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Problem of classification of local Poisson brackets
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One more example of a local Poisson bracket on the space L(M),

M = R

{u(x), u(y)} = u(x)δ′(x− y) +
1

2
ux(x)δ(x− y)− δ′′′(x− y).

Linear + constant (central extensions of Lie algebras)

Exercise. Check that the linear functionals on L(M)

cn =
1

2π

∫ 2π

0
e−inxu(x) dx

yield the Virasoro algebra

1

i
{cn, cm} =

1

2
(n−m)cn+m + n3δn+m,0

So L(M) = V ir∗.
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An alternative proof of Jacobi identity: reduce the bracket to a

constant (i.e., u-independent) form by Miura transform

u =
1

4
v2 + v′, {v(x), v(y)} = δ′(x− y).
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Indeed:

{u(x), u(y)} =
{
1

4
v2(x) + v′(x),

1

4
v2(y) + v′(y)

}
=

1

4
v(x)v(y){v(x), v(y)}+

1

2
v(x)∂y{v(x), v(y)}+

1

2
v(y)∂x{v(x), v(y)}+∂x∂y{v(x), v(y)}

=
1

4
v(x)v(y)δ′(x− y)−

1

2
v(x)δ′′(x− y) +

1

2
v(y)δ′′(x− y)− δ′′′(x− y)

Use

f(y)δ(x− y) = f(x)δ(x− y), f(y)δ′(x− y) = f(x)δ′(x− y) + f ′(x)δ(x− y),

f(y)δ′′(x− y) = f(x)δ′′(x− y) + 2f ′(x)δ′(x− y) + f ′′(x)δ(x− y)

obtain

=

(
1

4
v2 + v′

)
δ′(x− y) +

1

2

(
v′′ +

1

2
v v′
)

δ(x− y)− δ′′′(x− y)

= u(x)δ′(x− y) +
1

2
u′(x)δ(x− y)− δ′′′(x− y).
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Problems in general classification scheme:

• equivalences

• infinitesimal deformations

• higher obstructions

• rigid objects
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Lecture 3

- grading of differential polynomials, evolutionary PDEs, and

Poisson brackets. Extended formal loop space.

- Group of Miura-type transformations.

- (n,0)-brackets. Darboux lemma.

- Riemannian geometry and classification of (0, n)-brackets

- On more general (p, q)-brackets
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The aim: to classify local Poisson brackets w.r.t. general Miura

type transformations of the form

ui → ũi = F i(u;ux, uxx, . . .). (1)

The problem: this is not a group!
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Extended formal loop space

Gradation on the ring A of differential polynomials:

degui,k = k, k ≥ 1, deg f(x;u) = 0. (2)

Completion of the space of local functionals Λ̂0:

f̄ =
∫

f(u;ux, uxx, . . . ; ε) dx,

f(u;ux, uxx, . . .) =
∞∑

k=0

εkfk(u;ux, . . . , u(k)), fk ∈ A, degfk = k.

(3)

Still called them differential polynomials

Taking the symmetric tensor algebra of Λ̂0 we obtain the ring of

functionals on the extended formal loop space denoted L̂(M).
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Systems of evolutionary PDEs:

ui
t = ε−1 ai

0(u) + ai
1(u;ux) + ε ai

2(u;ux, uxx) + O(ε2)

ai
1(u;ux) = vi

j(u)uj
x,

ai
2(u;ux, uxx) = bi

j(u)uj
xx +

1

2
ci
jk(u)uj

xuk
x (4)

etc.

Rule of thumb: introduction of slow variables

x 7→ ε x, t 7→ ε t,

ui 7→ ui, ui
x 7→ ε ui

x, ui
xx 7→ ε2ui

xx, . . .

So

ui
t = ai(u;ux, uxx, . . .) 7→ ui

t =
1

ε
ai(u; εux, ε2uxx, . . .)
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Example 1 KdV

ut + u ux +
ε2

12
uxxx = 0

Example 2 Toda lattice

q̈n = eqn+1−qn − eqn−qn−1.

Continuous version:

un := qn+1 − qn = u(nε), vn := q̇n = v(nε), t 7→ ε t

ut =
v(x + ε)− v(x)

ε
= vx +

1

2
ε vxx + O(ε2)

vt =
eu(x) − eu(x−ε)

ε
= euux −

1

2
ε (eu)xx + O(ε2)

Example 3 Camassa - Holm equation

ut =
(
1− ε2∂2

x

)−1
{

3

2
u ux − ε2

[
uxuxx +

1

2
u uxxx

]}
=

3

2
u ux + ε2

(
u uxxx +

7

2
uxuxx

)
+ O(ε4)
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Local bivectors in Λ̂loc represented by infinite sums

{ui(x), uj(y)} =
∞∑

k=−1

εk{ui(x), uj(y)}[k] (5)

{ui(x), uj(y)}[k] =
k+1∑
s=0

A
ij
k,s(u;ux, . . . , u(s))δ(k−s+1)(x− y),

A
ij
k,s ∈ A, degA

ij
k,s = s, s = 0,1, . . . , k + 1.

Another description: given

f̄ =
∫

f(u;ux, . . .) dx, ḡ =
∫

g(u;ux, . . .) dx

then

{f̄ , ḡ}[k] =
∫

h(u;ux, . . .) dx, degh = deg f + deg g + k + 1



More explicitly, the first three terms in the expansion (5) read

{ui(x), uj(y)}[−1] = πij(u(x))δ(x− y) (6)

{ui(x), uj(y)}[0] = gij(u(x))δ′(x− y) + Γij
k (u(x))uk

xδ(x− y) (7)

{ui(x), uj(y)}[1] = aij(u(x))δ′′(x− y) + b
ij
k (u(x))uk

xδ′(x− y)

+[cij
k (u(x))uk

xx +
1

2
d
ij
kl(u(x))uk

xul
x]δ(x− y) (8)

where πij, gij(u), Γij(u), aij(u), b
ij
k (u), c

ij
k (u), d

ij
kl(u) are some

functions on the manifold M .

Exercise. The Schouten - Nijenhuis bracket gives a well-defined

map

ε [ , ] : Λ̂k
loc × Λ̂l

loc → Λ̂k+l−1
loc .
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Example 1. Bihamiltonian structure of KdV

ut = u ux +
ε2

12
uxxx = {u(x), H1}1 =

3

2
{u(x), H0}2

{u(x), u(y)}1 = δ′(x− y)

{u(x), u(y)}2 = u(x)δ′(x− y) +
1

2
uxδ(x− y) +

ε2

8
δ′′′(x− y)

H1 =
∫ (

1

6
u3 −

ε2

24
u2

x

)
dx, H0 =

∫ 1

2
u2 dx
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Example 2. Toda lattice

u̇n = vn+1 − vn = {un, H}

v̇n = eun − eun−1 = {vn, H}

{um, un} = {vm, vn} = 0, {um, vn} = δm,n−1 − δmn

H =
∑(

1

2
v2
n + eun

)
Interpolating obtain

{u(x), v(y)} =
1

ε
[δ(x−y+ε)−δ(x−y)] = δ′(x−y)+

ε

2
δ′′(x−y)+O(ε2)

(9)

H =
∫ [

1

2
v2 + eu

]
dx.
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Miura group

The transformations

ui 7→ ũi =
∞∑

k=0

εkF i
k(u;ux, . . . , u(k)), i = 1, . . . , n

F i
k ∈ A, degF i

k = k, (10)

det

(
∂F i

0(u)

∂uj

)
6= 0.

Lemma. The transformations of the form (10) form a group.



Example. The clasical Miura transformation

u =
1

4
v2 + εv′

Inversion, u 6= 0

v = 2
√

u− εv′ = 2
√

u− ε
v′
√

u
+ O(ε2) = 2

√
u− ε

u′

u
+ O(ε2)

⇒ first two terms of the solution v = F (u;u′, . . . ; ε).

Remark. Corresponds to the WKB solution to

ε2y′′ =
1

4
u y, v = 4ε

y′

y
.

y = u−1/4e
1
2ε

∫ √
udx (1 + O(ε)) .



Definition. The group G of all the transformations of the form

(10) is called Miura group ( “local diffeomorphisms” of the ex-

tended formal loop space L̂(M))

Lemma. The class of local functionals, evolutionary PDEs, and

local translation invariant multivectors on the extended formal

loop space L̂(M) is invariant w.r.t. the action of the Miura group.

Exercise 1. An arbitrary evolutionary PDE

ui
t =

1

ε
ai
0(u) + Ai

j(u)uj
x + O(ε), i = 1, . . . , n

with a0(u0) 6= 0 can be reduced, by a Miura-type transformation near u = u0,
to a constant form

a0 = const, ai = 0 for i > 0.



Exercise 2. Transformation law of Hamiltonian operators

Aij =
∑

A
ij
k (u;ux, . . .)∂k

x

of local bivectors:

Ãij = L∗ikAklL
j
l (11)

where the matrix-valued operator Li
k and the adjoint one L∗ik are

given by

Li
k =

∑
s
(−∂x)

s ◦
∂ũi

∂uk,s
, L∗ik =

∑
s

∂ũi

∂uk,s
∂s

x.

Main Problem. To describe the orbits of the action of the Miura
group G on Λ̂2.



Darboux lemma on L̂(M), M = a ball

{ui(x), uj(y)} =
1

ε
πij(u(x))δ(x− y) +

∑
k≥0

εk{ui(x), uj(y)}[k]

{ui(x), uj(y)}[k] =
k+1∑
s=0

A
ij
k,s(u;ux, . . . , u(s))δ(k−s+1)(x− y),

A
ij
k,s ∈ A, degA

ij
k,s = s, s = 0,1, . . . , k + 1.

Assume:

det
(
πij(u)

)
6= 0

Theorem. The P.B. is equivalent to

{ũi(x), ũj(y)} =
1

ε
π̃ijδ(x− y), π̃ij = const



Proof. Step 1: the leading term itself is itself a Poisson bracket

on L̂(M) ⇒ finite-dimensional Jacobi identity for πij(u)

Step 2: try to kill all the terms with k ≥ 0 of the expansion

{ui(x), uj(y)} =
1

ε
πijδ(x− y) +

∑
k≥0

εk{ui(x), uj(y)}[k]

by Miura-type transformations with F i
0(u) = ui, i = 1, . . . , n.

Triviality of Poisson cohomology H2(L̂(M), $) of the bivector

$ =
∫

πijθiθjdx, πij = −πji = const, detπij 6= 0

is needed.



Natural decomposition

Hk = ⊕m≥−1Hk,m

with respect to εm. Denote

H̃k := ⊕m≥0Hk,m. (12)

Lemma 1. The first non-zero term in the expansion

{ui(x), uj(y)} =
1

ε
$ +

∑
k≥0

εk{ui(x), uj(y)}[k]

is a 2-cocycle in the Poisson cohomology H̃2 of the ultralocal

Poisson bracket $.
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To kill this first nonzero term we need to prove that, for any 2-
cocycle ∈ Λ̂2

loc of $ , there exists an evolutionary vector field a

such that the Lie derivative Liea$ gives the cocycle and a|ε=0 =
0.

Main Lemma. For M = ball the Poisson cohomologies
H̃k(L̂(M), $) vanish for k > 0.

Let us prove first triviality of H̃1. Let an evolutionary vector field
a with the components a1, . . . , an be a cocycle. Denote

ωi = πija
j

where the constant matrix πij is inverse to πij. The condition
∂a = Liea$ = 0 reads

∂ωi

∂uj,s
=
∑
t≥s

(−1)t

(
t
s

)
∂t−s

x
∂ωj

∂ui,t
.
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Indeed, the super-P.B. of

a =
∫

aiθi dx and $ =
1

2

∫
πijθiθj dx

read

{a, $} = −
∫

δa

δus(x)

δ$

δθs(x)
dx = −

∫ ∑ ∂αi

∂us,k
πsjθiθ

(k)
j dx

(integration by parts have been used). Vanishing of the last in-

tegral can be written as

0 =
δ

δθi(x)

∫ ∑ ∂αi

∂us,k
πsjθiθ

(k)
j dx

=
∑
k

∂αi

∂us,k
πsjθ

(k)
j − (−1)k∂k

x

(
∂αi

∂us,k
πsjθj

)
.

This gives the above equations.



Using Helmholz criterion ⇒ there exists a local functional f̄ =∫
f dx such that

ωi =
δf̄

δui(x)
.

Therefore the vector field is a Hamiltonian one,

ai = πij δf̄

δuj(x)
.

Triviality of H̃2: the bivector

$ + εα = πijδ(x− y) + ε
∑
s

Aij
s δ(s)(x− y)

satisfies the Jacobi identity

[$ + εα, $ + εα] = 0(mod ε2)



iff the inverse matrix is a closed differential form
1

2
πijdx ∧ δui ∧ δuj +

1

2
ε ωi;js dx ∧ δui ∧ δuj,s (mod ε2)

where

ωi;js := πipπjqA
pq
s . (13)

Denote

ω =
1

2
ωi;jsδui ∧ δuj,s.

From closedness δ(dx ∧ ω) = 0 ∈ Λ3 we derive, due to Example
3 of Lecture 2 (see eq. (15)), existence of a one-form dx ∧ φ,
φ = φiδui such that δ(dx ∧ φ) = dx ∧ ω. The vector field a with

ai = πijφj

gives a solution to the coboundary equation

[$, a] = α.



Classification of (0, n)-brackets

{ui(x), uj(y)}[−1] = 0

{ui(x), uj(y)}[0] = gij(u(x))δ′(x− y) + Γij(u)uk
xδ(x− y)

satisfies det(gij(u)) 6= 0

As above, the first nonzero term { , }[0] is itself a Poisson bracket.



Antisymmetry conditions (see eq. (23) of Lecture 2) read

gji(u) = gij(u), Γij
k (u) + Γji

k (u) = ∂kgij(u). (14)

Miura-type transformations reduce to local diffeomorfisms ui 7→
ũi(u)

g̃ij =
∂ũi

∂uk

∂ũj

∂ul
gkl, Γ̃ij

k =
∂ũi

∂up

∂ũj

∂uq

∂ur

∂ũk
Γpq

r +
∂ũi

∂up

∂2ũj

∂uq∂uk
gpq

So the leading coefficient gij(u) determines a symmetric tensor

field on M invariant w.r.t. the action of the Miura group. This

gives a map

Λ̂2/G → symmetric tensors on M.
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Theorem. Let M be a ball. Then the only invariant of a (0, n)

Poisson bracket on Λ̂2
loc with respect to the action of the Miura

group is the signature of the quadratic form gij(u).

Proof. The symmetric nondegenerate tensor gij(u) defines a

pseudo-Riemannian metric

ds2 = gij(u)duiduj,
(
gij

)
=
(
gij
)−1

on the manifold M . Moreover, the functions

Γk
ij(u) := −gjs(u)Γsk

i (u)

are Christoffel coefficients of an affine connection on M (cf. the

transformation law for Γij
k ).



Main Lemma 1. 1) The affine connection Γ is compatible with

the metric,

∇gij = 0.

2) Jacobi identity for the Poisson bracket

{ui(x), uj(y)} = gij(u(x))δ′(x− y) + Γij(u)uk
xδ(x− y)

is equivalent to

Γk
ji = Γk

ij, Rijkl = 0

i.e., Γ is the Levi-Civita connection for the metric, and the Rie-

mann curvature of the metric vanishes.
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Standard arguments of differential geometry ⇒ local existence

of coordinates v1(u), . . . , vn(u) such that the metric becomes

constant

∂vk

∂ui

∂vl

∂uj
gij(u) = ηkl = const.

and the Christoffel coefficients vanish. All constant symmetric

matrices ηkl of a given signature are equivalent w.r.t. linear

changes of coordinates.

The Poisson bracket $ = { , }[0] takes the constant form

$ : {vi(x), vj(y)} = ηijδ′(x− y). (15)
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We reduce the proof of the theorem to killing the ε-tail of the

Poisson bracket

{ui(x), uj(y)} = ηijδ′(x− y) +
∑
k≥1

εk{ui(x), uj(y)}[k] (16)

by the Miura-type transformations with F i
0 =id.

Main Lemma 2. For M = ball all the cocycles in Hk(L̂(M), $)

vanishing at ε = 0 are trivial for k > 0.



Before giving the proofs recall some basic differential geometry.

• Covariant derivatives of a vector field

∇iv
j = ∂iv

j + Γj
ikvk, ∂i =

∂

∂ui

and of (0,2) and (2,0) tensors

∇kgij = ∂kgij − Γs
kigsj − Γs

kjgis, ∇kgij = ∂kgij + Γi
ksg

sj + Γj
ksg

is.

• The Levi-Civita connection is uniquely determined by a sym-

metric non-degenerate tensor gij from the conditions

Γk
ji = Γk

ij, ∇kgij = 0.
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Let (
gij
)
=
(
gij

)−1
, Γij

k = −gisΓj
ks.

Then the definition of the Levi-Civita connection rewrites as

gisΓjk
s = gjsΓik

s , ∂kgij = Γij
k + Γji

k .

• The Riemann curvature of the Levi-Civita connection reads

R
ijk
l := gisgjtRk

slt = gis
(
∂lΓ

jk
s − ∂sΓ

jk
l

)
+ Γij

s Γsk
l − Γik

s Γsj
l .
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Proof of Main Lemma 1. For

{ui(x), uj(y)} = gij(u(x))δ′(x− y) + Γij
k (u)uk

xδ(x− y)

the conditions of skew symmetry (14) imply compatibility of the
connection Γij

k with the metric gij. Let us prove vanishing of
torsion and curvature. The super-functional $ reads

$ =
∫

θi

(
gijθ′j + uk

xΓ
ij
k θj

)
dx.

So
δ$

δθs(x)
= 2

[
gsiθ′i + uk

xΓ
si
k θi

]
.

Compute now

δ$

δus(x)
= θi

[(
Γij

s + Γji
s

)
θ′j + uk

xΓ
ij
k,sθj

]
− ∂x

(
Γij

s θiθj

)
= 2Γji

s θiθ
′
j +

(
Γij

k,s − Γij
s,k

)
uk

xθiθj
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So

{$, $} =
∫ [

Aijkθ′iθ
′
jθk + Bijkθi θj θ′k + Cijkθiθjθk

]
dx

Aijk = −gisΓjk
s + gjsΓjk

s ,

2Bijk =
[
2Γkj

s Γsi
l − gsk

(
Γji

l,s − Γji
s,l

)]
ul

x − (i ↔ j)

Cijk = antisymmetrization of Γsi
l

(
Γjk

m,s − Γjk
s,m

)
ul

xum
x .

Vanishing of the leading coefficients yields the symmetry of the

connection

gsiΓjk
s = gsjΓik

s .

The remaining conditions of vanishing of the integral read

Cijk =
1

3
∂xBijk



Since Bijk depends linearly on ul
x, it must vanish. Using the iden-

tity

gks
(
Γji

l,s − Γji
s,l

)
= gks

(
Γij

s,l − Γij
l,s

)
we arrive at

Bijk = R
kji
l ul

x.

Main Lemma 1 is proved.



Proof of Main Lemma 2. Denote, like above

H̃k = ⊕m>0Hk,m. (17)

We want to prove that H̃1 = H̃2 = 0.

Let us begin with proving triviality of H̃1. From

{a, $} =
∫ ∑

k

∂ai

∂us,m
ηsjθiθ

(m+1)
j dx

we obtain the condition [a, $] = 0 in the form

∑
m

∂ak

∂us,m
ηsjθ

(m+1)
j − (−1)m+1∂m+1

x

(
∂aj

∂us,m
ηskθj

)
= 0 (18)

Collecting the coefficient of θj yields

∂x

[
ηks δ

δus(x)

∫
aj dx

]
= 0.
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Therefore

aj =
∑

c
j
tu

t + total derivative.

But aj|ε=0 = 0. So there exist differential polynomials bj s.t.

aj = ∂xbj, j = 1, . . . , n.



This is the crucial point in the proof: we have shown that the

vector field a is tangent to the level surface of the Casimirs

ūk =
∫

uk dx, k = 1, . . . , n

iaδūk =
∫

aj δūk

δuj(x)
dx =

∫
∂xbk dx = 0.

The remaining part of the proof is rather straightforward. Using

∂

∂ui,s
∂x = ∂x

∂

∂ui,s
+

∂

∂ui,s−1

and also the Pascal triangle identity(
m

n

)
+

(
m

n− 1

)
=

(
m + 1

n

)
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we rewrite the coefficient of θ(r+1) in the form

∂x

 ∂ωk

∂ul,r
−
∑
t≥r

(−1)t

(
t + 1

r

)(
∂ωl

∂uk,t

)(t−r)


+
∂ωk

∂ul,r−1
+ (−1)r ∂ωl

∂uk,r−1
= 0.

Here

ωk = ηlib
i, (ηij) = (ηij)−1,

the last two terms are not present for r = 0. As above, for r = 0

we derive that

∂ωk

∂ul
=

∑
t≥0

(−1)t
(

∂ωl

∂uk,t

)(t)
.



Proceeding by induction in r we prove that the 1-form
∫

dx∧ωi δui

is closed. Using the Helmholz criterion we derive existence of a

differential polynomial f s.t. ω = δ
∫

f dx. Hence

ai = ηij∂x
δf̄

δuj(x)
.

We proved triviality of H̃1.

Let us proceed to prove the triviality of H̃2. The condition ∂α = 0

for α of the form

α =
∫

A
ij
k (u;ux, . . . ; ε)θiθ

(k)
j dx

can be computed similarly to the ultralocal case:
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{α, $} =
∫ ∑

q

∂A
ij
p

∂us,q
ηskθiθ

(p)
j θ

(q+1)
k dx.

We obtain a system of equations

∂A
ij
t

∂ul,s−1
ηlk +

∑
(−1)q+r+s

(
q + r + s

q r

)∂Aki
q+r+s

∂ul,t−q−1

(r)

ηlj

+
∑

(−1)q+r+t

(
q + r + t

q r

) ∂A
jk
s−q

∂ul,q+r+t−1

(r)

ηli = 0

for any i, j, k, s, t (19)

(it is understood that the terms with s−1, t−q−1 or t+q+r−1

negative do not appear in the sum). Recall that the crucial point

in the proof of triviality of the 2-cocycle is to establish vanishing
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of α on differentials of Casimirs

α(δūi, δūj) =
∫

A
ij
0 dx = 0 for any i, j. (20)

We first use (19) for s = t = 0 to prove that

∂x
∑
r

(−1)r

∂A
jk
0

∂ul,r

(r)

ηli = 0.

Hence

A
jk
0 = ∂xBjk

for some differential polynomial Bjk (here we use that

A
ij
k |ε=0 = 0). This implies (20).



The rest of the proof is identical to the proof of vanishing of
cohomology in the ultralocal case. We first construct the vector
field z (see the proof of Lemma 1.1 of Lecture 1) such that for
the cohomologous cocycle α̃ = α+[z, $] the functionals ū1, . . . ,
ūn are Casimirs too. To this end we use the equation (19) for
s = 0, t > 0:

∑
q,r

(−1)q+r

(
q + r

r

)(
∂Aki

q+r

∂ul,t−q−1

)(r)

ηlj+
∑

r

(−1)t+r

(
t + r

r

)(
∂Ajk

0

∂ul,t+r−1

)(r)

ηli = 0.

Differentiating the antisymmetry condition

Aik
0 =

∑
(−1)r+1

(
Aki

r

)(r)
w.r.t. ul,t−1 we identify the first term of the previous equation

with

−
∂Aik

0

∂ul,t−1
ηlj.
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The resulting equation coincides with the condition ∂ak = 0 of

closedness of the 1-cocycle

(ak)i = Aik
0

for every k = 1, . . . , n (see (18) for the explicit form of this

condition). Using the first part of Lemma we arrive at existence

of n differential polynomials q1, . . . , qn s.t.

Aik
0 = ηis∂x

δq̄k

δus(x)
. (21)

Now we are able to change the cocycle α to a cohomological one

to obtain a 2-cocycle

α 7→ α + ∂z =: α′



for

z = qi ∂

∂ui
.

The new 2-cocycle α′ will have the same form as above with
A

ij
0 = 0. Denote

gi;js := ηipηjqA
ij
s , s ≥ 1.

We will now show existence of differential polynomials ωi;j0,
ωi;j1,. . . s.t.

gi;j1 = ∂xωi;j0,

gi;js = ∂xωi;j,s−1 + ωi;j,s−2 for s ≥ 2. (22)

From (19) for s = 1, t = 0 we obtain

∂x
∑
r

(−1)r

∂A
jk
1

∂ul,r

(r)

= 0.



As we already did many times, from the last equation it follows

that

∑
r

(−1)r

∂A
jk
1

∂ul,r

(r)

= 0.

This shows existence of ωi;j0. Using (19) for s = 1 and t > 0 we

inductively prove existence of the differential polynomials ωi;j,t−1.

Actually, we can obtain

ωi;jl =
∑

s≥l+2

∂s−l−2
x gi;js. (23)

From this it readily follows that the coefficients ωi;js satisfy the

antisymmetry conditions

ωi;js =
∑
t≥s

(−1)t+1
(

t
s

)
∂t−s

x ωj;it



Thus they determine a 2-form ω.

Let us prove that the 2-form ω is closed. Denote

Jijk;st :=

 t+s∑
m=s

m−s∑
r=0

+
∑

m≥t+s+1

t∑
r=0

 (−1)m

(
m
r s

)
∂m−r−s

x

∂ωj;k,t−r

∂ui,m

+
∂ωi;j,s

∂uk,t
−

∂ωi;k,t

∂uj,s

the l.h.s. of the equation (15) of Lecture 2 (the conditions of

closedness of a 2-form). Let us show that the l.h.s. in (19) is

equal to

∂xJijk;t−1,s−1 + Jijk;t−1,s−2 + Jijk;t−2,l−1. (24)

To this end we replace the second sum in (19) by

−
∂Aik

s

∂ul,t−1
ηlj.



Lowering the indices by means of ηij and using (22) we ob-
tain (24). From vanishing of (24) we inductively deduce that
Jijk;st = 0 for all i, j, k = 1, . . . , n and all s, t ≥ 0 (observe that the

coefficients Jijk;t0 = Jijk;0s = 0 due to our assumption A
ij
0 = 0.

This proves that the 2-form ω is closed. So ω = δ
∫

dx ∧ φ for
some 1-form φ = φiδui. Introducing the vector field

ai = ηikφk

we finally obtain, for the original cocycle α,

α = ∂(a− z).

Theorem is proved.

Example. The Poisson brackets (9) of the “interpolated” Toda
lattice can be reduced to the canonical form

{u(x), w(y)} = δ′(x− y), {u(x), u(y)} = {w(x), w(y)} = 0



by the Miura-type transformation (u, v) 7→ (u, w),

v′(x) =
1

ε
[w(x + ε)− w(x)] =

∞∑
n=0

1

(n + 1)!
(ε ∂x)

nw(x). (25)

The inverse transformation reads

w(x) = ε ∂x

[
eε ∂x − 1

]−1
v(x) =

∞∑
n=0

Bn

n!
(ε ∂x)

nv(x). (26)

Here Bn are Bernoulli numbers.


