Bihamiltonian structures of PDEs

and Frobenius manifolds

Boris DUBROVIN

SISSA (Trieste)

Lecture 3

Problem of classification of local Poisson brackets

One more example of a local Poisson bracket on the space $\mathcal{L}(M)$, $M=\mathbb{R}$

$$
\{u(x), u(y)\}=u(x) \delta^{\prime}(x-y)+\frac{1}{2} u_{x}(x) \delta(x-y)-\delta^{\prime \prime \prime}(x-y)
$$

Linear + constant (central extensions of Lie algebras)

Exercise. Check that the linear functionals on $\mathcal{L}(M)$

$$
c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n x} u(x) d x
$$

yield the Virasoro algebra

$$
\frac{1}{i}\left\{c_{n}, c_{m}\right\}=\frac{1}{2}(n-m) c_{n+m}+n^{3} \delta_{n+m, 0}
$$

So $\mathcal{L}(M)=V i r^{*}$.

An alternative proof of Jacobi identity: reduce the bracket to a constant (i.e., u-independent) form by Miura transform

$$
u=\frac{1}{4} v^{2}+v^{\prime}, \quad\{v(x), v(y)\}=\delta^{\prime}(x-y)
$$

Indeed:

$$
\begin{gathered}
\{u(x), u(y)\}=\left\{\frac{1}{4} v^{2}(x)+v^{\prime}(x), \frac{1}{4} v^{2}(y)+v^{\prime}(y)\right\} \\
=\frac{1}{4} v(x) v(y)\{v(x), v(y)\}+\frac{1}{2} v(x) \partial_{y}\{v(x), v(y)\}+\frac{1}{2} v(y) \partial_{x}\{v(x), v(y)\}+\partial_{x} \partial_{y}\{v(x), v(y)\} \\
=\frac{1}{4} v(x) v(y) \delta^{\prime}(x-y)-\frac{1}{2} v(x) \delta^{\prime \prime}(x-y)+\frac{1}{2} v(y) \delta^{\prime \prime}(x-y)-\delta^{\prime \prime \prime}(x-y)
\end{gathered}
$$

Use

$$
\begin{gathered}
f(y) \delta(x-y)=f(x) \delta(x-y), \quad f(y) \delta^{\prime}(x-y)=f(x) \delta^{\prime}(x-y)+f^{\prime}(x) \delta(x-y), \\
f(y) \delta^{\prime \prime}(x-y)=f(x) \delta^{\prime \prime}(x-y)+2 f^{\prime}(x) \delta^{\prime}(x-y)+f^{\prime \prime}(x) \delta(x-y)
\end{gathered}
$$

obtain

$$
\begin{gathered}
=\left(\frac{1}{4} v^{2}+v^{\prime}\right) \delta^{\prime}(x-y)+\frac{1}{2}\left(v^{\prime \prime}+\frac{1}{2} v v^{\prime}\right) \delta(x-y)-\delta^{\prime \prime \prime}(x-y) \\
=u(x) \delta^{\prime}(x-y)+\frac{1}{2} u^{\prime}(x) \delta(x-y)-\delta^{\prime \prime \prime}(x-y) .
\end{gathered}
$$

Problems in general classification scheme:

- equivalences
- infinitesimal deformations
- higher obstructions
- rigid objects

Lecture 3

- grading of differential polynomials, evolutionary PDEs, and Poisson brackets. Extended formal loop space.
- Group of Miura-type transformations.
- ($n, 0$)-brackets. Darboux lemma.
- Riemannian geometry and classification of (0,n)-brackets
- On more general (p, q)-brackets

The ain: to classify local Poisson brackets w.r.t. general Miura type transformations of the form

$$
\begin{equation*}
u^{i} \rightarrow \tilde{u}^{i}=F^{i}\left(u ; u_{x}, u_{x x}, \ldots\right) \tag{1}
\end{equation*}
$$

The problem: this is not a group!

Extended formal loop space

Gradation on the ring \mathcal{A} of differential polynomials:

$$
\begin{equation*}
\operatorname{deg} u^{i, k}=k, \quad k \geq 1, \quad \operatorname{deg} f(x ; u)=0 . \tag{2}
\end{equation*}
$$

Completion of the space of local functionals $\hat{\Lambda}_{0}$:

$$
\begin{align*}
& \bar{f}=\int f\left(u ; u_{x}, u_{x x}, \ldots ; \epsilon\right) d x, \\
& f\left(u ; u_{x}, u_{x x}, \ldots\right)=\sum_{k=0}^{\infty} \epsilon^{k} f_{k}\left(u ; u_{x}, \ldots, u^{(k)}\right), \quad f_{k} \in \mathcal{A}, \quad \operatorname{deg} f_{k}=k . \tag{3}
\end{align*}
$$

Still called them differential polynomials
Taking the symmetric tensor algebra of $\hat{\Lambda}_{0}$ we obtain the ring of functionals on the extended formal loop space denoted $\widehat{\mathcal{L}}(M)$.

Systems of evolutionary PDEs:

$$
\begin{align*}
& u_{t}^{i}=\epsilon^{-1} a_{0}^{i}(u)+a_{1}^{i}\left(u ; u_{x}\right)+\epsilon a_{2}^{i}\left(u ; u_{x}, u_{x x}\right)+O\left(\epsilon^{2}\right) \\
& a_{1}^{i}\left(u ; u_{x}\right)=v_{j}^{i}(u) u_{x}^{j}, \\
& a_{2}^{i}\left(u ; u_{x}, u_{x x}\right)=b_{j}^{i}(u) u_{x x}^{j}+\frac{1}{2} c_{j k}^{i}(u) u_{x}^{j} u_{x}^{k} \tag{4}
\end{align*}
$$

etc.
Rule of thumb: introduction of slow variables

$$
\begin{aligned}
& x \mapsto \epsilon x, \quad t \mapsto \epsilon t, \\
& u^{i} \mapsto u^{i}, u_{x}^{i} \mapsto \epsilon u_{x}^{i}, \quad u_{x x}^{i} \mapsto \epsilon^{2} u_{x x}^{i}, \ldots
\end{aligned}
$$

So

$$
u_{t}^{i}=a^{i}\left(u ; u_{x}, u_{x x}, \ldots\right) \mapsto u_{t}^{i}=\frac{1}{\epsilon} a^{i}\left(u ; \epsilon u_{x}, \epsilon^{2} u_{x x}, \ldots\right)
$$

Example 1 KdV

$$
u_{t}+u u_{x}+\frac{\varepsilon^{2}}{12} u_{x x x}=0
$$

Example 2 Toda lattice

$$
\ddot{q}_{n}=e^{q_{n+1}-q_{n}}-e^{q_{n}-q_{n-1}} .
$$

Continuous version:

$$
\begin{gathered}
u_{n}:=q_{n+1}-q_{n}=u(n \varepsilon), \quad v_{n}:=\dot{q}_{n}=v(n \varepsilon), \quad t \mapsto \varepsilon t \\
u_{t}=\frac{v(x+\varepsilon)-v(x)}{\varepsilon}=v_{x}+\frac{1}{2} \varepsilon v_{x x}+O\left(\varepsilon^{2}\right) \\
v_{t}=\frac{e^{u(x)}-e^{u(x-\varepsilon)}}{\varepsilon}=e^{u} u_{x}-\frac{1}{2} \varepsilon\left(e^{u}\right)_{x x}+O\left(\varepsilon^{2}\right)
\end{gathered}
$$

Example 3 Camassa - Holm equation

$$
\begin{aligned}
& u_{t}=\left(1-\varepsilon^{2} \partial_{x}^{2}\right)^{-1}\left\{\frac{3}{2} u u_{x}-\varepsilon^{2}\left[u_{x} u_{x x}+\frac{1}{2} u u_{x x x}\right]\right\} \\
& =\frac{3}{2} u u_{x}+\varepsilon^{2}\left(u u_{x x x}+\frac{7}{2} u_{x} u_{x x}\right)+O\left(\varepsilon^{4}\right)
\end{aligned}
$$

Local bivectors in $\hat{\Lambda}_{\text {loc }}$ represented by infinite sums

$$
\begin{aligned}
& \left\{u^{i}(x), u^{j}(y)\right\}=\sum_{k=-1}^{\infty} \epsilon^{k}\left\{u^{i}(x), u^{j}(y)\right\}^{[k]} \\
& \left\{u^{i}(x), u^{j}(y)\right\}^{[k]}=\sum_{s=0}^{k+1} A_{k, s}^{i j}\left(u ; u_{x}, \ldots, u^{(s)}\right) \delta^{(k-s+1)}(x-y) \\
& A_{k, s}^{i j} \in \mathcal{A}, \quad \operatorname{deg} A_{k, s}^{i j}=s, \quad s=0,1, \ldots, k+1
\end{aligned}
$$

Another description: given

$$
\bar{f}=\int f\left(u ; u_{x}, \ldots\right) d x, \quad \bar{g}=\int g\left(u ; u_{x}, \ldots\right) d x
$$

then

$$
\{\bar{f}, \bar{g}\}^{[k]}=\int h\left(u ; u_{x}, \ldots\right) d x, \quad \operatorname{deg} h=\operatorname{deg} f+\operatorname{deg} g+k+1
$$

More explicitly, the first three terms in the expansion (5) read

$$
\begin{align*}
& \left\{u^{i}(x), u^{j}(y)\right\}^{[-1]}=\pi^{i j}(u(x)) \delta(x-y) \tag{6}\\
& \left\{u^{i}(x), u^{j}(y)\right\}^{[0]}=g^{i j}(u(x)) \delta^{\prime}(x-y)+\Gamma_{k}^{i j}(u(x)) u_{x}^{k} \delta(x-y) \tag{7}\\
& \left\{u^{i}(x), u^{j}(y)\right\}^{[1]}=a^{i j}(u(x)) \delta^{\prime \prime}(x-y)+b_{k}^{i j}(u(x)) u_{x}^{k} \delta^{\prime}(x-y) \\
& \quad+\left[c_{k}^{i j}(u(x)) u_{x x}^{k}+\frac{1}{2} d_{k l}^{i j}(u(x)) u_{x}^{k} u_{x}^{l}\right] \delta(x-y) \tag{8}
\end{align*}
$$

where $\pi^{i j}, g^{i j}(u), \Gamma^{i j}(u), a^{i j}(u), b_{k}^{i j}(u), c_{k}^{i j}(u), d_{k l}^{i j}(u)$ are some functions on the manifold M.

Exercise. The Schouten - Nijenhuis bracket gives a well-defined map

$$
\epsilon[,]: \hat{\Lambda}_{\mathrm{loc}}^{k} \times \hat{\Lambda}_{\mathrm{loc}}^{l} \rightarrow \hat{\Lambda}_{\mathrm{loc}}^{k+l-1}
$$

Example 1. Bihamiltonian structure of KdV

$$
\begin{gathered}
u_{t}=u u_{x}+\frac{\epsilon^{2}}{12} u_{x x x}=\left\{u(x), H_{1}\right\}_{1}=\frac{3}{2}\left\{u(x), H_{0}\right\}_{2} \\
\{u(x), u(y)\}_{1}=\delta^{\prime}(x-y) \\
\{u(x), u(y)\}_{2}=u(x) \delta^{\prime}(x-y)+\frac{1}{2} u_{x} \delta(x-y)+\frac{\epsilon^{2}}{8} \delta^{\prime \prime \prime}(x-y) \\
H_{1}=\int\left(\frac{1}{6} u^{3}-\frac{\epsilon^{2}}{24} u_{x}^{2}\right) d x, \quad H_{0}=\int \frac{1}{2} u^{2} d x
\end{gathered}
$$

Example 2. Toda lattice

$$
\begin{gathered}
\dot{u}_{n}=v_{n+1}-v_{n}=\left\{u_{n}, H\right\} \\
\dot{v}_{n}=e^{u_{n}}-e^{u_{n-1}}=\left\{v_{n}, H\right\} \\
\left\{u_{m}, u_{n}\right\}=\left\{v_{m}, v_{n}\right\}=0, \quad\left\{u_{m}, v_{n}\right\}=\delta_{m, n-1}-\delta_{m n} \\
H=\sum\left(\frac{1}{2} v_{n}^{2}+e^{u_{n}}\right)
\end{gathered}
$$

Interpolating obtain

$$
\begin{gather*}
\{u(x), v(y)\}=\frac{1}{\epsilon}[\delta(x-y+\epsilon)-\delta(x-y)]=\delta^{\prime}(x-y)+\frac{\epsilon}{2} \delta^{\prime \prime}(x-y)+O\left(\epsilon^{2}\right) \tag{9}\\
H=\int\left[\frac{1}{2} v^{2}+e^{u}\right] d x
\end{gather*}
$$

Miura group

The transformations

$$
\begin{align*}
& u^{i} \mapsto \tilde{u}^{i}=\sum_{k=0}^{\infty} \epsilon^{k} F_{k}^{i}\left(u ; u_{x}, \ldots, u^{(k)}\right), \quad i=1, \ldots, n \\
& F_{k}^{i} \in \mathcal{A}, \quad \operatorname{deg} F_{k}^{i}=k \tag{10}\\
& \operatorname{det}\left(\frac{\partial F_{0}^{i}(u)}{\partial u^{j}}\right) \neq 0 .
\end{align*}
$$

Lemma. The transformations of the form (10) form a group.

Example. The clasical Miura transformation

$$
u=\frac{1}{4} v^{2}+\epsilon v^{\prime}
$$

Inversion, $u \neq 0$

$$
v=2 \sqrt{u-\epsilon v^{\prime}}=2 \sqrt{u}-\epsilon \frac{v^{\prime}}{\sqrt{u}}+O\left(\epsilon^{2}\right)=2 \sqrt{u}-\epsilon \frac{u^{\prime}}{u}+O\left(\epsilon^{2}\right)
$$

\Rightarrow first two terms of the solution $v=F\left(u ; u^{\prime}, \ldots ; \epsilon\right)$.
Remark. Corresponds to the WKB solution to

$$
\begin{gathered}
\epsilon^{2} y^{\prime \prime}=\frac{1}{4} u y, \quad v=4 \epsilon \frac{y^{\prime}}{y} \\
y=u^{-1 / 4} e^{\frac{1}{2 \epsilon} \int \sqrt{u} d x}(1+O(\epsilon)) .
\end{gathered}
$$

Definition. The group \mathcal{G} of all the transformations of the form (10) is called Miura group ("local diffeomorphisms" of the extended formal loop space $\hat{\mathcal{L}}(M)$)

Lemma. The class of local functionals, evolutionary PDEs, and local translation invariant multivectors on the extended formal loop space $\widehat{\mathcal{L}}(M)$ is invariant w.r.t. the action of the Miura group.

Exercise 1. An arbitrary evolutionary PDE

$$
u_{t}^{i}=\frac{1}{\epsilon} a_{0}^{i}(u)+A_{j}^{i}(u) u_{x}^{j}+O(\epsilon), \quad i=1, \ldots, n
$$

with $a_{0}\left(u_{0}\right) \neq 0$ can be reduced, by a Miura-type transformation near $u=u_{0}$, to a constant form

$$
a_{0}=\text { const }, \quad a_{i}=0 \text { for } i>0
$$

Exercise 2. Transformation law of Hamiltonian operators

$$
A^{i j}=\sum A_{k}^{i j}\left(u ; u_{x}, \ldots\right) \partial_{x}^{k}
$$

of local bivectors:

$$
\begin{equation*}
\widetilde{A}^{i j}=L_{k}^{* i} A^{k l} L_{l}^{j} \tag{11}
\end{equation*}
$$

where the matrix-valued operator L_{k}^{i} and the adjoint one $L^{* i}{ }_{k}$ are given by

$$
L_{k}^{i}=\sum_{s}\left(-\partial_{x}\right)^{s} \circ \frac{\partial \widetilde{u}^{i}}{\partial u^{k, s}}, \quad L_{k}^{* i}=\sum_{s} \frac{\partial \widetilde{u}^{i}}{\partial u^{k, s}} \partial_{x}^{s} .
$$

Main Problem. To describe the orbits of the action of the Miura group \mathcal{G} on $\hat{\Lambda}^{2}$.

Darboux lemma on $\hat{\mathcal{L}}(M), M=$ a ball

$$
\begin{aligned}
& \left\{u^{i}(x), u^{j}(y)\right\}=\frac{1}{\epsilon} \pi^{i j}(u(x)) \delta(x-y)+\sum_{k \geq 0} \epsilon^{k}\left\{u^{i}(x), u^{j}(y)\right\}^{[k]} \\
& \left\{u^{i}(x), u^{j}(y)\right\}^{[k]}=\sum_{s=0}^{k+1} A_{k, s}^{i j}\left(u ; u_{x}, \ldots, u^{(s)}\right) \delta^{(k-s+1)}(x-y), \\
& A_{k, s}^{i j} \in \mathcal{A}, \quad \operatorname{deg} A_{k, s}^{i j}=s, \quad s=0,1, \ldots, k+1 .
\end{aligned}
$$

Assume:

$$
\operatorname{det}\left(\pi^{i j}(u)\right) \neq 0
$$

Theorem. The P.B. is equivalent to

$$
\left\{\tilde{u}^{i}(x), \tilde{u}^{j}(y)\right\}=\frac{1}{\epsilon} \tilde{\pi}^{i j} \delta(x-y), \quad \tilde{\pi}^{i j}=\mathrm{const}
$$

Proof. Step 1: the leading term itself is itself a Poisson bracket on $\widehat{\mathcal{L}}(M) \Rightarrow$ finite-dimensional Jacobi identity for $\pi^{i j}(u)$

Step 2: try to kill all the terms with $k \geq 0$ of the expansion

$$
\left\{u^{i}(x), u^{j}(y)\right\}=\frac{1}{\epsilon} \pi^{i j} \delta(x-y)+\sum_{k \geq 0} \epsilon^{k}\left\{u^{i}(x), u^{j}(y)\right\}^{[k]}
$$

by Miura-type transformations with $F_{0}^{i}(u)=u^{i}, i=1, \ldots, n$. Triviality of Poisson cohomology $H^{2}(\widehat{\mathcal{L}}(M), \varpi)$ of the bivector

$$
\varpi=\int \pi^{i j} \theta_{i} \theta_{j} d x, \quad \pi^{i j}=-\pi^{j i}=\mathrm{const}, \quad \operatorname{det} \pi^{i j} \neq 0
$$

is needed.

Natural decomposition

$$
H^{k}=\oplus_{m \geq-1} H^{k, m}
$$

with respect to ϵ^{m}. Denote

$$
\begin{equation*}
\tilde{H}^{k}:=\oplus_{m \geq 0} H^{k, m} \tag{12}
\end{equation*}
$$

Lemma 1. The first non-zero term in the expansion

$$
\left\{u^{i}(x), u^{j}(y)\right\}=\frac{1}{\epsilon} \varpi+\sum_{k \geq 0} \epsilon^{k}\left\{u^{i}(x), u^{j}(y)\right\}^{[k]}
$$

is a 2-cocycle in the Poisson cohomology \tilde{H}^{2} of the ultralocal Poisson bracket ϖ.

To kill this first nonzero term we need to prove that, for any 2cocycle $\in \hat{\Lambda}_{\text {loc }}^{2}$ of ϖ, there exists an evolutionary vector field a such that the Lie derivative Liea $_{a} \varpi$ gives the cocycle and $\left.a\right|_{\epsilon=0}=$ 0.

Main Lemma. For $M=$ ball the Poisson cohomologies $\widetilde{H}^{k}(\widehat{\mathcal{L}}(M), \varpi)$ vanish for $k>0$.

Let us prove first triviality of \widetilde{H}^{1}. Let an evolutionary vector field a with the components a^{1}, \ldots, a^{n} be a cocycle. Denote

$$
\omega_{i}=\pi_{i j} a^{j}
$$

where the constant matrix $\pi_{i j}$ is inverse to $\pi^{i j}$. The condition $\partial a=L i e_{a} \varpi=0$ reads

$$
\frac{\partial \omega_{i}}{\partial u^{j}, s}=\sum_{t \geq s}(-1)^{t}\binom{t}{s} \partial_{x}^{t-s} \frac{\partial \omega_{j}}{\partial u^{i, t}} .
$$

Indeed, the super-P.B. of

$$
a=\int a^{i} \theta_{i} d x \quad \text { and } \quad \varpi=\frac{1}{2} \int \pi^{i j} \theta_{i} \theta_{j} d x
$$

read

$$
\{a, \varpi\}=-\int \frac{\delta a}{\delta u^{s}(x)} \frac{\delta \varpi}{\delta \theta_{s}(x)} d x=-\int \sum \frac{\partial \alpha^{i}}{\partial u^{s, k}} \pi^{s j} \theta_{i} \theta_{j}^{(k)} d x
$$

(integration by parts have been used). Vanishing of the last integral can be written as

$$
\begin{gathered}
0=\frac{\delta}{\delta \theta_{i}(x)} \int \sum \frac{\partial \alpha^{i}}{\partial u^{s, k}} \pi^{s j} \theta_{i} \theta_{j}^{(k)} d x \\
=\sum_{k} \frac{\partial \alpha^{i}}{\partial u^{s, k}} \pi^{s j} \theta_{j}^{(k)}-(-1)^{k} \partial_{x}^{k}\left(\frac{\partial \alpha^{i}}{\partial u^{s, k}} \pi^{s j} \theta_{j}\right) .
\end{gathered}
$$

This gives the above equations.

Using Helmholz criterion \Rightarrow there exists a local functional $\bar{f}=$ $\int f d x$ such that

$$
\omega_{i}=\frac{\delta \bar{f}}{\delta u^{i}(x)}
$$

Therefore the vector field is a Hamiltonian one,

$$
a^{i}=\pi^{i j} \frac{\delta \bar{f}}{\delta u^{j}(x)}
$$

Triviality of \tilde{H}^{2} : the bivector

$$
\varpi+\varepsilon \alpha=\pi^{i j} \delta(x-y)+\varepsilon \sum_{s} A_{s}^{i j} \delta^{(s)}(x-y)
$$

satisfies the Jacobi identity

$$
[\varpi+\varepsilon \alpha, \varpi+\varepsilon \alpha]=0\left(\bmod \varepsilon^{2}\right)
$$

iff the inverse matrix is a closed differential form

$$
\frac{1}{2} \pi_{i j} d x \wedge \delta u^{i} \wedge \delta u^{j}+\frac{1}{2} \varepsilon \omega_{i ; j s} d x \wedge \delta u^{i} \wedge \delta u^{j, s}\left(\bmod \varepsilon^{2}\right)
$$

where

$$
\begin{equation*}
\omega_{i ; j s}:=\pi_{i p} \pi_{j q} A_{s}^{p q} \tag{13}
\end{equation*}
$$

Denote

$$
\omega=\frac{1}{2} \omega_{i ; j s} \delta u^{i} \wedge \delta u^{j, s}
$$

From closedness $\delta(d x \wedge \omega)=0 \in \wedge_{3}$ we derive, due to Example 3 of Lecture 2 (see eq. (15)), existence of a one-form $d x \wedge \phi$, $\phi=\phi_{i} \delta u^{i}$ such that $\delta(d x \wedge \phi)=d x \wedge \omega$. The vector field a with

$$
a^{i}=\pi^{i j} \phi_{j}
$$

gives a solution to the coboundary equation

$$
[\varpi, a]=\alpha
$$

Classification of ($0, n$)-brackets

$$
\begin{gathered}
\left\{u^{i}(x), u^{j}(y)\right\}^{[-1]}=0 \\
\left\{u^{i}(x), u^{j}(y)\right\}^{[0]}=g^{i j}(u(x)) \delta^{\prime}(x-y)+\Gamma^{i j}(u) u_{x}^{k} \delta(x-y)
\end{gathered}
$$

$$
\text { satisfies } \operatorname{det}\left(g^{i j}(u)\right) \neq 0
$$

As above, the first nonzero term $\{,\}^{[0]}$ is itself a Poisson bracket.

Antisymmetry conditions (see eq. (23) of Lecture 2) read

$$
\begin{equation*}
g^{j i}(u)=g^{i j}(u), \quad \Gamma_{k}^{i j}(u)+\Gamma_{k}^{j i}(u)=\partial_{k} g^{i j}(u) \tag{14}
\end{equation*}
$$

Miura-type transformations reduce to local diffeomorfisms $u^{i} \mapsto$ $\tilde{u}^{i}(u)$

$$
\tilde{g}^{i j}=\frac{\partial \tilde{u}^{i}}{\partial u^{k}} \frac{\partial \tilde{u}^{j}}{\partial u^{l}} g^{k l}, \quad \tilde{\Gamma}_{k}^{i j}=\frac{\partial \tilde{u}^{i}}{\partial u^{p}} \frac{\partial \tilde{u}^{j}}{\partial u^{q}} \frac{\partial u^{r}}{\partial \tilde{u}^{k}} \Gamma_{r}^{p q}+\frac{\partial \tilde{u}^{i}}{\partial u^{p}} \frac{\partial^{2} \tilde{u}^{j}}{\partial u^{q} \partial u^{k}} g^{p q}
$$

So the leading coefficient $g^{i j}(u)$ determines a symmetric tensor field on M invariant w.r.t. the action of the Miura group. This gives a map

$$
\hat{\Lambda}^{2} / \mathcal{G} \rightarrow \text { symmetric tensors on } M
$$

Theorem. Let M be a ball. Then the only invariant of a $(0, n)$ Poisson bracket on $\hat{\Lambda}_{\text {loc }}^{2}$ with respect to the action of the Miura group is the signature of the quadratic form $g^{i j}(u)$.

Proof. The symmetric nondegenerate tensor $g^{i j}(u)$ defines a pseudo-Riemannian metric

$$
d s^{2}=g_{i j}(u) d u^{i} d u^{j}, \quad\left(g_{i j}\right)=\left(g^{i j}\right)^{-1}
$$

on the manifold M. Moreover, the functions

$$
\Gamma_{i j}^{k}(u):=-g_{j s}(u) \Gamma_{i}^{s k}(u)
$$

are Christoffel coefficients of an affine connection on M (cf. the transformation law for $\Gamma_{k}^{i j}$).

Main Lemma 1.1) The affine connection Γ is compatible with the metric,

$$
\nabla g_{i j}=0
$$

2) Jacobi identity for the Poisson bracket

$$
\left\{u^{i}(x), u^{j}(y)\right\}=g^{i j}(u(x)) \delta^{\prime}(x-y)+\Gamma^{i j}(u) u_{x}^{k} \delta(x-y)
$$

is equivalent to

$$
\Gamma_{j i}^{k}=\Gamma_{i j}^{k}, \quad R_{i j k l}=0
$$

i.e., Γ is the Levi-Civita connection for the metric, and the Riemann curvature of the metric vanishes.

Standard arguments of differential geometry \Rightarrow local existence of coordinates $v^{1}(u), \ldots, v^{n}(u)$ such that the metric becomes constant

$$
\frac{\partial v^{k}}{\partial u^{i}} \frac{\partial v^{l}}{\partial u^{j}} g^{i j}(u)=\eta^{k l}=\text { const. }
$$

and the Christoffel coefficients vanish. All constant symmetric matrices $\eta^{k l}$ of a given signature are equivalent w.r.t. linear changes of coordinates.

The Poisson bracket $\varpi=\{,\}^{[0]}$ takes the constant form

$$
\begin{equation*}
\varpi: \quad\left\{v^{i}(x), v^{j}(y)\right\}=\eta^{i j} \delta^{\prime}(x-y) . \tag{15}
\end{equation*}
$$

We reduce the proof of the theorem to killing the ϵ-tail of the Poisson bracket

$$
\begin{equation*}
\left\{u^{i}(x), u^{j}(y)\right\}=\eta^{i j} \delta^{\prime}(x-y)+\sum_{k \geq 1} \epsilon^{k}\left\{u^{i}(x), u^{j}(y)\right\}^{[k]} \tag{16}
\end{equation*}
$$

by the Miura-type transformations with $F_{0}^{i}=i d$.
Main Lemma 2. For $M=$ ball all the cocycles in $H^{k}(\widehat{\mathcal{L}}(M), \varpi)$ vanishing at $\epsilon=0$ are trivial for $k>0$.

Before giving the proofs recall some basic differential geometry.

- Covariant derivatives of a vector field

$$
\nabla_{i} v^{j}=\partial_{i} v^{j}+\Gamma_{i k}^{j} v^{k}, \quad \partial_{i}=\frac{\partial}{\partial u^{i}}
$$

and of $(0,2)$ and $(2,0)$ tensors

$$
\nabla_{k} g_{i j}=\partial_{k} g_{i j}-\Gamma_{k i}^{s} g_{s j}-\Gamma_{k j}^{s} g_{i s}, \quad \nabla_{k} g^{i j}=\partial_{k} g^{i j}+\Gamma_{k s}^{i} g^{s j}+\Gamma_{k s}^{j} g^{i s} .
$$

- The Levi-Civita connection is uniquely determined by a symmetric non-degenerate tensor $g_{i j}$ from the conditions

$$
\Gamma_{j i}^{k}=\Gamma_{i j}^{k}, \quad \nabla_{k} g_{i j}=0
$$

Let

$$
\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}, \quad \Gamma_{k}^{i j}=-g^{i s} \Gamma_{k s}^{j}
$$

Then the definition of the Levi-Civita connection rewrites as

$$
g^{i s} \Gamma_{s}^{j k}=g^{j s} \Gamma_{s}^{i k}, \quad \partial_{k} g^{i j}=\Gamma_{k}^{i j}+\Gamma_{k}^{j i}
$$

- The Riemann curvature of the Levi-Civita connection reads

$$
R_{l}^{i j k}:=g^{i s} g^{j t} R_{s l t}^{k}=g^{i s}\left(\partial_{l} \Gamma_{s}^{j k}-\partial_{s} \Gamma_{l}^{j k}\right)+\Gamma_{s}^{i j} \Gamma_{l}^{s k}-\Gamma_{s}^{i k} \Gamma_{l}^{s j}
$$

Proof of Main Lemma 1. For

$$
\left\{u^{i}(x), u^{j}(y)\right\}=g^{i j}(u(x)) \delta^{\prime}(x-y)+\Gamma_{k}^{i j}(u) u_{x}^{k} \delta(x-y)
$$

the conditions of skew symmetry (14) imply compatibility of the connection $\Gamma_{k}^{i j}$ with the metric $g^{i j}$. Let us prove vanishing of torsion and curvature. The super-functional ϖ reads

$$
\varpi=\int \theta_{i}\left(g^{i j} \theta_{j}^{\prime}+u_{x}^{k} \Gamma_{k}^{i j} \theta_{j}\right) d x .
$$

So

$$
\frac{\delta \varpi}{\delta \theta_{s}(x)}=2\left[g^{s i} \theta_{i}^{\prime}+u_{x}^{k} \Gamma_{k}^{s i} \theta_{i}\right] .
$$

Compute now

$$
\begin{aligned}
\frac{\delta \varpi}{\delta u^{s}(x)}= & \theta_{i}\left[\left(\Gamma_{s}^{i j}+\Gamma_{s}^{j i}\right) \theta_{j}^{\prime}+u_{x}^{k} \Gamma_{k, s}^{i j} \theta_{j}\right]-\partial_{x}\left(\Gamma_{s}^{i j} \theta_{i} \theta_{j}\right) \\
& =2 \Gamma_{s}^{j i} \theta_{i} \theta_{j}^{\prime}+\left(\Gamma_{k, s}^{i j}-\Gamma_{s, k}^{i j}\right) u_{x}^{k} \theta_{i} \theta_{j}
\end{aligned}
$$

So

$$
\begin{gathered}
\{\varpi, \varpi\}=\int\left[A^{i j k} \theta_{i}^{\prime} \theta_{j}^{\prime} \theta_{k}+B^{i j k} \theta_{i} \theta_{j} \theta_{k}^{\prime}+C^{i j k} \theta_{i} \theta_{j} \theta_{k}\right] d x \\
A^{i j k}=-g^{i s} \Gamma_{s}^{j k}+g^{j s} \Gamma_{s}^{j k} \\
2 B^{i j k}=\left[2 \Gamma_{s}^{k j} \Gamma_{l}^{s i}-g^{s k}\left(\Gamma_{l, s}^{j i}-\Gamma_{s, l}^{j i}\right)\right] u_{x}^{l}-(i \leftrightarrow j) \\
C^{i j k}=\text { antisymmetrization of } \Gamma_{l}^{s i}\left(\Gamma_{m, s}^{j k}-\Gamma_{s, m}^{j k}\right) u_{x}^{l} u_{x}^{m}
\end{gathered}
$$

Vanishing of the leading coefficients yields the symmetry of the connection

$$
g^{s i} \Gamma_{s}^{j k}=g^{s j} \Gamma_{s}^{i k}
$$

The remaining conditions of vanishing of the integral read

$$
C^{i j k}=\frac{1}{3} \partial_{x} B^{i j k}
$$

Since $B^{i j k}$ depends linearly on u_{x}^{l}, it must vanish. Using the identity

$$
g^{k s}\left(\Gamma_{l, s}^{j i}-\Gamma_{s, l}^{j i}\right)=g^{k s}\left(\Gamma_{s, l}^{i j}-\Gamma_{l, s}^{i j}\right)
$$

we arrive at

$$
B^{i j k}=R_{l}^{k j i} u_{x}^{l} .
$$

Main Lemma 1 is proved.

Proof of Main Lemma 2. Denote, like above

$$
\begin{equation*}
\tilde{H}^{k}=\oplus_{m>0} H^{k, m} \tag{17}
\end{equation*}
$$

We want to prove that $\tilde{H}^{1}=\tilde{H}^{2}=0$.
Let us begin with proving triviality of \tilde{H}^{1}. From

$$
\{a, \varpi\}=\int \sum_{k} \frac{\partial a^{i}}{\partial u^{s, m}} \eta^{s j} \theta_{i} \theta_{j}^{(m+1)} d x
$$

we obtain the condition $[a, \varpi]=0$ in the form

$$
\begin{equation*}
\sum_{m} \frac{\partial a^{k}}{\partial u^{s, m}} \eta^{s j} \theta_{j}^{(m+1)}-(-1)^{m+1} \partial_{x}^{m+1}\left(\frac{\partial a^{j}}{\partial u^{s, m}} \eta^{s k} \theta_{j}\right)=0 \tag{18}
\end{equation*}
$$

Collecting the coefficient of θ_{j} yields

$$
\partial_{x}\left[\eta^{k s} \frac{\delta}{\delta u^{s}(x)} \int a^{j} d x\right]=0
$$

Therefore

$$
a^{j}=\sum c_{t}^{j} u^{t}+\text { total derivative }
$$

But $\left.a^{j}\right|_{\epsilon=0}=0$. So there exist differential polynomials b^{j} s.t.

$$
a^{j}=\partial_{x} b^{j}, \quad j=1, \ldots, n
$$

This is the crucial point in the proof: we have shown that the vector field a is tangent to the level surface of the Casimirs

$$
\begin{gathered}
\bar{u}^{k}=\int u^{k} d x, \quad k=1, \ldots, n \\
i_{a} \delta \bar{u}^{k}=\int a^{j} \frac{\delta \bar{u}^{k}}{\delta u j(x)} d x=\int \partial_{x} b^{k} d x=0
\end{gathered}
$$

The remaining part of the proof is rather straightforward. Using

$$
\frac{\partial}{\partial u^{i, s}} \partial_{x}=\partial_{x} \frac{\partial}{\partial u^{i, s}}+\frac{\partial}{\partial u^{i, s-1}}
$$

and also the Pascal triangle identity

$$
\binom{m}{n}+\binom{m}{n-1}=\binom{m+1}{n}
$$

we rewrite the coefficient of $\theta^{(r+1)}$ in the form

$$
\begin{gathered}
\partial_{x}\left[\frac{\partial \omega_{k}}{\partial u^{l, r}}-\sum_{t \geq r}(-1)^{t}\binom{t+1}{r}\left(\frac{\partial \omega_{l}}{\partial u^{k, t}}\right)^{(t-r)}\right] \\
+\frac{\partial \omega_{k}}{\partial u^{l, r-1}}+(-1)^{r} \frac{\partial \omega_{l}}{\partial u^{k, r-1}}=0
\end{gathered}
$$

Here

$$
\omega_{k}=\eta_{l i} b^{i}, \quad\left(\eta_{i j}\right)=\left(\eta^{i j}\right)^{-1}
$$

the last two terms are not present for $r=0$. As above, for $r=0$ we derive that

$$
\frac{\partial \omega_{k}}{\partial u^{l}}=\sum_{t \geq 0}(-1)^{t}\left(\frac{\partial \omega_{l}}{\partial u^{k, t}}\right)^{(t)}
$$

Proceeding by induction in r we prove that the 1-form $\int d x \wedge \omega_{i} \delta u^{i}$ is closed. Using the Helmholz criterion we derive existence of a differential polynomial f s.t. $\omega=\delta \int f d x$. Hence

$$
a^{i}=\eta^{i j} \partial_{x} \frac{\delta \bar{f}}{\delta u^{j}(x)}
$$

We proved triviality of \tilde{H}^{1}.

Let us proceed to prove the triviality of \tilde{H}^{2}. The condition $\partial \alpha=0$ for α of the form

$$
\alpha=\int A_{k}^{i j}\left(u ; u_{x}, \ldots ; \epsilon\right) \theta_{i} \theta_{j}^{(k)} d x
$$

can be computed similarly to the ultralocal case:

$$
\{\alpha, \varpi\}=\int \sum_{q} \frac{\partial A_{p}^{i j}}{\partial u^{s, q}} \eta^{s k} \theta_{i} \theta_{j}^{(p)} \theta_{k}^{(q+1)} d x
$$

We obtain a system of equations

$$
\begin{align*}
& \frac{\partial A_{t}^{i j}}{\partial u^{l, s-1}} \eta^{l k}+\sum(-1)^{q+r+s}\binom{q+r+s}{q}\left(\frac{\partial A_{q+r+s}^{k i}}{\partial u^{l, t-q-1}}\right)^{(r)} \eta^{l j} \\
& \quad+\sum(-1)^{q+r+t}\binom{q+r+t}{q}\left(\frac{\partial A_{s-q}^{j k}}{\partial u^{l, q+r+t-1}}\right)^{(r)} \eta^{l i}=0 \\
& \quad \text { for any } i, j, k, s, t \tag{19}
\end{align*}
$$

(it is understood that the terms with $s-1, t-q-1$ or $t+q+r-1$ negative do not appear in the sum). Recall that the crucial point in the proof of triviality of the 2-cocycle is to establish vanishing
of α on differentials of Casimirs

$$
\begin{equation*}
\alpha\left(\delta \bar{u}^{i}, \delta \bar{u}^{j}\right)=\int A_{0}^{i j} d x=0 \quad \text { for any } i, j \tag{20}
\end{equation*}
$$

We first use (19) for $s=t=0$ to prove that

$$
\partial_{x} \sum_{r}(-1)^{r}\left(\frac{\partial A_{0}^{j k}}{\partial u^{l, r}}\right)^{(r)} \eta^{l i}=0
$$

Hence

$$
A_{0}^{j k}=\partial_{x} B^{j k}
$$

for some differential polynomial $B^{j k}$ (here we use that $\left.A_{k}^{i j}\right|_{\epsilon=0}=0$). This implies (20).

The rest of the proof is identical to the proof of vanishing of cohomology in the ultralocal case. We first construct the vector field z (see the proof of Lemma 1.1 of Lecture 1) such that for the cohomologous cocycle $\tilde{\alpha}=\alpha+[z, \varpi]$ the functionals \bar{u}^{1}, \ldots, \bar{u}^{n} are Casimirs too. To this end we use the equation (19) for $s=0, t>0$:

$$
\sum_{q, r}(-1)^{q+r}\binom{q+r}{r}\left(\frac{\partial A_{q+r}^{k i}}{\partial u^{l, t-q-1}}\right)^{(r)} \eta^{l j}+\sum_{r}(-1)^{t+r}\binom{t+r}{r}\left(\frac{\partial A_{0}^{j k}}{\partial u^{l, t+r-1}}\right)^{(r)} \eta^{l i}=0 .
$$

Differentiating the antisymmetry condition

$$
A_{0}^{i k}=\sum(-1)^{r+1}\left(A_{r}^{k i}\right)^{(r)}
$$

w.r.t. $u^{l, t-1}$ we identify the first term of the previous equation with

$$
-\frac{\partial A_{0}^{i k}}{\partial u^{l, t-1}} \eta^{l j}
$$

The resulting equation coincides with the condition $\partial a^{k}=0$ of closedness of the 1-cocycle

$$
\left(a^{k}\right)^{i}=A_{0}^{i k}
$$

for every $k=1, \ldots, n$ (see (18) for the explicit form of this condition). Using the first part of Lemma we arrive at existence of n differential polynomials q^{1}, \ldots, q^{n} s.t.

$$
\begin{equation*}
A_{0}^{i k}=\eta^{i s} \partial x \frac{\delta \bar{q}^{k}}{\delta u^{s}(x)} \tag{21}
\end{equation*}
$$

Now we are able to change the cocycle α to a cohomological one to obtain a 2-cocycle

$$
\alpha \mapsto \alpha+\partial z=: \alpha^{\prime}
$$

for

$$
z=q^{i} \frac{\partial}{\partial u^{i}} .
$$

The new 2-cocycle α^{\prime} will have the same form as above with $A_{0}^{i j}=0$. Denote

$$
g_{i ; j s}:=\eta_{i p} \eta_{j q} A_{s}^{i j}, \quad s \geq 1
$$

We will now show existence of differential polynomials $\omega_{i ; j 0}$, $\omega_{i ; j 1}, \ldots$ s.t.

$$
\begin{align*}
& g_{i ; j 1}=\partial_{x} \omega_{i ; j 0} \\
& g_{i ; j s}=\partial_{x} \omega_{i ; j, s-1}+\omega_{i ; j, s-2} \quad \text { for } s \geq 2 \tag{22}
\end{align*}
$$

From (19) for $s=1, t=0$ we obtain

$$
\partial_{x} \sum_{r}(-1)^{r}\left(\frac{\partial A_{1}^{j k}}{\partial u^{l, r}}\right)^{(r)}=0
$$

As we already did many times, from the last equation it follows that

$$
\sum_{r}(-1)^{r}\left(\frac{\partial A_{1}^{j k}}{\partial u^{l, r}}\right)^{(r)}=0
$$

This shows existence of $\omega_{i ; j 0}$. Using (19) for $s=1$ and $t>0$ we inductively prove existence of the differential polynomials $\omega_{i ; j, t-1}$. Actually, we can obtain

$$
\begin{equation*}
\omega_{i ; j l}=\sum_{s \geq l+2} \partial_{x}^{s-l-2} g_{i ; j s} \tag{23}
\end{equation*}
$$

From this it readily follows that the coefficients $\omega_{i ; j s}$ satisfy the antisymmetry conditions

$$
\omega_{i ; j s}=\sum_{t \geq s}(-1)^{t+1}\binom{t}{s} \partial_{x}^{t-s} \omega_{j ; i t}
$$

Thus they determine a 2 -form ω.
Let us prove that the 2 -form ω is closed. Denote

$$
\begin{gathered}
J_{i j k ; s t}:=\left(\sum_{m=s}^{t+s} \sum_{r=0}^{m-s}+\sum_{m \geq t+s+1} \sum_{r=0}^{t}\right)(-1)^{m}\binom{m}{r s} \partial_{x}^{m-r-s} \frac{\partial \omega_{j, k, t-r}}{\partial u^{i, m}} \\
+\frac{\partial \omega_{i, j, s}}{\partial u^{k, t}}-\frac{\partial \omega_{i, k, t}}{\partial u_{i}, s}
\end{gathered}
$$

the I.h.s. of the equation (15) of Lecture 2 (the conditions of closedness of a 2 -form). Let us show that the I.h.s. in (19) is equal to

$$
\begin{equation*}
\partial_{x} J_{i j k ; t-1, s-1}+J_{i j k ; t-1, s-2}+J_{i j k ; t-2, l-1} \tag{24}
\end{equation*}
$$

To this end we replace the second sum in (19) by

$$
-\frac{\partial A_{s}^{i k}}{\partial u^{l, t-1}} \eta^{l j} .
$$

Lowering the indices by means of $\eta_{i j}$ and using (22) we obtain (24). From vanishing of (24) we inductively deduce that $J_{i j k ; s t}=0$ for all $i, j, k=1, \ldots, n$ and all $s, t \geq 0$ (observe that the coefficients $J_{i j k ; t 0}=J_{i j k ; 0 s}=0$ due to our assumption $A_{0}^{i j}=0$. This proves that the 2-form ω is closed. So $\omega=\delta \int d x \wedge \phi$ for some 1-form $\phi=\phi_{i} \delta u^{i}$. Introducing the vector field

$$
a^{i}=\eta^{i k} \phi_{k}
$$

we finally obtain, for the original cocycle α,

$$
\alpha=\partial(a-z)
$$

Theorem is proved.
Example. The Poisson brackets (9) of the "interpolated" Toda lattice can be reduced to the canonical form

$$
\{u(x), w(y)\}=\delta^{\prime}(x-y), \quad\{u(x), u(y)\}=\{w(x), w(y)\}=0
$$

by the Miura-type transformation $(u, v) \mapsto(u, w)$,

$$
\begin{equation*}
v^{\prime}(x)=\frac{1}{\epsilon}[w(x+\epsilon)-w(x)]=\sum_{n=0}^{\infty} \frac{1}{(n+1)!}\left(\epsilon \partial_{x}\right)^{n} w(x) \tag{25}
\end{equation*}
$$

The inverse transformation reads

$$
\begin{equation*}
w(x)=\epsilon \partial_{x}\left[e^{\epsilon \partial_{x}}-1\right]^{-1} v(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!}\left(\epsilon \partial_{x}\right)^{n} v(x) \tag{26}
\end{equation*}
$$

Here B_{n} are Bernoulli numbers.

