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1 Poisson groups and Lie bialgebras

1.1 From Poisson groups to Lie bialgebras

Definition 1.1. A Poisson group is a Lie group endowed with a Poisson structure
7 € X*(G) such that the multiplication m : G x G — G is a Poisson map, where
G x G is equipped with the product Poisson structure.

Example 1.1. The reader may have in mind the following two trivial examples.

1. For any Lie algebra g, its dual (g*,+) is a Poisson group where (i) the Lie
group structure is given by the addition (ii) the Poisson structure is the linear
Poisson structure, i.e., Lie-Poisson structure.

2. Any Lie group G is a Poisson group with respect to the trivial Poisson bracket.

To impose that m : G x G — G is a Poisson map is equivalent to impose any of the
following two conditions

1. Vg, h € G, m.(my + 7)) = 7y, or,

2. Vg,h € G, (Rh)*ﬂ‘g + (Lg)*ﬂ'h = Mgh-

This leads to the following definition:

Definition 1.2. A bivector field 7 on G is said to be multiplicative if

(Rh)*ﬂ'g + (Lg)*ﬂ'h = Tgh, Vg, heGqG. (1)
In particular, 7 € X*(G) is a Poisson group if and only if i) the identity [, 7] = 0
holds and 1) 7 is multiplicative.

Remark 1.1. Any multiplicative bivector 7w vanishes in ¢ = 1, where 1 is the unit
element of the group G. This can be seen from Eq. (1) by letting g = h = 1.



It is sometimes convenient to consider 7(g) = (R,); '7,, which is, by definition, a
smooth map from G to A%g (where, implicitely, we have identified the Lie algebra g
with the tangent space in g = 1 of the Lie group G). When written with the help of
7, the condition (Rp).my + (Lg)«mh = gy, reads

(Rgh)sjl[(Rh)*Wg + (Lg)smn] = (Rgh);lﬁgh
(g) + Adgr(h) = 7(gh)

Le., 7 : G — A%gis a Lie group 1-cocycle, where G acts on A%g by adjoint action.

Now, differentiating a Lie group 1-cocycle at the identity, one gets a Lie algebra 1-
cocycle g — A?g. For example, the 1-cocycle § : g — A?g associated to the Poisson
structure 7 is given by VX € g

I(X) = %ltzo%(exp(tX))

- % [P (RGIP(—tX) )*ﬂ-exp(tX)
= (¢—t)*7T¢t(1)

= (L)

|g:1

%
where X is the left invariant vector field on G corresponding to X and ¢; is its flow.

We have therefore determined Lo at g = 1, we now try to compute it at other
points.

For all g € G, since 7 is multiplicative, we have VX € g,

Tg exp(tX) - (Rexp(—tX))*ﬂ-g + (Lg)*ﬂ-exp(tX)
(Rexp(ftX))*ﬂ-g exp(tX) — Tg + (Rexp(ftX))*(Lg)*ﬂ-exp(tX)
(D—1)xTg1(g) = Tg + Lg(d—1)Tg1)

Taking the derivative of the previous identity at ¢ = 0, one obtains:
(L)), = (Lg)wLgmp = (Lg)«0(X)
which implies that L is left invariant. For all ¥ € NFg, by Yy (resp. }7) the left

(resp. right) invariant k-vector field on G equal to Y at g = 1. Then we obtain the
following formula:

-
Lem = 0(X).

and, for similar reasons
—
Lym = 5(X).

We can now extend 6 : g — A2g to a derivation of degree +1 of the graded commu-
tative associative algebra (A*g that we denote by the same symbol § : A®g — A*Tlg.

Lemma 1.1. 1. The derivation d has square zero.
2.0 X, Y] =[0X, Y]+ [X,0Y], VX, Y eg
Proof. (1) For all X € g,

[()_(,[W,W]] = 2[[<)_(,7r],7r}



But [rr, 7] = 0, hence §*(X) = 0.
(2) follows from the graded Jocobi identity:
% H

(X, Y], 7] = [[X,Y],x] = [X,7], Y] + [X,[r, Y]]

]

Definition 1.3. A Lie bialgebra is a Lie algebra g equiped with a degree 1-derivation
0 of the graded commutative associative algebra A®g such that

1. 8([X,Y]) = [5(X), Y] + [X,8(Y)] and
2. 62 = 0.

Remark 1.2. Recall that a Gerstenhaber algebra A = ®;cnA® is a graded commu-
tative algebra s.t. A = @;enA® where A® = A1 is a graded Lie algebra with the
compatibility condition

[a,bc] = [a, ble + (—=1)1 P (]

for any a € Al*l b e Al and ¢ € Al

A differential Gerstenhaber algebra is a Gerstenhaber algebra equipped with a degree
1 derivation of square zero.

The Lie bracket on g can be extented to a graded Lie bracket on A®g so that
(A®g, A\, [-,-]) is a Gerstenhaber algebra. Using this terminology, a Lie bialgebra is
nothing else than a differential Gerstenhaber algebra (A®g, A, [-, -], ).

Given a Lie bialgebra (g,d), let us consider the dual §* : A?g* — g* of the derivation
J.

Let [£,n]g = 6" (€ Am) for all £, € g*. The bilinear map (£,n) — [£,n]q is skew-
symmetric and

=0 <& [,]g satisfies the Jacobi identity

Therefore, the dual g* of a Lie bialgebra (g, d) is a Lie algebra again (which justifies
the name). Conversely, a Lie bialgebras can be described again by:

Proposition 1.2. A Lie bialgebra is equivalent to a pair of Lie algebras (g, g")
compatible in the sense that the following relation is satisfied: the coadjoint action
of g on g* is a derivation of the bracket |-, |, i.e.,

ady o, Blg = [adya, Blg + (o, ady Blg for all X € g, o, f € g*.

Remark 1.3. Note that Lie bialgebras are in duality: namely (g, g*) is a Lie bialge-
bra if and only if (g*, g) is a Lie bialgebra. This picture can be seen more naturally
using Manin triples, which will be discussed in the next lecture.



1.2 r-matrices

We now turn our attention to a particular class of Lie bialgebras, i.e., those coming
from r-matrices.

We start from a Lie algebra g. Assume that we are given an element r € AZg.
Then define ¢ by, for all X € A®g, §(X) = [r, X]. As can easily be checked, 0 is a
derivation of A®g. Note that, in terms of (Chevalley-Eilenberg) cohomology, ¢ is the
coboundary of r.

The condition 62(X) = 0 is equivalent to the relation [X,[r,7]] = 0, which itself
holds if and only if [r,r] is ad-invariant. Conversely, any r € A?g such that [r,r]
is ad-invariant defines a Lie bialgebra. Such an r is called an r-matriz. If moreover
[r,7] = 0, then this Lie bialgebra is called triangular.

Here are two well-known examples of r-matrices.

Example 1.2. 1. Consider g a semi-simple Lie algebra of rank k£ over C with
Cartan sub-algebra b. Let {e,, fo,« € A }U{h;, i =1,...,k} be a Chevalley
basis. Then r =) L

Ao N fo with A\, = —— is an r-matrix.

aceAL (eayfa)

2. Consider now ¢ a compact semi-simple Lie algebra over R. Let {e,, fo,a €
Ay} U{h;, i = 1...,k} be a Chevalley basis (over C) of the complexified
Lie algebra g = £*, that we assume to be constructed such that the family
{Xo, Yo, € AL} U{t;,i=1,...,k} is a basis of € (over R) where

X, = o — fa forall o € Ay
Y, = vV—1(ea+ fa) for all « € AL
V—1h; foralli e {1,...,k}

S*
Il

Let 7 = /—1r = /-1 Za€A+ Aa€a N fo- Then 7 is; according to the first
example above, an r-matrix of g = ¢C. However, by a direct comptation, one
checks that

f:% Z M X, AY,

aEA L

so that 7 is indeed an element of A%, and therefore is an r-matrix on €. Hence,
it defines a Lie bialgebra structure on the real Lie algebra €.

1.3 Lie bialgebras and simply-connected Lie groups

We have already explained how to get a Lie bialgebra from a Poisson group. The
inverse is true as well when the Lie group is connected and simply-connected.

Theorem 1.3 (Drinfeld). Assume that G is a connected and simply-connected Lie
group. Then there exists a one-to-one correspondence

Poisson groups (G, ) — Lie bialgebra (g,9).

Example 1.3. In particular, for a Lie bialgebra coming from an r-matrix r, the
corresponding Poisson structure on G is the bivector field 7 — 7.

Applying the theorem above to the previous two examples, we are lead to
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Proposition 1.4. 1. Any complex semi-simple Lie group admits a natural (com-
plex) Poisson group structure.

2. Soibelmann, Lu-Weinstein Any compact semi-simple Lie group admits a
natural Poisson group structure, called the Bruhat-Poisson structure.

Remark 1.4. Poisson groups come in pairs in the following sense. Given a Poisson
group (G,m), let (g,g*) be its Lie bialgebra, then we know (g*, g) is also a Lie
bialgebra which gives rise to a Poisson group denoted (G*,7’).

Example 1.4. On the Lie group G = SU(2), define complex coordinates «, 5 by

= (5 1)

Note that these coordinates are not "free" since |a|> + |3|*> = 1. The Bruhat-Poisson

structure is given by -
{a,a) = 2/~108

{04,@} = —v—laf
{avg} = —v-1lap
{8,y = 0

Example 1.5. Below are two examples of duals of Poisson groups.

1. For the Poisson group G = SU(2), equipped with the Bruhat-Poisson struc-
ture, the dual group G* is SB(2), i.e. the subgroup of two-by-two matrices of
the form

G* = SB(2) ~ (8 b+Vl_1C)‘ bceR,acRF

a

Using these coordinates, the Poisson structure on G* is given explicitly by

{b,c} = a®>—%
{a,b} = ab
{a,c¢} = ac

2. For the Poisson group G = SL¢(n), equipped with the Poisson bracket con-
structed in Example 1.2, the dual group is

A upper triangular with determinant 1,
G* = ByxB_. ~ (A,B) | B lower triangular with determinant 1,
s.t. diag(A) - diag(B) =1

1.4 Poisson group actions

Definition 1.4. Let G be a Poisson group. Assume that GG acts on a Poisson man-
ifold X. The action is said to be a Poisson action if the action map

GxX — X
(g.x) — g-zx

is a Poisson map, where G x X is equipped with the product Poisson structure.



Warning Note that in general, this definition does not imply that, for a fixed g
in GG, the action x — ¢ - x is a Poisson automorphism of X. The reader should
not confuse Poisson actions with actions preserving the Poisson structure! Note,
however, that when the Poisson structure on the Lie group G is the trivial one, then
a Poisson action is an action of G on Xwhich preserves the Poisson structure.

Example 1.6. Any Lie group G acts on itself by left translation. If GG is a Poisson
group then this action is a Poisson action.

Proposition 1.5 (Lu-Weinstein). Let G be a Poisson group with Lie bialgebra (g, 9).
Assume that G acts on a manifold X and let p : g — X' (X) be the infinitesimal
action. The action of G on X is a Poisson action if and only if the following diagram
commutes
g = X(X)
1o ! [777 }
Ng = XA(X)

In terms of Gerstenhaber algebras, the commutativity of the previous diagram has
a clear meaning: it simply means that p : A®g — X*(X) is a morphism of differential
Gerstenhaber algebra.

Example 1.7. For the dual SL¢(3)* = By« B_ of G = SL¢(3). Consider the
Poisson manifold

X = x,y,z € C

o O
[
N

equipped with the Poisson bracket
{z,y} = zy—22

{v2} = yz—20
{z,z} = zz—2y

The Lie group G* = B, x« B_ acts on X by
(A,B)-U — AUB"

with (4, B) € By * B_ ~ G* and U € X. This action turns to be a Poisson action.

2 Poisson groupoids and Lie bialgebroids

Idea Let I' = M be a Lie groupoid. A Poisson groupoid structure on I" should be
a multiplicative Poisson structure on I'.
Recall In the Poisson group case,

7 is multiplicative
< m: G x G — G is a Poisson map

s {(z,y,7y)|z,y € G} C G x G x G is coisotropic
where G denotes (G, pi). This motivates the following definition.
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Definition 2.1. A groupoid I' with a Poisson structure 7 is said to be a Poisson
groupoid if the graph of the groupoid multiplication

A = {(x,y,2y)|(z,y) € I'y composable pair} C T x ' x T

is coisotropic. Here I means that I is equipped with the opposite Poisson structure
—1r.

Example 2.1. 1. If P is a Poisson manifold, then P x P = P is a Poisson
groupoid.

2. Let A be the Lie algebroid of a Lie groupoid I' and A € T'(A%2A) be an element
«— —
satisfying Lx[A,A] = 0, VX € I'(A). Then 7 = A — A defines a Poisson
groupoid structure on I'.

Definition 2.2. A symplectic groupoid is a Poisson groupoid (P = M, ) such that
7 is non-degenerate. In other words, A CI' x I' x I' is a Lagrangian submanifold.

Example 2.2. 1. T*"M = M with the canonical cotangent symplectic structure
is a symplectic groupoid

2. If G is a Lie group, then T*G == g* is a symplectic groupoid. Here the sym-
plectic structure on 7*G is the canonical cotangent symplectic structure. The
groupoid structure is as follows. Right translations give an isomorphism be-
tween TG and the transformation groupoid G' x g* where G acts on g* by
coadjoint action.

3. In general, if ' = M is a Lie groupoid with Lie algebroid A, then T*I" = A* is
a symplectic groupoid. Let A C I'xI'xI" denote the graph of the multiplication
and N*A C T*I' x T*T" x T*T" its conormal space.

Exercise 2.1. Show that N*A = {(£,7n,0)|(§,n, —6) € N*A} is the graph of a
groupoid multiplication on T*I" with corresponding unit space isomorphic to
A* ~ N*M. This defines a groupoid structure on T*I" =% A*.

Question Why symplectic groupoids ?
Symplectic groupoids are used in

1. quantization

2. symplectic realization

Given a Poisson manifold M, can one embed the Poisson algebra C*°(M) into a
Poisson subalgebra of C*°(S) where S is some symplectic manifold ?

C®(M) — C>(S5)

Note that locally, there exists local coordinates (p1,..., Dk, q1,---,qx) in which the
Poisson bracket on C*°(S) has the following form: {p;,¢;} = d;j, {pi,p;} = 0 =
{4, 4;}-

This question was first investigated in 1890 by Sophus Lie under the name of "Func-
tion groups". It leads to the following definition.

Definition 2.3. A symplectic realization of a Poisson manifold (M, 7) consists of
a pair (X, ®), where X is a symplectic manifold and ® : X — M is a Poisson map
which is a surjective submersion.



Question Given a Poisson manifold, does there exist a symplectic realization. And
if so, is it unique ?

1. Local existence :

(a) Lie (regular Poisson)

(b) Weinstein 1983 (using splitting theorem)
2. Global existence : Karasev and Weinstein 1987

(a) Symplectic realizations exist globally for any Poisson manifold.

b) There exists a distinguished symplectic realization, which admits a com-
)
patible local groupoid structure, i.e. a symplectic local groupoid.

Idea Find local symplectic realizations. Patch them together.

Puzzle Why do symplectic and groupoid structures arise in the context of Poisson
manifolds in such a striking manner 7

Recall that in the case of a Poisson group (G, 7), the associated infinitesimal object
is a Lie bialgebra (g, 9).

Half-way between Poisson groups and symplectic groupoids, there should be a notion
of Poisson groupoids. Such a notion could help to better understand symplectic
groupoids by imitating Poisson group theory.

Poisson groups

Poisson groupoids i i
symplectic groupoids

Theorem 2.1. Let I’ % M be a Lie groupoid. Let m € X*(T') be a Poisson tensor.
B
Then (I',7) is a Poisson groupoid if and only if all the following hold.

1. For all (z,y) € Iy,
m(zy) = Rym(x) + Lx7(y) — Ry Lxm(w),

where w = [B(x) = a(y) and X,Y are (local) bisections through x and y
respectively.

2. M is a coisotropic submanifold of T’

3. For all x € T, am(x) and Bum(x) only depend on the base points a(x) and
B(x) respectively.

4. For all a, 8 € C*°(M), one has {a*f,5*g} =0, Vf,g € C°(M).
5. The vector field Xg-s is left invariant for all f € C>(M).

Remark 2.1. If M is a point, then

1. < multiplicativity condition,

2. & (1) =0,



3. is automatic,
4. is automatic,

5. 1s automatic.

And one gets the characterization of a Poisson group: a Lie group equipped with a
multiplicative Poisson tensor.

Question What is the infinitesimal object associated to a Poisson groupoid 7

Corollary 1. Given a Poisson groupoid (I' = M, ), we have

1. for all X € I'(A), P_(’ W} is still left invariant
2. = aum (or —f,m) is a Poisson tensor on M

Proof. For all X € I'(A), take & = exptX € U(I') (the space of bisections of T'),

ur = (exptX)(u) and z € I" with G(z) = w. In other words, u; is the flow of X
initiated at u. Let K be any bisection through x. One gets

m(zw) = Re,m(x) + Lgm(uy) — Lg Re,m(u)
=Re,1m(zuy) = m(x) + L Re,~17(u;) — Lgm(u) € A°T,T

and, differentiating with respect to ¢ at 0,
(Lgm)(z) = LK((D)—(W)(U))

This implies that L« is left invariant. O
Now, we can define § : T(A"A) — T'(A"LA). For i = 0,
CO(M)—=T(A): f— Xp.p=[0"f 7.

For ¢ =1,
R —
TA = T(A2A): X s 0X = [X,w, }

The following lemma can be easily verified.

Lemma 2.2. 1. §(fg)=gdf + fég, V[, g€ C®(M)
2.0(fX)=0fNX+ foX, VfeC®M)and X € T'(A)
3. 0[X,Y]=[0X,Y]+[X,0Y], VXY eI(A)
4. 6°=0

Definition 2.4. A Lie bialgebroid is a Lie algebroid A equiped with a degree 1
derivation § of the associative algebra (I'(A®*A), A) satisfying conditions 3 and 4 of
the previous lemma.

Exercise 2.2. Show that a Lie bialgebroid structure is equivalently characterized
as a degree 1 derivation 0 of the Gerstenhaber algebra (I'(A®*A), A, [,]) such that
5% = 0. This is also called a differential Gerstenhaber algebra.
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Remark 2.2. Given a Lie bialgebroid (A, d), there is a natural Lie algebroid struc-
ture on A* defined as follows.

1. The anchor map p, : A* — TM is
(06, ) = (& 0f), VfelC=(M).
2. The bracket [,] is given by

([€;m], X) = (6X) (& m)+(p&) (X)) —(pem) (X, §), VE,meT(AY), VX € (F()A)-
2

Indeed, equivalently, a Lie bialgebroid is a pair of Lie algebroids (A, A*) such that
SX,)Y]=[0X, Y]+ [X,0Y], VXY eT(A4),
where § : T'(A) — T'(A?A) is defined by the above equation (2)

Remark 2.3. If (A, A*) is a Lie bialgebroid, then (A*, A) is also a Lie bialgebroid
and it is called its dual.

Example 2.3. 1. If 7 is a Poisson tensor on M, then A = TM with § =
(7, (M) — X*T (M) is a Lie bialgebroid. In this case, A* = T*M is the
canonical cotangent Lie algebroid.

2. The dual to the previous one: A = T*M, the cotangent Lie algebroid of a
Poisson manifold (M, ), together with §* = dpg : Q*(M) — Q**1(M).

3. Coboundary Lie bialgebroid. Take A a Lie algebroid admitting a A €
[(A%A) satisfying
Lx[AA]=0,VX € T'(A).
Let 6 = [A,-] : T(A*A) — T'(A*T1A). Then (A, §) defines a Lie bialgebroid.
4. Dynamical r-matrix. Consider the Lie algebroid A = Th*@®g — n where b is
an abelian subalgebra of g and the Lie algebroid structure on A is the product

Lie algebroid. Choose a map 7 : b* — A?g and consider it as a element A of
['(A2A). Then Lx [A,A] = 0 if and only if

> hi A 4 L] € (M)

is a constant function over h*. Here {hq, ..., hy} is a basis of h and (A1, ..., A\g)
are the dual coordinates on h*.
In particular, if g is a simple Lie algebra and h C g is a Cartan subalgebra,

one can take \
r(N) =) (oo M o

acA+

or

r(A) = Z Ao cOth (a, Neg A fa,

aceAt

where (e,, fa, hi) is a Chevalley basis.
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