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Lecture 3

Problem of classification of local Poisson brackets
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One more example of a local Poisson bracket on the space £(M),
M =R
1
{u(z),uw(y)} = w(@)d'(z —y) + Sualz)o(z —y) - 3" (x —y).

Linear 4+ constant (central extensions of Lie algebras)

Exercise. Check that the linear functionals on £L(M)
1

"~ 2on

yield the Virasoro algebra

Cn

21 .
/O e "u(x) dx

1 1
;{C’fh Cm} = E(n — m)cn—l—m + n35n—|—m,0
So L(M) = Vir*.



An alternative proof of Jacobi identity: reduce the bracket to a
constant (i.e., u-independent) form by Miura transform

w= 0P v, (o), o)} =5 - v).



Indeed:
(u(@), u()} = {;02@) + @), 702 w) + ()}

= L@ {0), ) H 0B {0, v o)l (@), v ()} 0.0, v(), v (w)

1 p 1 /" 1 /" "
= 0@~ v) — (@)~ y) + o ()" (@ — ) ()

Use
fWo(xz —y) = f(x)o(z—y), fd(z—y)= f(x)d(z—y)+ f(x)d(z—1y),

fW)d"(x—y) = f(x)d"(x —y) + 2f'(x)d'(x —y) + f'(x)o(x —y)
obtain

_ 12 / / . l " 1 / . v/ .
= (32 +) G-+ 3 (o4 500 8- - 8" )

= (@) (z ~ ) + o (25— y) — 8"z~ ).



Problems in general classification scheme:

e equivalences

e infinitesimal deformations

e higher obstructions

e rigid objects



Lecture 3

- grading of differential polynomials, evolutionary PDEs, and
Poisson brackets. Extended formal loop space.

- Group of Miura-type transformations.
- (n,0)-brackets. Darboux lemma.
- Riemannian geometry and classification of (0, n)-brackets

- On more general (p, q)-brackets



. to classify local Poisson brackets w.r.t. general Miura
type transformations of the form

ut — @ = FY(u; ug, ugz, . . .). (1)

The problem: this is not a group!



Extended formal loop space

Gradation on the ring A of differential polynomials:
degut*® =k, k> 1, degf(x;u)=0. (2)
Completion of the space of local functionals /A\O:
f= /f(u;ux,uxx,...;e) dx,

oo

f(u; ug, ugg,...) = Z ekfk(u; Ug, . . . ,u(k)), fr € A, degf, =k.
k=0
(3)

Still called them differential polynomials

Taking the symmetric tensor algebra of /A\O we obtain the ring of
functionals on the extended formal loop space denoted L£(M).
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Systems of evolutionary PDEs:

uh = e 1 ag(u) + azi(u; ug) + eaiz(u; Uz, Ugz) + O(e2)

o (u; ) = v (),
a%(u; Uy, Ups) = bz(u)u + —c (u)fw7

etc.
Rule of thumb: introduction of slow variables

r—ex, t+— €t

So
1

I W A 1. 2
ut = Q (U,Um,qux,---) I—)’U,t = —Qa ('U,, €EUg, € Ugx, - - -
€

(4)



Example 1 KdV
2

x _mxm:O
ur +uu —|—12u

Example 2 Toda lattice

.q'n —_ eqn—l—l_qn _ eqn_qnfl.

Continuous version:

Un ‘= qnt1 — qn = u(ne), vy =gy, =v(ne), tr—et
— 1
"y = v(z +¢) —v(z) _ va + Levms + O(2)
€ 2
u(z) _ ju(x—e) 1
v = © © = e"u, — 55 (e"),, + 0(52)
5

Example 3 Camassa - Holm equation

1 (3 1
Uty — (1 o 8285) ' {Eu Uy — 52 [umumx + Eu uwmw] }

3

7
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Local bivectors in A;,. represented by infinite sums

O

{ui'(z), v/ (Y}t = Y F{u'(@),u (y)}] (5)
k=—1
. . E+1
{ui(@), W I = 3 AY (wiug, ..., u)sF=5TD (@ — ),
s=0
AY ¢ A, degAl =s, s=0,1,....k+1.
Another description: given
f=/f(u;uw,...)dx, g = /g(u;ux,...)dw
then

(7,5} 1# =/h(u;ux,..-)da¢, degh =deg f +degg+k+1



More explicitly, the first three terms in the expansion (5) read

{u' (@), (Y =7 (u@)d@-y) (6)

{u'(2),w/ (1} = g" (u(@))8'(z —y) + T} (w(@))uis (@ — ) (7)

{u'(@), o (M = ¥ (u(2))8"(z — y) + b (w(@))ufd' (z )
16 (@), + S (a5 — ) (8)

where 7, gii(u), T4 (u), a¥(u), b (u), ¢ (u), d?(u) are some
functions on the manifold M.

EXxercise. The Schouten - Nijenhuis bracket gives a well-defined
map

. Ak N Ak+I1—1
6[, ] /\|OC></\|OC_>/\|OC .
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Example 1. Bihamiltonian structure of KdV
€2 3
EUCL’QZCIJ — {u(m), Hl}l — 5{“(33)7 HO}Q

{u(z), u(y)}1 =8'(z —y)

Ut = uUg +

2
(@), u)}o = u(@)d (@ — y) + Sud(e ) + 8" (@~ y)

1 2 1
Hq =/ iy g e—ug dr, Hg= /—u2 dx
o 24 2
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Example 2. Toda lattice

'l-ljn — ’Un_l_l — Unp — {'U/n, H}
Up = e'n —e¥n-1 = {v,, H}
{um, un} = {vm,vn} =0, {um,vn} = 5m,n—1 — Omn

n= i)

Interpolating obtain

(u(@), o)} = ~[3(@—y+-5(z—y)] = 8/ (z—y)+ 55" (@-1)+0()
(9)

H = / EUQ —I—eu] dzx.
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Miura group

The transformations

. . OO .
ut - =) ekFlz(u;ug;,...,u(k)), i=1,....,n
. k:O .
Fie A, degFj =k, (10)
O
det< O(u)>7ﬁo.

ouJ

Lemma. The transformations of the form (10) form a group.



Example. The clasical Miura transformation
1 2
u — E’U
4 +

Inversion, u #= 0

/ /
v=2\u—e = 2\/6—6\/;—,4-0(62) = Qﬁ—eg—l—O(eQ)
u u

= first two terms of the solution v = F(u;4/,...;€).

Remark. Corresponds to the WKB solution to
17 1 y,

2
2y = “uy, v=4el.
Yy =juy »

y = u L4z [Vl (1 4 0(e)).



Definition. The group G of all the transformations of the form
(10) is called Miura group ( “local diffeomorphisms” of the ex-
tended formal loop space £(M))

Lemma. The class of local functionals, evolutionary PDEs, and
local translation invariant multivectors on the extended formal
loop space L(M) is invariant w.r.t. the action of the Miura group.

Exercise 1. An arbitrary evolutionary PDE
) 1 . . .
up = ~ab(u) + Al(wul +0(e), i=1,...,n
€

with ag(ug) 7= 0 can be reduced, by a Miura-type transformation near u = ug,
to a constant form

agp = const, a; =0 for z > 0.



EXxercise 2. Transformation law of Hamiltonian operators
AY = > A (u;ug, .. )k
of local bivectors:

Al = ¥, AR L] (11)
where the matrix-valued operator L’,{C and the adjoint one L*}i are
given by

o’ i ot

= ;(—aaz)s © ks’ L7 = Z auk,sai-

S

Main Problem. To describe the orbits of the action of the Miura
group G on AZ.



Darboux lemma on £(M), M = a ball

(' (), W ()} =~ (@) — y) + Y Hui (@), w ()}

k>0
k+1
{uf(z), v (y)F = Z AY (g, .. ul)sE D (5 — ),

€A, degA” =s, s=0,1,...,k+ 1.
Assume:
det (sz(u)) #= 0

Theorem. The P.B. is equivalent to

. . 1 .. y
{@(@),# ()} = ~7/s(a —y), 77 = const



Proof. Step 1: the leading term itself is itself a Poisson bracket
on £L(M) = finite-dimensional Jacobi identity for n% ()

Step 2: try to Kill all the terms with k£ > 0 of the expansion

. . 1 .. . .
{u'(2),w ()} = =796(z —y) + > e {u'(x),u (y)}1H]
€ k>0
by Miura-type transformations with Fi(u) = u!, i = 1,...,n.
Triviality of Poisson cohomology H2(L(M),w) of the bivector
w = /WijQinda:, a9 = gt = const, det 7 = 0

IS needed.



Natural decomposition
Hk? — EBmZ—]_Hk,m

with respect to €. Denote

~

A% .= @50 H"™. (12)

Lemma 1. The first non-zero term in the expansion

(i), W (1)) = T+ Y Hui(a),u ()"

k>0

iIs a 2-cocycle in the Poisson cohomology H? of the ultralocal
Poisson bracket w.

14



To Kill this first nonzero term we need to prove that, for any 2-
cocycle € A,OC of o , there exists an evolutionary vector field a
such that the Lie derivative Liegw gives the cocycle and al.—g =
0.

Main Lemma. For M = Dball the Poisson cohomologies
HR(L(M), =) vanish for k > 0.

LLet us prove first triviality of Hl. Let an evolutionary vector field
a With the components al, ..., a"™ be a cocycle. Denote

w; — 7T,L'jCLj
where the constant matrix m;; is inverse to 7. The condition
Oda = Lieqw = 0 reads
Ow; ¢ ; Sawj
NG G L

t>s

15



Indeed, the super-P.B. of

. 1 B
a = /aZQZ- de and w = —/WZJGZ-@]- dx
2
read
0w - sig ok
= — 0; 9 d
{a, @} = (5u5(x) 593(LE> /Z ous B v

(integration by parts have been used). Vanishing of the last in-
tegral can be written as

P
° / 5 99 sig.o() gy
00;(x) ous:k J

aO{i : (k;) k ak 80(7; :
— z}{:mﬂ's‘jej - (_1) aa: mﬂ's‘yej .

This gives the above equations.

0=



Using Helmholz criterion = there exists a local functional f =
[ fdx such that

of
dut(x)
Therefore the vector field is a Hamiltonian one,
ij_OF

dul (x)

wW; —

at =

Triviality of H2: the bivector
o+ ea =r95(x —y) + 8214?5(8)(% —y)
S
satisfies the Jacobi identity

[co + ea, @ + ea] = 0(mod e?)



iIff the inverse matrix is a closed differential form
%Wijda: A Sub A du? + %6&)@';]‘3 dz A Su' A du?® (mode?)
where
Wi js 1= TipTjg ALL. (13)
Denote
w = sz’;js(sui A Sul"s.

From closedness é(dx A w) = 0 € A3 we derive, due to Example
3 of Lecture 2 (see eq. (15)), existence of a one-form dz A ¢,
o = ¢;0u’ such that §(dxz A ¢) = dx A w. The vector field a with

a' = 7r7’9¢j
gives a solution to the coboundary equation

[, a] = a.



Classification of (0,n)-brackets

{ui(z), v (y)} =0

(ul(2),w ()} = ¥ (u(2))d' (@ — y) + T (w)uks(z — y)

satisfies det(¢¥(u)) # 0

As above, the first nonzero term { , }[O] is itself a Poisson bracket.



Antisymmetry conditions (see eq. (23) of Lecture 2) read

¢'(u) = g (u), TP (u) 4 M (u) = g (u). (14)
Miura-type transformations reduce to local diffeomorfisms ut —
' (u)

L o PO
_ ou’ 3ujgkl =i _ ou' ou’ ou” P ou' 0<u’ P
ouk oul” ’ OuP Oud gk " OuP OulduF

~ij _

9

So the leading coefficient ¢¥(u) determines a symmetric tensor
field on M invariant w.r.t. the action of the Miura group. This
gives a map

A2 /G — symmetric tensors on M.

16



Theorem. Let M be a ball. Then the only invariant of a (0,n)

Poisson bracket on T\IQOC with respect to the action of the Miura

group is the signature of the quadratic form g% (u).

Proof. The symmetric nondegenerate tensor ¢“(u) defines a
pseudo-Riemannian metric

: : N —1
ds® = gij(w)du'du?, (g;5) = (g")
on the manifold M. Moreover, the functions

M (u) == —gjs(u)T§* (u)

are Christoffel coefficients of an affine connection on M (cf. the
transformation law for /).



Main Lemma 1. 1) The affine connection I is compatible with
the metric,

ng'j = 0.
2) Jacobi identity for the Poisson bracket

{u'(2), 4 ()} = ¢ (w(2))8' (z — y) + M (u)uls(z — y)
IS equivalent to

k k
i ="15, Riju=20
i.e., I is the Levi-Civita connection for the metric, and the Rie-

mann curvature of the metric vanishes.

17



Standard arguments of differential geometry = local existence
of coordinates vl(w), ..., v™(u) such that the metric becomes
constant

8’Uk 8’Ul id

" ¢ (uw) = nF = const.

507 5177 (u) =n

and the Christoffel coefficients vanish. All constant symmetric
matrices n*! of a given signature are equivalent w.r.t. linear

changes of coordinates.

The Poisson bracket w = { |, }[0] takes the constant form

@ {u'(2),v(y)} =076 (z —y). (15)

18



We reduce the proof of the theorem to Killing the e-tail of the
Poisson bracket

(' (@), v/ ()} =076z —y) + 3 F{ui(@), ) (16)

k>1
by the Miura-type transformations with F} =id.

Main Lemma 2. For M = ball all the cocycles in HF(L(M), =)
vanishing at e = O are trivial for k > 0.



Before giving the proofs recall some basic differential geometry.

e Covariant derivatives of a vector field
o)

- out

Vz-vj — aﬂ)j —|— I’gkvk, 82-
and of (0,2) and (2,0) tensors
Vigij = Okgij — Thi9sj — Thi%iss  Vig” = 0pg"” + g™ + 9. 9"

e [ he Levi-Civita connection is uniquely determined by a sym-
metric non-degenerate tensor g;; from the conditions

M5 =T%,  Vigij =0.

19



Let
.. -1 .. . .
(99) = (9i5) ~ Ti =—¢"M,
Then the definition of the Levi-Civita connection rewrites as
grik =g rit, opg =T + 19
e [ he Riemann curvature of the Levi-Civita connection reads

..k ] . . . . 'k ) . .
R;J — gzsg]thlt — 418 (alr‘;k _ asrg > + rgj rsz _ rékl_‘lsj.

20



Proof of Main Lemma 1. For

{ui(2), v (1)} = g (u(2))§ (x — y) + MY (wuls(z — y)
the conditions of skew symmetry (14) imply compatibility of the

connection I‘” with the metric ¢¥. Let us prove vanishing of
torsion and curvature The super-functional = reads

w = /(92- (gin; + uﬁF?%) dx.

So
0w — st/ kst
50a(2) 2 [g 0; + uyl'y, 94 :
Compute now
S . N, ki )
o= [(r 4 ) 0+ k] — 0 (Tos)

o -
= 2rJi0;0; + (M, — T7,) ubo,0;

21



So
(@, @) = / AUT%916016;, + BYI*0; 0, 0 + C*0,0,0,] da

Alk = _gisrik o gispik
2B% = (2089 = g (T, = )] k= G o )

CF = antisymmetrization of [} (I‘#f)s - I‘gf’“m) ulu™.

Vanishing of the leading coefficients yields the symmetry of the
connection

The remaining conditions of vanishing of the integral read

Clidk — %axBijk



Since Bk depends linearly on !, it must vanish. Using the iden-
tity
k Jt Ju\ — k 1] 1J
(M- =g (r) - 1)

we arrive at

Bzyk — Rk]’& l

Main Lemma 1 is proved.



Proof of Main Lemma 2. Denote, like above

~

ik = @m>OHk’m-
We want to prove that Al = A2 = 0.

Let us begin with proving triviality of 1. From
da’ : 1
{%aﬂ::/%;ggﬁﬂw@%m+)¢t
we obtain the condition [a,=] = 0 in the form
dak . da’
3 98 siglmtD) _(_qymigmtl (90 kg ) =g
— ous:m J ousm
Collecting the coefficient of 6, yields

0 )
8, ks / Jdz| = 0.
v !77 dus(x) ¢ ZE]

(17)

(18)

22



T herefore
o/ =Y cJut + total derivative.
But a’|.—g = 0. So there exist differential polynomials &’ s.t.

aj:aa';bj, ]:1,,77,



This is the crucial point in the proof: we have shown that the
vector field a is tangent to the level surface of the Casimirs

ﬁkZ/ukdx, k=1,...,n

k . ou” k
1a0u” = [ al—— dr = /(%;b dxr = 0.
dul (x)
The remaining part of the proof is rather straightforward. Using
0 0 0
aui,sax — axauz',s + Outs—1

and also the Pascal triangle identity
m m m—+ 1
)+ G =)
n n—1 n

23



we rewrite the coefficient of 8("+1) in the form

o[ s (1) (2

Owy, owj
+8ulr 1+( 1)raukr 1 = 0.

Here

wp = nb’, (i) = (),
the last two terms are not present for »r = 0. As above, forr =20
we derive that

= Sy (2ay”

t>0



Proceeding by induction in r we prove that the 1-form [ dxAw; du’
is closed. Using the Helmholz criterion we derive existence of a
differential polynomial f s.t. w =6 [ fdx. Hence

of
oul (z)

o = i,
We proved triviality of AL

et us proceed to prove the triviality of H?. The condition 8a = 0
for o« of the form

o = /Ag(u, Ug, ... | e)9i9§k)dw

can be computed similarly to the ultralocal case:

24



1J
{Oé w} — /Zgiq Ske 9(17)9(Q+1) dr.

We obtain a system of equations

ki (r)
04 't 4+ 3 (— 1)q+r+s(q+r+8> (aA +r+s) i

6ul,s 1 q Oult—q—1
jk (r)
4 Z( 1)atrtt qtr+t A5, i =0
q T Ouba+r+t—1
for any 4,7, k,s,t (19)

(it is understood that the terms with s—1,t—g—1ort+qg+r—1
negative do not appear in the sum). Recall that the crucial point
in the proof of triviality of the 2-cocycle is to establish vanishing

25



of a on differentials of Casimirs
a (57, 61) = /Ag'da; — 0 for any i, ;. (20)

We first use (19) for s =t = 0 to prove that

ik\ (1)
(9:1: Z(—l)r (aAO ) nlz = 0.

- aul,r
Hence
Al = 8, BI*

fo.r. some differential polynomial Bik (here we use that
A{|e=0 = 0). This implies (20).



The rest of the proof is identical to the proof of vanishing of
cohomology in the ultralocal case. We first construct the vector
field z (see the proof of Lemma 1.1 of Lecture 1) such that for

the cohomologous cocycle & = a4+ [z, @] the functionals @!, ...,
u"™ are Casimirs too. To this end we use the equation (19) for

s=20, t>0:

: (r) : (r)
HAFi . OAY -
Z +r{q+T g+ l Z t+r (T 0 li
(=1)° ( r ) <8ul,tq1> '+ (=1) ( r ) <aul,t+rl n =0

q,r
Differentiating the antisymmetry condition

Al = S (~1)r+1 (Agfz) (r)

w.r.t. «5t—1 we identify the first term of the previous equation
with

K
DAY

_ 70l
aul,t—lr'7 )
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The resulting equation coincides with the condition da* = 0 of
closedness of the 1-cocycle

(ak)i — A%)k:

for every k = 1,...,n (see (18) for the explicit form of this
condition). Using the first part of Lemma we arrive at existence

of n differential polynomials ¢!, ..., ¢" s.t.
. 5q"
Al =n"9 21
0 “ous(x)’ (21)

Now we are able to change the cocycle o to a cohomological one
to obtain a 2-cocycle

a— a0z =:d



for
o,
Z — —
a out
The new 2-cocycle o will have the same form as above with

A” — 0. Denote

Gi:js ‘= nipnquéja s > 1.
We will now show existence of differential polynomials Wi 0
Wi: il - . S.t.
9i51 — asz’;jOa
i js = Oxwj:js—1 + wijs—2 fOr s> 2. (22)
From (19) for s = 1, ¢t = 0 we obtain

L\ (1)
5 AR
8;1; Z(_l)r (aul]"r) = 0.




As we already did many times, from the last equation it follows
that

This shows existence of w;.;0. Using (19) for s =1 and t > 0 we
inductively prove existence of the differential polynomials w;:; ;1.
Actually, we can obtain

Wi =Y 952 g; 5. (23)
s>1+2

From this it readily follows that the coefficients w;. ;s satisfy the
antisymmetry conditions

{ _
wisis = Y (—1)t1 ( . ) O Pwiit

t>s



Thus they determine a 2-form w.

Let us prove that the 2-form w is closed. Denote

t+s m—s '.

m=s r=0 m>t+s+1 r=0

Ow;: j Ow;:
17,8 1;k,t
_|_ _

oukit oud»s

the I.h.s. of the equation (15) of Lecture 2 (the conditions of
closedness of a 2-form). Let us show that the I.h.s. in (19) is
equal to

Oxdijkit—1,5—1 + Jijkit—1,5—2 + Jijkit—2.1—-1- (24)
To this end we replace the second sum in (19) by
aAzk

3ult 177



Lowering the indices by means of n;; and using (22) we ob-
tain (24). From vanishing of (24) we inductively deduce that
Jijk:st = 0 foralli,5,k=1,...,n and all s,t > 0 (observe that the

coefficients J;jr.10 = Jijr:0s = O due to our assumption Ag = 0.
This proves that the 2-form w is closed. SO w = § [dx A ¢ for
some 1-form ¢ = ¢;0u’. Introducing the vector field

a' =n"ey
we finally obtain, for the original cocycle «,
a=0(a— z).
Theorem is proved.

Example. The Poisson brackets (9) of the “interpolated” Toda
lattice can be reduced to the canonical form

{u(@),w(y)} =@ —y), {u(@),uw@)}={w),w(y)}=0



by the Miura-type transformation (u,v) — (u,w),

! —lwx ) —w(x =OO 1 €0z )" w(x
’U(CU)—E[( + €) ()] nz::o(n+1>!( Oz)"w(x). (25)
The inverse transformation reads
w(z) = ey [e % — 1) To(@) = 3 %(e@x)nv(m). (26)
n=0 "

Here B, are Bernoulli numbers.



