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1 Poisson groups and Lie bialgebras

1.1 From Poisson groups to Lie bialgebras

De�nition 1.1. A Poisson group is a Lie group endowed with a Poisson structure
π ∈ X2(G) such that the multiplication m : G × G → G is a Poisson map, where
G×G is equipped with the product Poisson structure.

Example 1.1. The reader may have in mind the following two trivial examples.

1. For any Lie algebra g, its dual (g∗, +) is a Poisson group where (i) the Lie
group structure is given by the addition (ii) the Poisson structure is the linear
Poisson structure, i.e., Lie-Poisson structure.

2. Any Lie group G is a Poisson group with respect to the trivial Poisson bracket.

To impose that m : G×G→ G is a Poisson map is equivalent to impose any of the
following two conditions

1. ∀g, h ∈ G, m∗(πg + πh) = πgh or,

2. ∀g, h ∈ G, (Rh)∗πg + (Lg)∗πh = πgh.

This leads to the following de�nition:

De�nition 1.2. A bivector �eld π on G is said to be multiplicative if

(Rh)∗πg + (Lg)∗πh = πgh, ∀g, h ∈ G. (1)

In particular, π ∈ X2(G) is a Poisson group if and only if i) the identity [π, π] = 0
holds and ii) π is multiplicative.

Remark 1.1. Any multiplicative bivector π vanishes in g = 1, where 1 is the unit
element of the group G. This can be seen from Eq. (1) by letting g = h = 1.
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It is sometimes convenient to consider π̃(g) = (Rg)
−1
∗ πg, which is, by de�nition, a

smooth map from G to ∧2g (where, implicitely, we have identi�ed the Lie algebra g

with the tangent space in g = 1 of the Lie group G). When written with the help of
π̃, the condition (Rh)∗πg + (Lg)∗πh = πgh reads

(Rgh)
−1
∗ [(Rh)∗πg + (Lg)∗πh] = (Rgh)

−1
∗ πgh

π̃(g) + Adgπ̃(h) = π̃(gh)

I.e., π̃ : G→ ∧2g is a Lie group 1-cocycle, where G acts on ∧2g by adjoint action.

Now, di�erentiating a Lie group 1-cocycle at the identity, one gets a Lie algebra 1-
cocycle g→ ∧2g. For example, the 1-cocycle δ : g→ ∧2g associated to the Poisson
structure π̃ is given by ∀X ∈ g

δ(X) = d
dt |t=0

π̃
(
exp(tX)

)
= d

dt |t=0
(Rexp(−tX))∗πexp(tX)

= (φ−t)∗πφt(1)

= (L←−
X

π)|g=1

where
←−
X is the left invariant vector �eld on G corresponding to X and φt is its �ow.

We have therefore determined L←−
X

π at g = 1, we now try to compute it at other
points.

For all g ∈ G, since π is multiplicative, we have ∀X ∈ g,

πg exp(tX) = (Rexp(−tX))∗πg + (Lg)∗πexp(tX)

(Rexp(−tX))∗πg exp(tX) = πg + (Rexp(−tX))∗(Lg)∗πexp(tX)

(φ−t)∗πφt(g) = πg + Lg(φ−t)∗πφt(1)

Taking the derivative of the previous identity at t = 0, one obtains:

(L←−
X

π)|g = (Lg)∗L←−Xπ|1 = (Lg)∗δ(X)

which implies that L←−
X

π is left invariant. For all Y ∈ ∧kg, by
←−
Y (resp.

−→
Y ) the left

(resp. right) invariant k-vector �eld on G equal to Y at g = 1. Then we obtain the
following formula:

L←−
X

π =
←−−−
δ(X).

and, for similar reasons

L−→
X

π =
−−−→
δ(X).

We can now extend δ : g→ ∧2g to a derivation of degree +1 of the graded commu-
tative associative algebra (∧∗g that we denote by the same symbol δ : ∧•g→ ∧•+1g.

Lemma 1.1. 1. The derivation δ has square zero.

2. δ[X, Y ] = [δX, Y ] + [X, δY ], ∀X, Y ∈ g

Proof. (1) For all X ∈ g, [←−
X, [π, π]

]
= 2

[
[
←−
X, π], π

]
= 2 [

←−−−
δ(X), π]

= 2
←−−−
δ2(X)
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But [π, π] = 0, hence δ2(X) = 0.

(2) follows from the graded Jocobi identity:

[
←−−−
[X, Y ], π] = [[

←−
X,
←−
Y ], π] = [[

←−
X, π],

←−
Y ] + [

←−
X, [π,

←−
Y ]]

De�nition 1.3. A Lie bialgebra is a Lie algebra g equiped with a degree 1-derivation
δ of the graded commutative associative algebra ∧•g such that

1. δ([X, Y ]) = [δ(X), Y ] + [X, δ(Y )] and

2. δ2 = 0.

Remark 1.2. Recall that a Gerstenhaber algebra A = ⊕i∈NAi is a graded commu-
tative algebra s.t. A = ⊕i∈NA(i) where A(i) = Ai+1 is a graded Lie algebra with the
compatibility condition

[a, bc] = [a, b]c + (−1)(|a|+1)|b|b[a, c]

for any a ∈ A|a|, b ∈ A|b| and c ∈ A|c|.

A di�erential Gerstenhaber algebra is a Gerstenhaber algebra equipped with a degree
1 derivation of square zero.

The Lie bracket on g can be extented to a graded Lie bracket on ∧•g so that
(∧•g,∧, [·, ·]) is a Gerstenhaber algebra. Using this terminology, a Lie bialgebra is
nothing else than a di�erential Gerstenhaber algebra (∧•g,∧, [·, ·], δ).

Given a Lie bialgebra (g, δ), let us consider the dual δ∗ : ∧2g∗ → g∗ of the derivation
δ.

Let [ξ, η]g∗ = δ∗(ξ ∧ η) for all ξ, η ∈ g∗. The bilinear map (ξ, η) → [ξ, η]g∗ is skew-
symmetric and

δ2 = 0 ⇔ [·, ·]g∗ satis�es the Jacobi identity

Therefore, the dual g∗ of a Lie bialgebra (g, δ) is a Lie algebra again (which justi�es
the name). Conversely, a Lie bialgebras can be described again by:

Proposition 1.2. A Lie bialgebra is equivalent to a pair of Lie algebras (g, g∗)
compatible in the sense that the following relation is satis�ed: the coadjoint action
of g on g∗ is a derivation of the bracket [·, ·]g∗, i.e.,

ad∗X [α, β]g∗ = [ad∗Xα, β]g∗ + [α, ad∗Xβ]g∗ for all X ∈ g, α, β ∈ g∗.

Remark 1.3. Note that Lie bialgebras are in duality: namely (g, g∗) is a Lie bialge-
bra if and only if (g∗, g) is a Lie bialgebra. This picture can be seen more naturally
using Manin triples, which will be discussed in the next lecture.
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1.2 r-matrices

We now turn our attention to a particular class of Lie bialgebras, i.e., those coming
from r-matrices.

We start from a Lie algebra g. Assume that we are given an element r ∈ ∧2g.
Then de�ne δ by, for all X ∈ ∧•g, δ(X) = [r, X]. As can easily be checked, δ is a
derivation of ∧•g. Note that, in terms of (Chevalley-Eilenberg) cohomology, δ is the
coboundary of r.

The condition δ2(X) = 0 is equivalent to the relation
[
X, [r, r]

]
= 0, which itself

holds if and only if [r, r] is ad-invariant. Conversely, any r ∈ ∧2g such that [r, r]
is ad-invariant de�nes a Lie bialgebra. Such an r is called an r-matrix. If moreover
[r, r] = 0, then this Lie bialgebra is called triangular.

Here are two well-known examples of r-matrices.

Example 1.2. 1. Consider g a semi-simple Lie algebra of rank k over C with
Cartan sub-algebra h. Let {eα, fα, α ∈ ∆+} ∪ {hi, i = 1, . . . , k} be a Chevalley
basis. Then r =

∑
α∈∆+

λαeα ∧ fα with λα = 1
(eα,fα)

is an r-matrix.

2. Consider now k a compact semi-simple Lie algebra over R. Let {eα, fα, α ∈
∆+} ∪ {hi, i = 1 . . . , k} be a Chevalley basis (over C) of the complexi�ed
Lie algebra g = kC, that we assume to be constructed such that the family
{Xα, Yα, α ∈ ∆+} ∪ {ti, i = 1, . . . , k} is a basis of k (over R) where

Xα = eα − fα for all α ∈ ∆+

Yα =
√
−1(eα + fα) for all α ∈ ∆+

ti =
√
−1hi for all i ∈ {1, . . . , k}

Let r̂ =
√
−1 r =

√
−1

∑
α∈∆+

λαeα ∧ fα. Then r̂ is, according to the �rst

example above, an r-matrix of g = kC. However, by a direct comptation, one
checks that

r̂ =
1

2

∑
α∈∆+

λαXα ∧ Yα

so that r̂ is indeed an element of ∧2k, and therefore is an r-matrix on k. Hence,
it de�nes a Lie bialgebra structure on the real Lie algebra k.

1.3 Lie bialgebras and simply-connected Lie groups

We have already explained how to get a Lie bialgebra from a Poisson group. The
inverse is true as well when the Lie group is connected and simply-connected.

Theorem 1.3 (Drinfeld). Assume that G is a connected and simply-connected Lie
group. Then there exists a one-to-one correspondence

Poisson groups (G, π) ↔ Lie bialgebra (g, δ).

Example 1.3. In particular, for a Lie bialgebra coming from an r-matrix r, the
corresponding Poisson structure on G is the bivector �eld ←−r −−→r .

Applying the theorem above to the previous two examples, we are lead to
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Proposition 1.4. 1. Any complex semi-simple Lie group admits a natural (com-
plex) Poisson group structure.

2. Soibelmann, Lu-Weinstein Any compact semi-simple Lie group admits a
natural Poisson group structure, called the Bruhat-Poisson structure.

Remark 1.4. Poisson groups come in pairs in the following sense. Given a Poisson
group (G, π), let (g, g∗) be its Lie bialgebra, then we know (g∗, g) is also a Lie
bialgebra which gives rise to a Poisson group denoted (G∗, π′).

Example 1.4. On the Lie group G = SU(2), de�ne complex coordinates α, β by

g =

(
α β
−β̄ ᾱ

)
Note that these coordinates are not "free" since |α|2 + |β|2 = 1. The Bruhat-Poisson
structure is given by

{α, ᾱ} = 2
√
−1 ββ̄

{α, β} = −
√
−1 αβ

{α, β̄} = −
√
−1 αβ̄

{β, β̄} = 0

Example 1.5. Below are two examples of duals of Poisson groups.

1. For the Poisson group G = SU(2), equipped with the Bruhat-Poisson struc-
ture, the dual group G∗ is SB(2), i.e. the subgroup of two-by-two matrices of
the form

G∗ = SB(2) '


(

a b +
√
−1c

0 1
a

)∣∣∣∣ b, c ∈ R, a ∈ R+


Using these coordinates, the Poisson structure on G∗ is given explicitly by

{b, c} = a2 − 1
a2

{a, b} = ab
{a, c} = ac

2. For the Poisson group G = SLC(n), equipped with the Poisson bracket con-
structed in Example 1.2, the dual group is

G∗ = B+ ? B− '

 (A, B)

∣∣∣∣∣∣
A upper triangular with determinant 1,
B lower triangular with determinant 1,

s.t. diag(A) · diag(B) = 1


1.4 Poisson group actions

De�nition 1.4. Let G be a Poisson group. Assume that G acts on a Poisson man-
ifold X. The action is said to be a Poisson action if the action map

G×X → X
(g, x) → g · x

is a Poisson map, where G×X is equipped with the product Poisson structure.
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Warning Note that in general, this de�nition does not imply that, for a �xed g
in G, the action x → g · x is a Poisson automorphism of X. The reader should
not confuse Poisson actions with actions preserving the Poisson structure! Note,
however, that when the Poisson structure on the Lie group G is the trivial one, then
a Poisson action is an action of G on Xwhich preserves the Poisson structure.

Example 1.6. Any Lie group G acts on itself by left translation. If G is a Poisson
group then this action is a Poisson action.

Proposition 1.5 (Lu-Weinstein). Let G be a Poisson group with Lie bialgebra (g, δ).
Assume that G acts on a manifold X and let ρ : g → X1(X) be the in�nitesimal
action. The action of G on X is a Poisson action if and only if the following diagram
commutes

g
ρ−→ X(X)

↓ δ ↓ [π, ·]
∧2g

ρ−→ X2(X)

In terms of Gerstenhaber algebras, the commutativity of the previous diagram has
a clear meaning: it simply means that ρ : ∧•g→ X•(X) is a morphism of di�erential
Gerstenhaber algebra.

Example 1.7. For the dual SLC(3)∗ = B+ ? B− of G = SLC(3). Consider the
Poisson manifold

X =


 1 x y

0 1 z
0 0 1

∣∣∣∣∣∣ x, y, z ∈ C


equipped with the Poisson bracket

{x, y} = xy − 2z
{y, z} = yz − 2x
{z, x} = zx− 2y

The Lie group G∗ = B+ ? B− acts on X by

(A, B) · U → AUBT

with (A, B) ∈ B+ ? B− ' G∗ and U ∈ X. This action turns to be a Poisson action.

2 Poisson groupoids and Lie bialgebroids

Idea Let Γ ⇒ M be a Lie groupoid. A Poisson groupoid structure on Γ should be
a multiplicative Poisson structure on Γ.

Recall In the Poisson group case,

π is multiplicative

⇔ m : G×G→ G is a Poisson map

⇔ {(x, y, xy)|x, y ∈ G} ⊂ G×G×G is coisotropic

where G denotes (G, pi). This motivates the following de�nition.
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De�nition 2.1. A groupoid Γ with a Poisson structure π is said to be a Poisson
groupoid if the graph of the groupoid multiplication

Λ = {(x, y, xy)|(x, y) ∈ Γ2 composable pair} ⊂ Γ× Γ× Γ

is coisotropic. Here Γ means that Γ is equipped with the opposite Poisson structure
−π.

Example 2.1. 1. If P is a Poisson manifold, then P × P ⇒ P is a Poisson
groupoid.

2. Let A be the Lie algebroid of a Lie groupoid Γ and Λ ∈ Γ(∧2A) be an element

satisfying LX [Λ, Λ] = 0, ∀X ∈ Γ(A). Then π =
←−
Λ −

−→
Λ de�nes a Poisson

groupoid structure on Γ.

De�nition 2.2. A symplectic groupoid is a Poisson groupoid (P ⇒ M, π) such that
π is non-degenerate. In other words, Λ ⊂ Γ× Γ× Γ is a Lagrangian submanifold.

Example 2.2. 1. T ∗M ⇒ M with the canonical cotangent symplectic structure
is a symplectic groupoid

2. If G is a Lie group, then T ∗G ⇒ g∗ is a symplectic groupoid. Here the sym-
plectic structure on T ∗G is the canonical cotangent symplectic structure. The
groupoid structure is as follows. Right translations give an isomorphism be-
tween T ∗G and the transformation groupoid G × g∗ where G acts on g∗ by
coadjoint action.

3. In general, if Γ ⇒ M is a Lie groupoid with Lie algebroid A, then T ∗Γ ⇒ A∗ is
a symplectic groupoid. Let Λ ⊂ Γ×Γ×Γ denote the graph of the multiplication
and N∗Λ ⊂ T ∗Γ× T ∗Γ× T ∗Γ its conormal space.

Exercise 2.1. Show that N∗Λ = {(ξ, η, δ)|(ξ, η,−δ) ∈ N∗Λ} is the graph of a
groupoid multiplication on T ∗Γ with corresponding unit space isomorphic to
A∗ ' N∗M . This de�nes a groupoid structure on T ∗Γ ⇒ A∗.

Question Why symplectic groupoids ?
Symplectic groupoids are used in

1. quantization

2. symplectic realization

Given a Poisson manifold M , can one embed the Poisson algebra C∞(M) into a
Poisson subalgebra of C∞(S) where S is some symplectic manifold ?

C∞(M) ↪→ C∞(S)

Note that locally, there exists local coordinates (p1, . . . , pk, q1, . . . , qk) in which the
Poisson bracket on C∞(S) has the following form: {pi, qj} = δij, {pi, pj} = 0 =
{qi, qj}.
This question was �rst investigated in 1890 by Sophus Lie under the name of "Func-
tion groups". It leads to the following de�nition.

De�nition 2.3. A symplectic realization of a Poisson manifold (M, π) consists of
a pair (X, Φ), where X is a symplectic manifold and Φ : X → M is a Poisson map
which is a surjective submersion.
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Question Given a Poisson manifold, does there exist a symplectic realization. And
if so, is it unique ?

1. Local existence :

(a) Lie (regular Poisson)

(b) Weinstein 1983 (using splitting theorem)

2. Global existence : Karasev and Weinstein 1987

(a) Symplectic realizations exist globally for any Poisson manifold.

(b) There exists a distinguished symplectic realization, which admits a com-
patible local groupoid structure, i.e. a symplectic local groupoid.

Idea Find local symplectic realizations. Patch them together.

Puzzle Why do symplectic and groupoid structures arise in the context of Poisson
manifolds in such a striking manner ?
Recall that in the case of a Poisson group (G, π), the associated in�nitesimal object
is a Lie bialgebra (g, δ).
Half-way between Poisson groups and symplectic groupoids, there should be a notion
of Poisson groupoids. Such a notion could help to better understand symplectic
groupoids by imitating Poisson group theory.

Poisson groupoids

{
Poisson groups

symplectic groupoids

Theorem 2.1. Let Γ
α

⇒
β

M be a Lie groupoid. Let π ∈ X2(Γ) be a Poisson tensor.

Then (Γ, π) is a Poisson groupoid if and only if all the following hold.

1. For all (x, y) ∈ Γ2,

π(xy) = RY π(x) + LXπ(y)−RY LXπ(w),

where w = β(x) = α(y) and X, Y are (local) bisections through x and y
respectively.

2. M is a coisotropic submanifold of Γ

3. For all x ∈ Γ, α∗π(x) and β∗π(x) only depend on the base points α(x) and
β(x) respectively.

4. For all α, β ∈ C∞(M), one has {α∗f, β∗g} = 0, ∀f, g ∈ C∞(M).

5. The vector �eld Xβ∗f is left invariant for all f ∈ C∞(M).

Remark 2.1. If M is a point, then

1. ⇔ multiplicativity condition,

2. ⇔ π(1) = 0,
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3. is automatic,

4. is automatic,

5. is automatic.

And one gets the characterization of a Poisson group: a Lie group equipped with a
multiplicative Poisson tensor.

Question What is the in�nitesimal object associated to a Poisson groupoid ?

Corollary 1. Given a Poisson groupoid (Γ ⇒ M, π), we have

1. for all X ∈ Γ(A),
[←−
X, π

]
is still left invariant

2. πM := α∗π (or −β∗π) is a Poisson tensor on M

Proof. For all X ∈ Γ(A), take ξt = exp tX ∈ U(Γ) (the space of bisections of Γ),

ut = (exp tX)(u) and x ∈ Γ with β(x) = u. In other words, ut is the �ow of
←−
X

initiated at u. Let K be any bisection through x. One gets

π(xut) = Rξtπ(x) + LKπ(ut)− LKRξtπ(u)

⇒Rξt
−1π(xut) = π(x) + LKRξt

−1π(ut)− LKπ(u) ∈ ∧2TxΓ

and, di�erentiating with respect to t at 0,

(L←−
X

π)(x) = LK

(
(L←−

X
π)(u)

)
.

This implies that L←−
X

π is left invariant.

Now, we can de�ne δ : Γ(∧iA)→ Γ(∧i+1A). For i = 0,

C∞(M)→ Γ(A) : f 7→ Xβ∗f = [β∗f, π] .

For i = 1,

ΓA→ Γ(∧2A) : X 7→
←−
δX =

[←−
X, π, .

]
The following lemma can be easily veri�ed.

Lemma 2.2. 1. δ(fg) = gδf + fδg, ∀f, g ∈ C∞(M)

2. δ(fX) = δf ∧X + fδX, ∀f ∈ C∞(M) and X ∈ Γ(A)

3. δ [X, Y ] = [δX, Y ] + [X, δY ] , ∀X, Y ∈ Γ(A)

4. δ2 = 0

De�nition 2.4. A Lie bialgebroid is a Lie algebroid A equiped with a degree 1
derivation δ of the associative algebra (Γ(∧•A),∧) satisfying conditions 3 and 4 of
the previous lemma.

Exercise 2.2. Show that a Lie bialgebroid structure is equivalently characterized
as a degree 1 derivation δ of the Gerstenhaber algebra (Γ(∧•A),∧, [, ]) such that
δ2 = 0. This is also called a di�erential Gerstenhaber algebra.
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Remark 2.2. Given a Lie bialgebroid (A, δ), there is a natural Lie algebroid struc-
ture on A∗ de�ned as follows.

1. The anchor map ρ∗ : A∗ → TM is

〈ρ∗ξ, f〉 = 〈ξ, δf〉 , ∀f ∈ C∞(M).

2. The bracket [, ] is given by

〈[ξ, η] , X〉 = (δX)(ξ, η)+(ρ∗ξ) 〈X, η〉−(ρ∗η) 〈X, ξ〉 , ∀ξ, η ∈ Γ(A∗), ∀X ∈ Γ(A).
(2)

Indeed, equivalently, a Lie bialgebroid is a pair of Lie algebroids (A, A∗) such that

δ [X, Y ] = [δX, Y ] + [X, δY ] , ∀X, Y ∈ Γ(A),

where δ : Γ(A)→ Γ(∧2A) is de�ned by the above equation (2)

Remark 2.3. If (A, A∗) is a Lie bialgebroid, then (A∗, A) is also a Lie bialgebroid
and it is called its dual.

Example 2.3. 1. If π is a Poisson tensor on M , then A = TM with δ =
[π, ·] : X∗(M) → X∗+1(M) is a Lie bialgebroid. In this case, A∗ = T ∗M is the
canonical cotangent Lie algebroid.

2. The dual to the previous one: A = T ∗M , the cotangent Lie algebroid of a
Poisson manifold (M, π), together with δ∗ = dDR : Ω∗(M)→ Ω∗+1(M).

3. Coboundary Lie bialgebroid. Take A a Lie algebroid admitting a Λ ∈
Γ(∧2A) satisfying

LX [Λ, Λ] = 0,∀X ∈ Γ(A).

Let δ = [Λ, ·] : Γ(∧∗A)→ Γ(∧∗+1A). Then (A, δ) de�nes a Lie bialgebroid.

4. Dynamical r-matrix. Consider the Lie algebroid A = Th∗⊕g→ η where h is
an abelian subalgebra of g and the Lie algebroid structure on A is the product
Lie algebroid. Choose a map r : h∗ → ∧2g and consider it as a element Λ of
Γ(∧2A). Then LX [Λ, Λ] = 0 if and only if∑

hi ∧ dr
dλi

+ 1
2
[r, r] ∈ (∧3g)

g

is a constant function over h∗. Here {h1, . . . , hk} is a basis of h and (λ1, . . . , λk)
are the dual coordinates on h∗.
In particular, if g is a simple Lie algebra and h ⊂ g is a Cartan subalgebra,
one can take

r(λ) =
∑

α∈∆+

λα

(α, λ)
eα ∧ fα

or
r(λ) =

∑
α∈∆+

λα coth (α, λ)eα ∧ fα,

where (eα, fα, hi) is a Chevalley basis.

10


