \quad \forall g, h \in G.$$

$$\tag{1}$$

In particular, $\pi \in \mathfrak{X}^2(G)$ is a Poisson group if and only if *i*) the identity $[\pi, \pi] = 0$ holds and *ii*) π is multiplicative.

Remark 1.1. Any multiplicative bivector π vanishes in g = 1, where 1 is the unit element of the group G. This can be seen from Eq. (1) by letting g = h = 1.

It is sometimes convenient to consider $\tilde{\pi}(g) = (R_g)_*^{-1}\pi_g$, which is, by definition, a smooth map from G to $\wedge^2 \mathfrak{g}$ (where, implicitely, we have identified the Lie algebra \mathfrak{g} with the tangent space in g = 1 of the Lie group G). When written with the help of $\tilde{\pi}$, the condition $(R_h)_*\pi_g + (L_g)_*\pi_h = \pi_{gh}$ reads

$$\begin{array}{rcl} (R_{gh})_{*}^{-1}[(R_{h})_{*}\pi_{g} + (L_{g})_{*}\pi_{h}] &=& (R_{gh})_{*}^{-1}\pi_{gh} \\ \widetilde{\pi}(g) + Ad_{g}\widetilde{\pi}(h) &=& \widetilde{\pi}(gh) \end{array}$$

I.e., $\tilde{\pi}: G \to \wedge^2 \mathfrak{g}$ is a Lie group 1-cocycle, where G acts on $\wedge^2 \mathfrak{g}$ by adjoint action.

Now, differentiating a Lie group 1-cocycle at the identity, one gets a Lie algebra 1-cocycle $\mathfrak{g} \to \wedge^2 \mathfrak{g}$. For example, the 1-cocycle $\delta : \mathfrak{g} \to \wedge^2 \mathfrak{g}$ associated to the Poisson structure $\widetilde{\pi}$ is given by $\forall X \in \mathfrak{g}$

$$\delta(X) = \frac{d}{dt}|_{t=0} \widetilde{\pi} \left(exp(tX) \right)$$

= $\frac{d}{dt}|_{t=0} \left(R_{exp(-tX)} \right)_* \pi_{exp(tX)}$
= $(\phi_{-t})_* \pi_{\phi_t(1)}$
= $(L_{\widetilde{Y}} \pi)|_{g=1}$

where \overleftarrow{X} is the left invariant vector field on G corresponding to X and ϕ_t is its flow. We have therefore determined $L_{\overleftarrow{X}}\pi$ at g = 1, we now try to compute it at other points.

For all $g \in G$, since π is multiplicative, we have $\forall X \in \mathfrak{g}$,

$$\begin{aligned} \pi_{g\,exp(tX)} &= (R_{exp(-tX)})_* \pi_g + (L_g)_* \pi_{exp(tX)} \\ (R_{exp(-tX)})_* \pi_{g\,exp(tX)} &= \pi_g + (R_{exp(-tX)})_* (L_g)_* \pi_{exp(tX)} \\ (\phi_{-t})_* \pi_{\phi_t(g)} &= \pi_g + L_g(\phi_{-t})_* \pi_{\phi_t(1)} \end{aligned}$$

Taking the derivative of the previous identity at t = 0, one obtains:

$$(L_{\overline{X}}\pi)_{|g} = (L_g)_* L_{\overline{X}}\pi_{|1} = (L_g)_*\delta(X)$$

which implies that $L_{\overline{X}}\pi$ is left invariant. For all $Y \in \wedge^k \mathfrak{g}$, by \overleftarrow{Y} (resp. \overrightarrow{Y}) the left (resp. right) invariant k-vector field on G equal to Y at g = 1. Then we obtain the following formula:

$$L_{\overleftarrow{X}}\pi = \overleftarrow{\delta(X)}.$$

and, for similar reasons

$$L_{\overrightarrow{X}}\pi = \overrightarrow{\delta(X)}.$$

We can now extend $\delta : \mathfrak{g} \to \wedge^2 \mathfrak{g}$ to a derivation of degree +1 of the graded commutative associative algebra ($\wedge^* \mathfrak{g}$ that we denote by the same symbol $\delta : \wedge^{\bullet} \mathfrak{g} \to \wedge^{\bullet+1} \mathfrak{g}$.

Lemma 1.1. 1. The derivation δ has square zero.

2.
$$\delta[X,Y] = [\delta X,Y] + [X,\delta Y], \quad \forall X,Y \in \mathfrak{g}$$

Proof. (1) For all $X \in \mathfrak{g}$,

$$\begin{aligned} \left[\overleftarrow{X}, [\pi, \pi] \right] &= 2\left[\left[\overleftarrow{X}, \pi \right], \pi \right] \\ &= 2\left[\overleftarrow{\delta(X)}, \pi \right] \\ &= 2\left[\overleftarrow{\delta(X)}, \pi \right] \\ &= 2\left[\overleftarrow{\delta^2(X)} \right] \end{aligned}$$

But $[\pi, \pi] = 0$, hence $\delta^2(X) = 0$.

(2) follows from the graded Jocobi identity:

$$[\overleftarrow{[X,Y]},\pi] = [[\overleftarrow{X},\overleftarrow{Y}],\pi] = [[\overleftarrow{X},\pi],\overleftarrow{Y}] + [\overleftarrow{X},[\pi,\overleftarrow{Y}]]$$

Definition 1.3. A Lie bialgebra is a Lie algebra \mathfrak{g} equiped with a degree 1-derivation δ of the graded commutative associative algebra $\wedge^{\bullet}\mathfrak{g}$ such that

- 1. $\delta([X, Y]) = [\delta(X), Y] + [X, \delta(Y)]$ and
- 2. $\delta^2 = 0.$

Remark 1.2. Recall that a *Gerstenhaber algebra* $A = \bigoplus_{i \in \mathbb{N}} A^i$ is a graded commutative algebra s.t. $A = \bigoplus_{i \in \mathbb{N}} A^{(i)}$ where $A^{(i)} = A^{i+1}$ is a graded Lie algebra with the compatibility condition

$$[a, bc] = [a, b]c + (-1)^{(|a|+1)|b|}b[a, c]$$

for any $a \in A^{|a|}$, $b \in A^{|b|}$ and $c \in A^{|c|}$.

A differential Gerstenhaber algebra is a Gerstenhaber algebra equipped with a degree 1 derivation of square zero.

The Lie bracket on \mathfrak{g} can be extended to a graded Lie bracket on $\wedge^{\bullet}\mathfrak{g}$ so that $(\wedge^{\bullet}\mathfrak{g}, \wedge, [\cdot, \cdot])$ is a Gerstenhaber algebra. Using this terminology, a Lie bialgebra is nothing else than a differential Gerstenhaber algebra $(\wedge^{\bullet}\mathfrak{g}, \wedge, [\cdot, \cdot], \delta)$.

Given a Lie bialgebra (\mathfrak{g}, δ) , let us consider the dual $\delta^* : \wedge^2 \mathfrak{g}^* \to \mathfrak{g}^*$ of the derivation δ .

Let $[\xi,\eta]_{\mathfrak{g}^*} = \delta^*(\xi \wedge \eta)$ for all $\xi, \eta \in \mathfrak{g}^*$. The bilinear map $(\xi,\eta) \to [\xi,\eta]_{\mathfrak{g}^*}$ is skew-symmetric and

 $\delta^2 = 0 \quad \Leftrightarrow \quad [\cdot, \cdot]_{\mathfrak{g}^*}$ satisfies the Jacobi identity

Therefore, the dual \mathfrak{g}^* of a Lie bialgebra (\mathfrak{g}, δ) is a Lie algebra again (which justifies the name). Conversely, a Lie bialgebras can be described again by:

Proposition 1.2. A Lie bialgebra is equivalent to a pair of Lie algebras $(\mathfrak{g}, \mathfrak{g}^*)$ compatible in the sense that the following relation is satisfied: the coadjoint action of \mathfrak{g} on \mathfrak{g}^* is a derivation of the bracket $[\cdot, \cdot]_{\mathfrak{g}^*}$, i.e.,

$$ad_X^*[\alpha,\beta]_{\mathfrak{g}^*} = [ad_X^*\alpha,\beta]_{\mathfrak{g}^*} + [\alpha,ad_X^*\beta]_{\mathfrak{g}^*}$$
 for all $X \in \mathfrak{g}, \alpha, \beta \in \mathfrak{g}^*$.

Remark 1.3. Note that Lie bialgebras are in duality: namely $(\mathfrak{g}, \mathfrak{g}^*)$ is a Lie bialgebra if and only if $(\mathfrak{g}^*, \mathfrak{g})$ is a Lie bialgebra. This picture can be seen more naturally using Manin triples, which will be discussed in the next lecture.

1.2 *r*-matrices

We now turn our attention to a particular class of Lie bialgebras, i.e., those coming from r-matrices.

We start from a Lie algebra \mathfrak{g} . Assume that we are given an element $r \in \wedge^2 \mathfrak{g}$. Then define δ by, for all $X \in \wedge^{\bullet} \mathfrak{g}$, $\delta(X) = [r, X]$. As can easily be checked, δ is a derivation of $\wedge^{\bullet} \mathfrak{g}$. Note that, in terms of (Chevalley-Eilenberg) cohomology, δ is the coboundary of r.

The condition $\delta^2(X) = 0$ is equivalent to the relation [X, [r, r]] = 0, which itself holds if and only if [r, r] is *ad*-invariant. Conversely, any $r \in \wedge^2 \mathfrak{g}$ such that [r, r]is *ad*-invariant defines a Lie bialgebra. Such an r is called an r-matrix. If moreover [r, r] = 0, then this Lie bialgebra is called *triangular*.

Here are two well-known examples of r-matrices.

- **Example 1.2.** 1. Consider \mathfrak{g} a semi-simple Lie algebra of rank k over \mathbb{C} with Cartan sub-algebra \mathfrak{h} . Let $\{e_{\alpha}, f_{\alpha}, \alpha \in \Delta_{+}\} \cup \{h_{i}, i = 1, \ldots, k\}$ be a Chevalley basis. Then $r = \sum_{\alpha \in \Delta_{+}} \lambda_{\alpha} e_{\alpha} \wedge f_{\alpha}$ with $\lambda_{\alpha} = \frac{1}{(e_{\alpha}, f_{\alpha})}$ is an *r*-matrix.
 - 2. Consider now \mathfrak{k} a compact semi-simple Lie algebra over \mathbb{R} . Let $\{e_{\alpha}, f_{\alpha}, \alpha \in \Delta_+\} \cup \{h_i, i = 1..., k\}$ be a Chevalley basis (over \mathbb{C}) of the complexified Lie algebra $\mathfrak{g} = \mathfrak{k}^{\mathbb{C}}$, that we assume to be constructed such that the family $\{X_{\alpha}, Y_{\alpha}, \alpha \in \Delta_+\} \cup \{t_i, i = 1, ..., k\}$ is a basis of \mathfrak{k} (over \mathbb{R}) where

$$\begin{cases} X_{\alpha} = e_{\alpha} - f_{\alpha} & \text{for all } \alpha \in \Delta_{+} \\ Y_{\alpha} = \sqrt{-1}(e_{\alpha} + f_{\alpha}) & \text{for all } \alpha \in \Delta_{+} \\ t_{i} = \sqrt{-1}h_{i} & \text{for all } i \in \{1, \dots, k\} \end{cases}$$

Let $\hat{r} = \sqrt{-1} r = \sqrt{-1} \sum_{\alpha \in \Delta_+} \lambda_{\alpha} e_{\alpha} \wedge f_{\alpha}$. Then \hat{r} is, according to the first example above, an *r*-matrix of $\mathfrak{g} = \mathfrak{k}^{\mathbb{C}}$. However, by a direct comptation, one checks that

$$\hat{r} = \frac{1}{2} \sum_{\alpha \in \Delta_+} \lambda_{\alpha} X_{\alpha} \wedge Y_{\alpha}$$

so that \hat{r} is indeed an element of $\wedge^2 \mathfrak{k}$, and therefore is an *r*-matrix on \mathfrak{k} . Hence, it defines a Lie bialgebra structure on the real Lie algebra \mathfrak{k} .

1.3 Lie bialgebras and simply-connected Lie groups

We have already explained how to get a Lie bialgebra from a Poisson group. The inverse is true as well when the Lie group is connected and simply-connected.

Theorem 1.3 (Drinfeld). Assume that G is a connected and simply-connected Lie group. Then there exists a one-to-one correspondence

Poisson groups
$$(G, \pi) \qquad \leftrightarrow \qquad Lie \ bialgebra \ (\mathfrak{g}, \delta).$$

Example 1.3. In particular, for a Lie bialgebra coming from an *r*-matrix *r*, the corresponding Poisson structure on *G* is the bivector field $\overleftarrow{r} - \overrightarrow{r}$.

Applying the theorem above to the previous two examples, we are lead to

Proposition 1.4. 1. Any complex semi-simple Lie group admits a natural (complex) Poisson group structure.

2. Soibelmann, Lu-Weinstein Any compact semi-simple Lie group admits a natural Poisson group structure, called the Bruhat-Poisson structure.

Remark 1.4. Poisson groups come in pairs in the following sense. Given a Poisson group (G, π) , let $(\mathfrak{g}, \mathfrak{g}^*)$ be its Lie bialgebra, then we know $(\mathfrak{g}^*, \mathfrak{g})$ is also a Lie bialgebra which gives rise to a Poisson group denoted (G^*, π') .

Example 1.4. On the Lie group G = SU(2), define complex coordinates α, β by

$$g = \left(\begin{array}{cc} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{array}\right)$$

Note that these coordinates are not "free" since $|\alpha|^2 + |\beta|^2 = 1$. The Bruhat-Poisson structure is given by

Example 1.5. Below are two examples of duals of Poisson groups.

1. For the Poisson group G = SU(2), equipped with the Bruhat-Poisson structure, the dual group G^* is SB(2), i.e. the subgroup of two-by-two matrices of the form

$$G^* = SB(2) \simeq \left\{ \left(\begin{array}{cc} a & b + \sqrt{-1}c \\ 0 & \frac{1}{a} \end{array} \right) \middle| \quad b, c \in \mathbb{R}, a \in \mathbb{R}^+ \right\}$$

Using these coordinates, the Poisson structure on G^* is given explicitly by

$$\begin{cases} b, c \} &= a^2 - \frac{1}{a^2} \\ \{a, b\} &= ab \\ \{a, c\} &= ac \end{cases}$$

2. For the Poisson group $G = SL_{\mathbb{C}}(n)$, equipped with the Poisson bracket constructed in Example 1.2, the dual group is

$$G^* = B_+ \star B_- \simeq \begin{cases} (A, B) & A \text{ upper triangular with determinant 1,} \\ B \text{ lower triangular with determinant 1,} \\ \text{s.t. } \operatorname{diag}(A) \cdot \operatorname{diag}(B) = 1 \end{cases}$$

1.4 Poisson group actions

Definition 1.4. Let G be a Poisson group. Assume that G acts on a Poisson manifold X. The action is said to be a Poisson action if the action map

$$\begin{array}{rcccc} G \times X & \to & X \\ (g, x) & \to & g \cdot x \end{array}$$

is a Poisson map, where $G \times X$ is equipped with the product Poisson structure.

Warning Note that in general, this definition *does not* imply that, for a fixed g in G, the action $x \to g \cdot x$ is a Poisson automorphism of X. The reader should not confuse Poisson actions with actions preserving the Poisson structure! Note, however, that when the Poisson structure on the Lie group G is the trivial one, then a Poisson action is an action of G on X which preserves the Poisson structure.

Example 1.6. Any Lie group G acts on itself by left translation. If G is a Poisson group then this action is a Poisson action.

Proposition 1.5 (Lu-Weinstein). Let G be a Poisson group with Lie bialgebra (\mathfrak{g}, δ) . Assume that G acts on a manifold X and let $\rho : \mathfrak{g} \to \mathfrak{X}^1(X)$ be the infinitesimal action. The action of G on X is a Poisson action if and only if the following diagram commutes

$$\begin{array}{ccc} \mathfrak{g} & \stackrel{\rho}{\longrightarrow} & \mathfrak{X}(X) \\ \downarrow \delta & & \downarrow [\pi, \cdot] \\ \wedge^2 \mathfrak{g} & \stackrel{\rho}{\longrightarrow} & \mathfrak{X}^2(X) \end{array}$$

In terms of Gerstenhaber algebras, the commutativity of the previous diagram has a clear meaning: it simply means that $\rho : \wedge^{\bullet} \mathfrak{g} \to \mathfrak{X}^{\bullet}(X)$ is a morphism of differential Gerstenhaber algebra.

Example 1.7. For the dual $SL_{\mathbb{C}}(3)^* = B_+ \star B_-$ of $G = SL_{\mathbb{C}}(3)$. Consider the Poisson manifold

$$X = \left\{ \left(\begin{array}{ccc} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array} \right) \middle| \quad x, y, z \in \mathbb{C} \right\}$$

equipped with the Poisson bracket

$$\begin{array}{rcl} \{x,y\} &=& xy-2z\\ \{y,z\} &=& yz-2x\\ \{z,x\} &=& zx-2y \end{array}$$

The Lie group $G^* = B_+ \star B_-$ acts on X by

$$(A,B) \cdot U \to AUB^T$$

with $(A, B) \in B_+ \star B_- \simeq G^*$ and $U \in X$. This action turns to be a Poisson action.

2 Poisson groupoids and Lie bialgebroids

Idea Let $\Gamma \rightrightarrows M$ be a Lie groupoid. A Poisson groupoid structure on Γ should be a multiplicative Poisson structure on Γ .

Recall In the Poisson group case,

 $\begin{array}{l} \pi \text{ is multiplicative} \\ \Leftrightarrow \quad m: G \times G \to G \text{ is a Poisson map} \\ \Leftrightarrow \quad \{(x, y, xy) | x, y \in G\} \subset G \times G \times \overline{G} \text{ is coisotropic} \end{array}$

where \overline{G} denotes (G, pi). This motivates the following definition.

Definition 2.1. A groupoid Γ with a Poisson structure π is said to be a Poisson groupoid if the graph of the groupoid multiplication

 $\Lambda = \{(x, y, xy) | (x, y) \in \Gamma_2 \text{ composable pair} \} \subset \Gamma \times \Gamma \times \overline{\Gamma}$

is coisotropic. Here $\overline{\Gamma}$ means that Γ is equipped with the opposite Poisson structure $-\pi$.

- **Example 2.1.** 1. If P is a Poisson manifold, then $P \times \overline{P} \Rightarrow P$ is a Poisson groupoid.
 - 2. Let A be the Lie algebroid of a Lie groupoid Γ and $\Lambda \in \Gamma(\wedge^2 A)$ be an element satisfying $\mathcal{L}_X[\Lambda,\Lambda] = 0, \forall X \in \Gamma(A)$. Then $\pi = \overleftarrow{\Lambda} \overrightarrow{\Lambda}$ defines a Poisson groupoid structure on Γ .

Definition 2.2. A symplectic groupoid is a Poisson groupoid $(P \rightrightarrows M, \pi)$ such that π is non-degenerate. In other words, $\Lambda \subset \Gamma \times \Gamma \times \overline{\Gamma}$ is a Lagrangian submanifold.

- **Example 2.2.** 1. $T^*M \rightrightarrows M$ with the canonical cotangent symplectic structure is a symplectic groupoid
 - 2. If G is a Lie group, then $T^*G \rightrightarrows \mathfrak{g}^*$ is a symplectic groupoid. Here the symplectic structure on T^*G is the canonical cotangent symplectic structure. The groupoid structure is as follows. Right translations give an isomorphism between T^*G and the transformation groupoid $G \times \mathfrak{g}^*$ where G acts on \mathfrak{g}^* by coadjoint action.
 - 3. In general, if $\Gamma \rightrightarrows M$ is a Lie groupoid with Lie algebroid A, then $T^*\Gamma \rightrightarrows A^*$ is a symplectic groupoid. Let $\Lambda \subset \Gamma \times \Gamma \times \Gamma$ denote the graph of the multiplication and $N^*\Lambda \subset T^*\Gamma \times T^*\Gamma \times T^*\Gamma$ its conormal space.

Exercise 2.1. Show that $\overline{N^*\Lambda} = \{(\xi, \eta, \delta) | (\xi, \eta, -\delta) \in N^*\Lambda\}$ is the graph of a groupoid multiplication on $T^*\Gamma$ with corresponding unit space isomorphic to $A^* \simeq N^*M$. This defines a groupoid structure on $T^*\Gamma \rightrightarrows A^*$.

Question Why symplectic groupoids ? Symplectic groupoids are used in

- 1. quantization
- 2. symplectic realization

Given a Poisson manifold M, can one embed the Poisson algebra $C^{\infty}(M)$ into a Poisson subalgebra of $C^{\infty}(S)$ where S is some symplectic manifold ?

$$C^{\infty}(M) \hookrightarrow C^{\infty}(S)$$

Note that locally, there exists local coordinates $(p_1, \ldots, p_k, q_1, \ldots, q_k)$ in which the Poisson bracket on $C^{\infty}(S)$ has the following form: $\{p_i, q_j\} = \delta_{ij}, \{p_i, p_j\} = 0 = \{q_i, q_j\}.$

This question was first investigated in 1890 by Sophus Lie under the name of "Function groups". It leads to the following definition.

Definition 2.3. A symplectic realization of a Poisson manifold (M, π) consists of a pair (X, Φ) , where X is a symplectic manifold and $\Phi : X \to M$ is a Poisson map which is a surjective submersion.

Question Given a Poisson manifold, does there exist a symplectic realization. And if so, is it unique ?

- 1. Local existence :
 - (a) Lie (regular Poisson)
 - (b) Weinstein 1983 (using splitting theorem)
- 2. Global existence : Karasev and Weinstein 1987
 - (a) Symplectic realizations exist globally for any Poisson manifold.
 - (b) There exists a distinguished symplectic realization, which admits a compatible local groupoid structure, i.e. a symplectic local groupoid.

Idea Find local symplectic realizations. Patch them together.

Puzzle Why do symplectic and groupoid structures arise in the context of Poisson manifolds in such a striking manner ?

Recall that in the case of a Poisson group (G, π) , the associated infinitesimal object is a Lie bialgebra (\mathfrak{g}, δ) .

Half-way between Poisson groups and symplectic groupoids, there should be a notion of Poisson groupoids. Such a notion could help to better understand symplectic groupoids by imitating Poisson group theory.

Poisson groupoids $\begin{cases} Poisson groups \\ symplectic groupoids \end{cases}$

Theorem 2.1. Let $\Gamma \stackrel{\alpha}{\underset{\beta}{\Longrightarrow}} M$ be a Lie groupoid. Let $\pi \in \mathfrak{X}^2(\Gamma)$ be a Poisson tensor. Then (Γ, π) is a Poisson groupoid if and only if all the following hold.

1. For all $(x, y) \in \Gamma_2$,

$$\pi(xy) = R_Y \pi(x) + L_X \pi(y) - R_Y L_X \pi(w),$$

where $w = \beta(x) = \alpha(y)$ and X, Y are (local) bisections through x and y respectively.

- 2. M is a coisotropic submanifold of Γ
- 3. For all $x \in \Gamma$, $\alpha_*\pi(x)$ and $\beta_*\pi(x)$ only depend on the base points $\alpha(x)$ and $\beta(x)$ respectively.
- 4. For all $\alpha, \beta \in C^{\infty}(M)$, one has $\{\alpha^* f, \beta^* g\} = 0, \forall f, g \in C^{\infty}(M)$.
- 5. The vector field $X_{\beta^* f}$ is left invariant for all $f \in C^{\infty}(M)$.

Remark 2.1. If M is a point, then

- 1. \Leftrightarrow multiplicativity condition,
- 2. $\Leftrightarrow \pi(1) = 0$,

- 3. is automatic,
- 4. is automatic,
- 5. is automatic.

And one gets the characterization of a Poisson group: a Lie group equipped with a multiplicative Poisson tensor.

Question What is the infinitesimal object associated to a Poisson groupoid ?

Corollary 1. Given a Poisson groupoid $(\Gamma \rightrightarrows M, \pi)$, we have

1. for all $X \in \Gamma(A)$, $[\overleftarrow{X}, \pi]$ is still left invariant 2. $\pi_M := \alpha_* \pi \ (or - \beta_* \pi)$ is a Poisson tensor on M

Proof. For all $X \in \Gamma(A)$, take $\xi_t = \exp tX \in U(\Gamma)$ (the space of bisections of Γ), $u_t = (\exp tX)(u)$ and $x \in \Gamma$ with $\beta(x) = u$. In other words, u_t is the flow of X initiated at u. Let K be any bisection through x. One gets

$$\pi(xu_t) = R_{\xi_t}\pi(x) + L_K\pi(u_t) - L_KR_{\xi_t}\pi(u)$$

$$\Rightarrow R_{\xi_t}^{-1}\pi(xu_t) = \pi(x) + L_KR_{\xi_t}^{-1}\pi(u_t) - L_K\pi(u) \in \wedge^2 T_x\Gamma$$

and, differentiating with respect to t at 0,

$$(\mathcal{L}_{\overleftarrow{X}}\pi)(x) = L_K \big((\mathcal{L}_{\overleftarrow{X}}\pi)(u) \big).$$

This implies that $\mathcal{L}_{\overleftarrow{\mathbf{x}}}\pi$ is left invariant.

Now, we can define $\delta: \Gamma(\wedge^i A) \to \Gamma(\wedge^{i+1} A)$. For i = 0,

$$C^{\infty}(M) \to \Gamma(A) : f \mapsto X_{\beta_* f} = [\beta^* f, \pi].$$

For i = 1,

$$\Gamma A \to \Gamma(\wedge^2 A) : X \mapsto \overleftarrow{\delta X} = \left[\overleftarrow{X}, \pi, .\right]$$

The following lemma can be easily verified.

Lemma 2.2. 1. $\delta(fg) = g\delta f + f\delta g, \quad \forall f, g \in C^{\infty}(M)$

2. $\delta(fX) = \delta f \wedge X + f \delta X$, $\forall f \in C^{\infty}(M) \text{ and } X \in \Gamma(A)$ 3. $\delta[X,Y] = [\delta X,Y] + [X,\delta Y]$, $\forall X,Y \in \Gamma(A)$ 4. $\delta^2 = 0$

Definition 2.4. A Lie bialgebroid is a Lie algebroid A equiped with a degree 1 derivation δ of the associative algebra $(\Gamma(\wedge^{\bullet} A), \wedge)$ satisfying conditions 3 and 4 of the previous lemma.

Exercise 2.2. Show that a Lie bialgebroid structure is equivalently characterized as a degree 1 derivation δ of the Gerstenhaber algebra $(\Gamma(\wedge^{\bullet} A), \wedge, [,])$ such that $\delta^2 = 0$. This is also called a *differential Gerstenhaber algebra*.

-	-	-	-
L			
L			

Remark 2.2. Given a Lie bialgebroid (A, δ) , there is a natural Lie algebroid structure on A^* defined as follows.

1. The anchor map $\rho_*: A^* \to TM$ is

$$\langle \rho_* \xi, f \rangle = \langle \xi, \delta f \rangle, \quad \forall f \in C^\infty(M).$$

2. The bracket [,] is given by

$$\langle [\xi,\eta], X \rangle = (\delta X)(\xi,\eta) + (\rho_*\xi) \langle X,\eta \rangle - (\rho_*\eta) \langle X,\xi \rangle, \quad \forall \xi,\eta \in \Gamma(A^*), \ \forall X \in \Gamma(A).$$
(2)

Indeed, equivalently, a Lie bialgebroid is a pair of Lie algebroids (A, A^*) such that

$$\delta[X,Y] = [\delta X,Y] + [X,\delta Y], \quad \forall X,Y \in \Gamma(A),$$

where $\delta : \Gamma(A) \to \Gamma(\wedge^2 A)$ is defined by the above equation (2)

Remark 2.3. If (A, A^*) is a Lie bialgebroid, then (A^*, A) is also a Lie bialgebroid and it is called its dual.

- **Example 2.3.** 1. If π is a **Poisson tensor** on M, then A = TM with $\delta = [\pi, \cdot] : \mathfrak{X}^*(M) \to \mathfrak{X}^{*+1}(M)$ is a Lie bialgebroid. In this case, $A^* = T^*M$ is the canonical cotangent Lie algebroid.
 - 2. The **dual** to the previous one: $A = T^*M$, the cotangent Lie algebroid of a Poisson manifold (M, π) , together with $\delta^* = d_{\text{DR}} : \Omega^*(M) \to \Omega^{*+1}(M)$.
 - 3. Coboundary Lie bialgebroid. Take A a Lie algebroid admitting a $\Lambda \in \Gamma(\wedge^2 A)$ satisfying

$$\mathcal{L}_X[\Lambda,\Lambda] = 0, \forall X \in \Gamma(A).$$

Let $\delta = [\Lambda, \cdot] : \Gamma(\wedge^* A) \to \Gamma(\wedge^{*+1} A)$. Then (A, δ) defines a Lie bialgebroid.

4. **Dynamical** *r*-matrix. Consider the Lie algebroid $A = T\mathfrak{h}^* \oplus \mathfrak{g} \to \eta$ where \mathfrak{h} is an abelian subalgebra of \mathfrak{g} and the Lie algebroid structure on A is the product Lie algebroid. Choose a map $r : \mathfrak{h}^* \to \wedge^2 \mathfrak{g}$ and consider it as a element Λ of $\Gamma(\wedge^2 A)$. Then $\mathcal{L}_X[\Lambda, \Lambda] = 0$ if and only if

$$\sum h_i \wedge \frac{dr}{d\lambda_i} + \frac{1}{2} \left[r, r \right] \in \left(\wedge^3 \mathfrak{g} \right)^{\mathfrak{g}}$$

is a constant function over \mathfrak{h}^* . Here $\{h_1, \ldots, h_k\}$ is a basis of \mathfrak{h} and $(\lambda_1, \ldots, \lambda_k)$ are the dual coordinates on \mathfrak{h}^* .

In particular, if \mathfrak{g} is a simple Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra, one can take

$$r(\lambda) = \sum_{\alpha \in \Delta^+} \frac{\lambda_\alpha}{(\alpha, \lambda)} e_\alpha \wedge f_\alpha$$

or

$$r(\lambda) = \sum_{\alpha \in \Delta^+} \lambda_\alpha \coth(\alpha, \lambda) e_\alpha \wedge f_\alpha,$$

where $(e_{\alpha}, f_{\alpha}, h_i)$ is a Chevalley basis.