Summer School and Conference on Poisson Geometry

(4-22 July 2005)

Poisson-Lie groups and Poisson groupoids

Poisson-Lie groups and Poisson groupoids

Ping Xu
Pennsylvania State University
University Park, PA 16802
ping@math.psu.edu

ICTP Trieste, July 2005

1 Poisson groups and Lie bialgebras

1.1 From Poisson groups to Lie bialgebras

Definition 1.1. A Poisson group is a Lie group endowed with a Poisson structure $\pi \in \mathfrak{X}^{2}(G)$ such that the multiplication $m: G \times G \rightarrow G$ is a Poisson map, where $G \times G$ is equipped with the product Poisson structure.

Example 1.1. The reader may have in mind the following two trivial examples.

1. For any Lie algebra \mathfrak{g}, its dual $\left(\mathfrak{g}^{*},+\right)$ is a Poisson group where (i) the Lie group structure is given by the addition (ii) the Poisson structure is the linear Poisson structure, i.e., Lie-Poisson structure.
2. Any Lie group G is a Poisson group with respect to the trivial Poisson bracket.

To impose that $m: G \times G \rightarrow G$ is a Poisson map is equivalent to impose any of the following two conditions

1. $\forall g, h \in G, m_{*}\left(\pi_{g}+\pi_{h}\right)=\pi_{g h}$ or,
2. $\forall g, h \in G,\left(R_{h}\right)_{*} \pi_{g}+\left(L_{g}\right)_{*} \pi_{h}=\pi_{g h}$.

This leads to the following definition:
Definition 1.2. A bivector field π on G is said to be multiplicative if

$$
\begin{equation*}
\left(R_{h}\right)_{*} \pi_{g}+\left(L_{g}\right)_{*} \pi_{h}=\pi_{g h}, \quad \forall g, h \in G . \tag{1}
\end{equation*}
$$

In particular, $\pi \in \mathfrak{X}^{2}(G)$ is a Poisson group if and only if i) the identity $[\pi, \pi]=0$ holds and ii) π is multiplicative.

Remark 1.1. Any multiplicative bivector π vanishes in $g=1$, where 1 is the unit element of the group G. This can be seen from Eq. (1) by letting $g=h=1$.

It is sometimes convenient to consider $\widetilde{\pi}(g)=\left(R_{g}\right)_{*}^{-1} \pi_{g}$, which is, by definition, a smooth map from G to $\wedge^{2} \mathfrak{g}$ (where, implicitely, we have identified the Lie algebra \mathfrak{g} with the tangent space in $g=1$ of the Lie group G). When written with the help of $\widetilde{\pi}$, the condition $\left(R_{h}\right)_{*} \pi_{g}+\left(L_{g}\right)_{*} \pi_{h}=\pi_{g h}$ reads

$$
\begin{array}{rlr}
\left(R_{g h}\right)_{*}^{-1}\left[\left(R_{h}\right)_{*} \pi_{g}+\left(L_{g}\right)_{*} \pi_{h}\right] & =\left(R_{g h}\right)_{*}^{-1} \pi_{g h} \\
\widetilde{\pi}(g)+A d_{g} \widetilde{\pi}(h) & \widetilde{\pi}(g h)
\end{array}
$$

I.e., $\widetilde{\pi}: G \rightarrow \wedge^{2} \mathfrak{g}$ is a Lie group 1 -cocycle, where G acts on $\wedge^{2} \mathfrak{g}$ by adjoint action.

Now, differentiating a Lie group 1-cocycle at the identity, one gets a Lie algebra 1cocycle $\mathfrak{g} \rightarrow \wedge^{2} \mathfrak{g}$. For example, the 1-cocycle $\delta: \mathfrak{g} \rightarrow \wedge^{2} \mathfrak{g}$ associated to the Poisson structure $\widetilde{\pi}$ is given by $\forall X \in \mathfrak{g}$

$$
\begin{array}{rll}
\delta(X) & = & \left.\frac{d}{d t}\right|_{t=0} \widetilde{\pi}(\exp (t X)) \\
& =\frac{d}{\left.d t\right|_{t=0}}\left(R_{\exp (-t X)}\right)_{*} \pi_{\exp (t X)} \\
& = & \left(\phi_{-t}\right)_{*} \pi_{\phi_{t}(1)} \\
& =\quad\left(L_{\overleftarrow{X}} \pi\right)_{\mid g=1}
\end{array}
$$

where \overleftarrow{X} is the left invariant vector field on G corresponding to X and ϕ_{t} is its flow. We have therefore determined $L_{\bar{X}} \pi$ at $g=1$, we now try to compute it at other points.
For all $g \in G$, since π is multiplicative, we have $\forall X \in \mathfrak{g}$,

$$
\begin{array}{clc}
\pi_{g \exp (t X)} & =\left(R_{\exp (-t X)}\right)_{*} \pi_{g}+\left(L_{g}\right)_{*} \pi_{\exp (t X)} \\
\left(R_{\exp (-t X)}\right)_{*} \pi_{g \exp (t X)} & =\pi_{g}+\left(R_{\exp (-t X)}\right)_{*}\left(L_{g}\right)_{*} \pi_{\exp (t X)} \\
\left(\phi_{-t}\right)_{*} \pi_{\phi_{t}(g)} & =c \pi_{g}+L_{g}\left(\phi_{-t}\right)_{*} \pi_{\phi_{t}(1)}
\end{array}
$$

Taking the derivative of the previous identity at $t=0$, one obtains:

$$
\left(L_{\overleftarrow{X}} \pi\right)_{\mid g}=\left(L_{g}\right)_{*} L_{\overleftarrow{X}} \pi_{\mid 1}=\left(L_{g}\right)_{*} \delta(X)
$$

which implies that $L_{\overleftarrow{X}} \pi$ is left invariant. For all $Y \in \wedge^{k} \mathfrak{g}$, by \overleftarrow{Y} (resp. \vec{Y}) the left (resp. right) invariant k-vector field on G equal to Y at $g=1$. Then we obtain the following formula:

$$
L_{\overleftarrow{X}} \pi=\overleftarrow{\delta(X)}
$$

and, for similar reasons

$$
L_{\vec{X}} \pi=\overrightarrow{\delta(X)}
$$

We can now extend $\delta: \mathfrak{g} \rightarrow \wedge^{2} \mathfrak{g}$ to a derivation of degree +1 of the graded commutative associative algebra ($\wedge^{*} \mathfrak{g}$ that we denote by the same symbol $\delta: \wedge^{\bullet} \mathfrak{g} \rightarrow \wedge^{\bullet+1} \mathfrak{g}$.

Lemma 1.1. 1. The derivation δ has square zero.
2. $\delta[X, Y]=[\delta X, Y]+[X, \delta Y], \quad \forall X, Y \in \mathfrak{g}$

Proof. (1) For all $X \in \mathfrak{g}$,

$$
\begin{aligned}
{[\overleftarrow{X},[\pi, \pi]] } & =2[[\overleftarrow{X}, \pi], \pi] \\
& =2[\overleftarrow{\delta(X)}, \pi] \\
& =2 \overleftarrow{\delta^{2}(X)}
\end{aligned}
$$

But $[\pi, \pi]=0$, hence $\delta^{2}(X)=0$.
(2) follows from the graded Jocobi identity:

$$
[\overleftarrow{[X, Y]}, \pi]=[[\overleftarrow{X}, \overleftarrow{Y}], \pi]=[[\overleftarrow{X}, \pi], \overleftarrow{Y}]+[\overleftarrow{X},[\pi, \overleftarrow{Y}]]
$$

Definition 1.3. A Lie bialgebra is a Lie algebra \mathfrak{g} equiped with a degree 1-derivation δ of the graded commutative associative algebra $\wedge^{\bullet} \mathfrak{g}$ such that

1. $\delta([X, Y])=[\delta(X), Y]+[X, \delta(Y)]$ and
2. $\delta^{2}=0$.

Remark 1.2. Recall that a Gerstenhaber algebra $A=\oplus_{i \in \mathbb{N}} A^{i}$ is a graded commutative algebra s.t. $A=\oplus_{i \in \mathbb{N}} A^{(i)}$ where $A^{(i)}=A^{i+1}$ is a graded Lie algebra with the compatibility condition

$$
[a, b c]=[a, b] c+(-1)^{(|a|+1)|b|} b[a, c]
$$

for any $a \in A^{|a|}, b \in A^{|b|}$ and $c \in A^{|c|}$.
A differential Gerstenhaber algebra is a Gerstenhaber algebra equipped with a degree 1 derivation of square zero.
The Lie bracket on \mathfrak{g} can be extented to a graded Lie bracket on $\wedge^{\bullet} \mathfrak{g}$ so that $\left(\wedge^{\bullet} \mathfrak{g}, \wedge,[\cdot, \cdot]\right)$ is a Gerstenhaber algebra. Using this terminology, a Lie bialgebra is nothing else than a differential Gerstenhaber algebra $\left(\wedge_{\bullet} \mathfrak{g}, \wedge,[\cdot, \cdot], \delta\right)$.

Given a Lie bialgebra (\mathfrak{g}, δ), let us consider the dual $\delta^{*}: \wedge^{2} \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ of the derivation δ.

Let $[\xi, \eta]_{\mathfrak{g}^{*}}=\delta^{*}(\xi \wedge \eta)$ for all $\xi, \eta \in \mathfrak{g}^{*}$. The bilinear map $(\xi, \eta) \rightarrow[\xi, \eta]_{\mathfrak{g}^{*}}$ is skewsymmetric and

$$
\delta^{2}=0 \quad \Leftrightarrow \quad[\cdot, \cdot]_{\mathfrak{g}^{*}} \text { satisfies the Jacobi identity }
$$

Therefore, the dual \mathfrak{g}^{*} of a Lie bialgebra (\mathfrak{g}, δ) is a Lie algebra again (which justifies the name). Conversely, a Lie bialgebras can be described again by:

Proposition 1.2. A Lie bialgebra is equivalent to a pair of Lie algebras ($\mathfrak{g}, \mathfrak{g}^{*}$) compatible in the sense that the following relation is satisfied: the coadjoint action of \mathfrak{g} on \mathfrak{g}^{*} is a derivation of the bracket $[\cdot, \cdot]_{\mathfrak{g}^{*}}$, i.e.,

$$
a d_{X}^{*}[\alpha, \beta]_{\mathfrak{g}^{*}}=\left[a d_{X}^{*} \alpha, \beta\right]_{\mathfrak{g}^{*}}+\left[\alpha, a d_{X}^{*} \beta\right]_{\mathfrak{g}^{*}} \text { for all } X \in \mathfrak{g}, \alpha, \beta \in \mathfrak{g}^{*} .
$$

Remark 1.3. Note that Lie bialgebras are in duality: namely ($\mathfrak{g}, \mathfrak{g}^{*}$) is a Lie bialgebra if and only if $\left(\mathfrak{g}^{*}, \mathfrak{g}\right)$ is a Lie bialgebra. This picture can be seen more naturally using Manin triples, which will be discussed in the next lecture.

$1.2 r$-matrices

We now turn our attention to a particular class of Lie bialgebras, i.e., those coming from r-matrices.

We start from a Lie algebra \mathfrak{g}. Assume that we are given an element $r \in \wedge^{2} \mathfrak{g}$. Then define δ by, for all $X \in \wedge^{\bullet} \mathfrak{g}, \delta(X)=[r, X]$. As can easily be checked, δ is a derivation of $\wedge^{\bullet} \mathfrak{g}$. Note that, in terms of (Chevalley-Eilenberg) cohomology, δ is the coboundary of r.

The condition $\delta^{2}(X)=0$ is equivalent to the relation $[X,[r, r]]=0$, which itself holds if and only if $[r, r]$ is $a d$-invariant. Conversely, any $r \in \wedge^{2} \mathfrak{g}$ such that $[r, r]$ is $a d$-invariant defines a Lie bialgebra. Such an r is called an r-matrix. If moreover $[r, r]=0$, then this Lie bialgebra is called triangular.

Here are two well-known examples of r-matrices.
Example 1.2. 1. Consider \mathfrak{g} a semi-simple Lie algebra of rank k over \mathbb{C} with Cartan sub-algebra \mathfrak{h}. Let $\left\{e_{\alpha}, f_{\alpha}, \alpha \in \Delta_{+}\right\} \cup\left\{h_{i}, i=1, \ldots, k\right\}$ be a Chevalley basis. Then $r=\sum_{\alpha \in \Delta_{+}} \lambda_{\alpha} e_{\alpha} \wedge f_{\alpha}$ with $\lambda_{\alpha}=\frac{1}{\left(e_{\alpha}, f_{\alpha}\right)}$ is an r-matrix.
2. Consider now \mathfrak{k} a compact semi-simple Lie algebra over \mathbb{R}. Let $\left\{e_{\alpha}, f_{\alpha}, \alpha \in\right.$ $\left.\Delta_{+}\right\} \cup\left\{h_{i}, i=1 \ldots, k\right\}$ be a Chevalley basis (over \mathbb{C}) of the complexified Lie algebra $\mathfrak{g}=\mathfrak{k}^{\mathbb{C}}$, that we assume to be constructed such that the family $\left\{X_{\alpha}, Y_{\alpha}, \alpha \in \Delta_{+}\right\} \cup\left\{t_{i}, i=1, \ldots, k\right\}$ is a basis of \mathfrak{k} (over \mathbb{R}) where

$$
\left\{\begin{array}{clc}
X_{\alpha}=\sqrt{e_{\alpha}}-f_{\alpha} & \text { for all } \alpha \in \Delta_{+} \\
Y_{\alpha}=\sqrt{-1}\left(e_{\alpha}+f_{\alpha}\right) & \text { for all } \alpha \in \Delta_{+} \\
t_{i}=\sqrt{-1} h_{i} & \text { for all } i \in\{1, \ldots, k\}
\end{array}\right.
$$

Let $\hat{r}=\sqrt{-1} r=\sqrt{-1} \sum_{\alpha \in \Delta_{+}} \lambda_{\alpha} e_{\alpha} \wedge f_{\alpha}$. Then \hat{r} is, according to the first example above, an r-matrix of $\mathfrak{g}=\mathfrak{k}^{\mathbb{C}}$. However, by a direct comptation, one checks that

$$
\hat{r}=\frac{1}{2} \sum_{\alpha \in \Delta_{+}} \lambda_{\alpha} X_{\alpha} \wedge Y_{\alpha}
$$

so that \hat{r} is indeed an element of $\wedge^{2} \mathfrak{k}$, and therefore is an r-matrix on \mathfrak{k}. Hence, it defines a Lie bialgebra structure on the real Lie algebra \mathfrak{k}.

1.3 Lie bialgebras and simply-connected Lie groups

We have already explained how to get a Lie bialgebra from a Poisson group. The inverse is true as well when the Lie group is connected and simply-connected.

Theorem 1.3 (Drinfeld). Assume that G is a connected and simply-connected Lie group. Then there exists a one-to-one correspondence

$$
\text { Poisson groups }(G, \pi) \quad \leftrightarrow \quad \text { Lie bialgebra }(\mathfrak{g}, \delta) \text {. }
$$

Example 1.3. In particular, for a Lie bialgebra coming from an r-matrix r, the corresponding Poisson structure on G is the bivector field $\overleftarrow{r}-\vec{r}$.

Applying the theorem above to the previous two examples, we are lead to

Proposition 1.4. 1. Any complex semi-simple Lie group admits a natural (complex) Poisson group structure.
2. Soibelmann, Lu-Weinstein Any compact semi-simple Lie group admits a natural Poisson group structure, called the Bruhat-Poisson structure.

Remark 1.4. Poisson groups come in pairs in the following sense. Given a Poisson group (G, π), let $\left(\mathfrak{g}, \mathfrak{g}^{*}\right)$ be its Lie bialgebra, then we know $\left(\mathfrak{g}^{*}, \mathfrak{g}\right)$ is also a Lie bialgebra which gives rise to a Poisson group denoted $\left(G^{*}, \pi^{\prime}\right)$.

Example 1.4. On the Lie group $G=S U(2)$, define complex coordinates α, β by

$$
g=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

Note that these coordinates are not "free" since $|\alpha|^{2}+|\beta|^{2}=1$. The Bruhat-Poisson structure is given by

$$
\begin{aligned}
& \{\alpha, \bar{\alpha}\}=2 \sqrt{-1} \beta \bar{\beta} \\
& \{\alpha, \beta\}=-\sqrt{-1} \alpha \beta \\
& \{\alpha, \bar{\beta}\}=-\sqrt{-1} \alpha \bar{\beta} \\
& \{\beta, \bar{\beta}\}=0
\end{aligned}
$$

Example 1.5. Below are two examples of duals of Poisson groups.

1. For the Poisson group $G=S U(2)$, equipped with the Bruhat-Poisson structure, the dual group G^{*} is $S B(2)$, i.e. the subgroup of two-by-two matrices of the form

$$
G^{*}=S B(2) \simeq\left\{\left.\left(\begin{array}{cc}
a & b+\sqrt{-1} c \\
0 & \frac{1}{a}
\end{array}\right) \right\rvert\, b, c \in \mathbb{R}, a \in \mathbb{R}^{+}\right\}
$$

Using these coordinates, the Poisson structure on G^{*} is given explicitly by

$$
\begin{aligned}
& \{b, c\}=a^{2}-\frac{1}{a^{2}} \\
& \{a, b\}=a b \\
& \{a, c\}=a c
\end{aligned}
$$

2. For the Poisson group $G=S L_{\mathbb{C}}(n)$, equipped with the Poisson bracket constructed in Example 1.2, the dual group is

$$
G^{*}=B_{+} \star B_{-} \simeq\left\{\begin{array}{l|l}
(A, B) & \begin{array}{c}
A \text { upper triangular with determinant 1, } \\
B \text { lower triangular with determinant 1, } \\
\text { s.t. } \operatorname{diag}(A) \cdot \operatorname{diag}(B)=1
\end{array}
\end{array}\right\}
$$

1.4 Poisson group actions

Definition 1.4. Let G be a Poisson group. Assume that G acts on a Poisson manifold X. The action is said to be a Poisson action if the action map

$$
\begin{array}{ccc}
G \times X & \rightarrow X \\
(g, x) & \rightarrow g \cdot x
\end{array}
$$

is a Poisson map, where $G \times X$ is equipped with the product Poisson structure.

Warning Note that in general, this definition does not imply that, for a fixed g in G, the action $x \rightarrow g \cdot x$ is a Poisson automorphism of X. The reader should not confuse Poisson actions with actions preserving the Poisson structure! Note, however, that when the Poisson structure on the Lie group G is the trivial one, then a Poisson action is an action of G on X which preserves the Poisson structure.

Example 1.6. Any Lie group G acts on itself by left translation. If G is a Poisson group then this action is a Poisson action.

Proposition 1.5 (Lu-Weinstein). Let G be a Poisson group with Lie bialgebra (\mathfrak{g}, δ). Assume that G acts on a manifold X and let $\rho: \mathfrak{g} \rightarrow \mathfrak{X}^{1}(X)$ be the infinitesimal action. The action of G on X is a Poisson action if and only if the following diagram commutes

In terms of Gerstenhaber algebras, the commutativity of the previous diagram has a clear meaning: it simply means that $\rho: \wedge^{\bullet} \mathfrak{g} \rightarrow \mathfrak{X}^{\bullet}(X)$ is a morphism of differential Gerstenhaber algebra.

Example 1.7. For the dual $S L_{\mathbb{C}}(3)^{*}=B_{+} \star B_{-}$of $G=S L_{\mathbb{C}}(3)$. Consider the Poisson manifold

$$
X=\left\{\left.\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{C}\right\}
$$

equipped with the Poisson bracket

$$
\begin{aligned}
\{x, y\} & =x y-2 z \\
\{y, z\} & =y z-2 x \\
\{z, x\} & =z x-2 y
\end{aligned}
$$

The Lie group $G^{*}=B_{+} \star B_{-}$acts on X by

$$
(A, B) \cdot U \rightarrow A U B^{T}
$$

with $(A, B) \in B_{+} \star B_{-} \simeq G^{*}$ and $U \in X$. This action turns to be a Poisson action.

2 Poisson groupoids and Lie bialgebroids

Idea Let $\Gamma \rightrightarrows M$ be a Lie groupoid. A Poisson groupoid structure on Γ should be a multiplicative Poisson structure on Γ.

Recall In the Poisson group case,

$$
\begin{array}{ll}
& \pi \text { is multiplicative } \\
\Leftrightarrow & m: G \times G \rightarrow G \text { is a Poisson map } \\
\Leftrightarrow & \{(x, y, x y) \mid x, y \in G\} \subset G \times G \times \bar{G} \text { is coisotropic }
\end{array}
$$

where \bar{G} denotes $(G, p i)$. This motivates the following definition.

Definition 2.1. A groupoid Γ with a Poisson structure π is said to be a Poisson groupoid if the graph of the groupoid multiplication

$$
\Lambda=\left\{(x, y, x y) \mid(x, y) \in \Gamma_{2} \text { composable pair }\right\} \subset \Gamma \times \Gamma \times \bar{\Gamma}
$$

is coisotropic. Here $\bar{\Gamma}$ means that Γ is equipped with the opposite Poisson structure $-\pi$.

Example 2.1. 1. If P is a Poisson manifold, then $P \times \bar{P} \rightrightarrows P$ is a Poisson groupoid.
2. Let A be the Lie algebroid of a Lie groupoid Γ and $\Lambda \in \Gamma\left(\wedge^{2} A\right)$ be an element satisfying $\mathcal{L}_{X}[\Lambda, \Lambda]=0, \forall X \in \Gamma(A)$. Then $\pi=\overleftarrow{\Lambda}-\vec{\Lambda}$ defines a Poisson groupoid structure on Γ.
Definition 2.2. A symplectic groupoid is a Poisson groupoid ($P \rightrightarrows M, \pi$) such that π is non-degenerate. In other words, $\Lambda \subset \Gamma \times \Gamma \times \bar{\Gamma}$ is a Lagrangian submanifold.

Example 2.2. 1. $T^{*} M \rightrightarrows M$ with the canonical cotangent symplectic structure is a symplectic groupoid
2. If G is a Lie group, then $T^{*} G \rightrightarrows \mathfrak{g}^{*}$ is a symplectic groupoid. Here the symplectic structure on $T^{*} G$ is the canonical cotangent symplectic structure. The groupoid structure is as follows. Right translations give an isomorphism between $T^{*} G$ and the transformation groupoid $G \times \mathfrak{g}^{*}$ where G acts on \mathfrak{g}^{*} by coadjoint action.
3. In general, if $\Gamma \rightrightarrows M$ is a Lie groupoid with Lie algebroid A, then $T^{*} \Gamma \rightrightarrows A^{*}$ is a symplectic groupoid. Let $\Lambda \subset \Gamma \times \Gamma \times \Gamma$ denote the graph of the multiplication and $N^{*} \Lambda \subset T^{*} \Gamma \times T^{*} \Gamma \times T^{*} \Gamma$ its conormal space.
Exercise 2.1. Show that $\overline{N^{*} \Lambda}=\left\{(\xi, \eta, \delta) \mid(\xi, \eta,-\delta) \in N^{*} \Lambda\right\}$ is the graph of a groupoid multiplication on $T^{*} \Gamma$ with corresponding unit space isomorphic to $A^{*} \simeq N^{*} M$. This defines a groupoid structure on $T^{*} \Gamma \rightrightarrows A^{*}$.

Question Why symplectic groupoids?
Symplectic groupoids are used in

1. quantization
2. symplectic realization

Given a Poisson manifold M, can one embed the Poisson algebra $C^{\infty}(M)$ into a Poisson subalgebra of $C^{\infty}(S)$ where S is some symplectic manifold?

$$
C^{\infty}(M) \hookrightarrow C^{\infty}(S)
$$

Note that locally, there exists local coordinates $\left(p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}\right)$ in which the Poisson bracket on $C^{\infty}(S)$ has the following form: $\left\{p_{i}, q_{j}\right\}=\delta_{i j},\left\{p_{i}, p_{j}\right\}=0=$ $\left\{q_{i}, q_{j}\right\}$.
This question was first investigated in 1890 by Sophus Lie under the name of "Function groups". It leads to the following definition.

Definition 2.3. A symplectic realization of a Poisson manifold (M, π) consists of a pair (X, Φ), where X is a symplectic manifold and $\Phi: X \rightarrow M$ is a Poisson map which is a surjective submersion.

Question Given a Poisson manifold, does there exist a symplectic realization. And if so, is it unique?

1. Local existence :
(a) Lie (regular Poisson)
(b) Weinstein 1983 (using splitting theorem)
2. Global existence : Karasev and Weinstein 1987
(a) Symplectic realizations exist globally for any Poisson manifold.
(b) There exists a distinguished symplectic realization, which admits a compatible local groupoid structure, i.e. a symplectic local groupoid.

Idea Find local symplectic realizations. Patch them together.

Puzzle Why do symplectic and groupoid structures arise in the context of Poisson manifolds in such a striking manner ?
Recall that in the case of a Poisson group (G, π), the associated infinitesimal object is a Lie bialgebra (\mathfrak{g}, δ).
Half-way between Poisson groups and symplectic groupoids, there should be a notion of Poisson groupoids. Such a notion could help to better understand symplectic groupoids by imitating Poisson group theory.

$$
\text { Poisson groupoids }\left\{\begin{array}{l}
\text { Poisson groups } \\
\text { symplectic groupoids }
\end{array}\right.
$$

Theorem 2.1. Let $\Gamma \underset{\beta}{\underset{\rightrightarrows}{\rightrightarrows}} M$ be a Lie groupoid. Let $\pi \in \mathfrak{X}^{2}(\Gamma)$ be a Poisson tensor. Then (Γ, π) is a Poisson groupoid if and only if all the following hold.

1. For all $(x, y) \in \Gamma_{2}$,

$$
\pi(x y)=R_{Y} \pi(x)+L_{X} \pi(y)-R_{Y} L_{X} \pi(w)
$$

where $w=\beta(x)=\alpha(y)$ and X, Y are (local) bisections through x and y respectively.
2. M is a coisotropic submanifold of Γ
3. For all $x \in \Gamma, \alpha_{*} \pi(x)$ and $\beta_{*} \pi(x)$ only depend on the base points $\alpha(x)$ and $\beta(x)$ respectively.
4. For all $\alpha, \beta \in C^{\infty}(M)$, one has $\left\{\alpha^{*} f, \beta^{*} g\right\}=0, \forall f, g \in C^{\infty}(M)$.
5. The vector field $X_{\beta^{*} f}$ is left invariant for all $f \in C^{\infty}(M)$.

Remark 2.1. If M is a point, then

1. \Leftrightarrow multiplicativity condition,
$2 . \Leftrightarrow \pi(1)=0$,
2. is automatic,
3. is automatic,
4. is automatic.

And one gets the characterization of a Poisson group: a Lie group equipped with a multiplicative Poisson tensor.

Question What is the infinitesimal object associated to a Poisson groupoid?
Corollary 1. Given a Poisson groupoid $(\Gamma \rightrightarrows M, \pi)$, we have

1. for all $X \in \Gamma(A),[\overleftarrow{X}, \pi]$ is still left invariant
2. $\pi_{M}:=\alpha_{*} \pi\left(\right.$ or $\left.-\beta_{*} \pi\right)$ is a Poisson tensor on M

Proof. For all $X \in \Gamma(A)$, take $\xi_{t}=\exp t X \in U(\Gamma)$ (the space of bisections of Γ), $u_{t}=(\exp t X)(u)$ and $x \in \Gamma$ with $\beta(x)=u$. In other words, u_{t} is the flow of \overleftarrow{X} initiated at u. Let K be any bisection through x. One gets

$$
\begin{aligned}
& \pi\left(x u_{t}\right)=R_{\xi_{t}} \pi(x)+L_{K} \pi\left(u_{t}\right)-L_{K} R_{\xi_{t}} \pi(u) \\
\Rightarrow & R_{\xi_{t}-1} \pi\left(x u_{t}\right)=\pi(x)+L_{K} R_{\xi_{t}{ }^{-1}} \pi\left(u_{t}\right)-L_{K} \pi(u) \in \wedge^{2} T_{x} \Gamma
\end{aligned}
$$

and, differentiating with respect to t at 0 ,

$$
\left(\mathcal{L}_{\overleftarrow{X}} \pi\right)(x)=L_{K}\left(\left(\mathcal{L}_{\overleftarrow{X}} \pi\right)(u)\right) .
$$

This implies that $\mathcal{L}_{\overleftarrow{X}} \pi$ is left invariant.
Now, we can define $\delta: \Gamma\left(\wedge^{i} A\right) \rightarrow \Gamma\left(\wedge^{i+1} A\right)$. For $i=0$,

$$
C^{\infty}(M) \rightarrow \Gamma(A): f \mapsto X_{\beta_{*} f}=\left[\beta^{*} f, \pi\right] .
$$

For $i=1$,

$$
\Gamma A \rightarrow \Gamma\left(\wedge^{2} A\right): X \mapsto \overleftarrow{\delta X}=[\overleftarrow{X}, \pi, .]
$$

The following lemma can be easily verified.
Lemma 2.2. 1. $\delta(f g)=g \delta f+f \delta g, \quad \forall f, g \in C^{\infty}(M)$
2. $\delta(f X)=\delta f \wedge X+f \delta X, \quad \forall f \in C^{\infty}(M)$ and $X \in \Gamma(A)$
3. $\delta[X, Y]=[\delta X, Y]+[X, \delta Y], \quad \forall X, Y \in \Gamma(A)$
4. $\delta^{2}=0$

Definition 2.4. A Lie bialgebroid is a Lie algebroid A equiped with a degree 1 derivation δ of the associative algebra $\left(\Gamma\left(\wedge^{\bullet} A\right), \wedge\right)$ satisfying conditions 3 and 4 of the previous lemma.

Exercise 2.2. Show that a Lie bialgebroid structure is equivalently characterized as a degree 1 derivation δ of the Gerstenhaber algebra $\left(\Gamma\left(\wedge^{\bullet} A\right), \wedge,[],\right)$ such that $\delta^{2}=0$. This is also called a differential Gerstenhaber algebra.

Remark 2.2. Given a Lie bialgebroid (A, δ), there is a natural Lie algebroid structure on A^{*} defined as follows.

1. The anchor map $\rho_{*}: A^{*} \rightarrow T M$ is

$$
\left\langle\rho_{*} \xi, f\right\rangle=\langle\xi, \delta f\rangle, \quad \forall f \in C^{\infty}(M) .
$$

2. The bracket [,] is given by

$$
\begin{equation*}
\langle[\xi, \eta], X\rangle=(\delta X)(\xi, \eta)+\left(\rho_{*} \xi\right)\langle X, \eta\rangle-\left(\rho_{*} \eta\right)\langle X, \xi\rangle, \quad \forall \xi, \eta \in \Gamma\left(A^{*}\right), \forall X \in \Gamma(A) \tag{2}
\end{equation*}
$$

Indeed, equivalently, a Lie bialgebroid is a pair of Lie algebroids $\left(A, A^{*}\right)$ such that

$$
\delta[X, Y]=[\delta X, Y]+[X, \delta Y], \quad \forall X, Y \in \Gamma(A),
$$

where $\delta: \Gamma(A) \rightarrow \Gamma\left(\wedge^{2} A\right)$ is defined by the above equation (2)
Remark 2.3. If $\left(A, A^{*}\right)$ is a Lie bialgebroid, then $\left(A^{*}, A\right)$ is also a Lie bialgebroid and it is called its dual.

Example 2.3. 1. If π is a Poisson tensor on M, then $A=T M$ with $\delta=$ $[\pi, \cdot]: \mathfrak{X}^{*}(M) \rightarrow \mathfrak{X}^{*+1}(M)$ is a Lie bialgebroid. In this case, $A^{*}=T^{*} M$ is the canonical cotangent Lie algebroid.
2. The dual to the previous one: $A=T^{*} M$, the cotangent Lie algebroid of a Poisson manifold (M, π), together with $\delta^{*}=d_{\mathrm{DR}}: \Omega^{*}(M) \rightarrow \Omega^{*+1}(M)$.
3. Coboundary Lie bialgebroid. Take A a Lie algebroid admitting a $\Lambda \in$ $\Gamma\left(\wedge^{2} A\right)$ satisfying

$$
\mathcal{L}_{X}[\Lambda, \Lambda]=0, \forall X \in \Gamma(A) .
$$

Let $\delta=[\Lambda, \cdot]: \Gamma\left(\wedge^{*} A\right) \rightarrow \Gamma\left(\wedge^{*+1} A\right)$. Then (A, δ) defines a Lie bialgebroid.
4. Dynamical r-matrix. Consider the Lie algebroid $A=T \mathfrak{h}^{*} \oplus \mathfrak{g} \rightarrow \eta$ where \mathfrak{h} is an abelian subalgebra of \mathfrak{g} and the Lie algebroid structure on A is the product Lie algebroid. Choose a map $r: \mathfrak{h}^{*} \rightarrow \wedge^{2} \mathfrak{g}$ and consider it as a element Λ of $\Gamma\left(\wedge^{2} A\right)$. Then $\mathcal{L}_{X}[\Lambda, \Lambda]=0$ if and only if

$$
\sum h_{i} \wedge \frac{d r}{d \lambda_{i}}+\frac{1}{2}[r, r] \in\left(\wedge^{3} \mathfrak{g}\right)^{\mathfrak{g}}
$$

is a constant function over \mathfrak{h}^{*}. Here $\left\{h_{1}, \ldots, h_{k}\right\}$ is a basis of \mathfrak{h} and $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ are the dual coordinates on \mathfrak{h}^{*}.
In particular, if \mathfrak{g} is a simple Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra, one can take

$$
r(\lambda)=\sum_{\alpha \in \Delta^{+}} \frac{\lambda_{\alpha}}{(\alpha, \lambda)} e_{\alpha} \wedge f_{\alpha}
$$

or

$$
r(\lambda)=\sum_{\alpha \in \Delta^{+}} \lambda_{\alpha} \operatorname{coth}(\alpha, \lambda) e_{\alpha} \wedge f_{\alpha},
$$

where $\left(e_{\alpha}, f_{\alpha}, h_{i}\right)$ is a Chevalley basis.

