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Symbols

A := B A is defined by B

A

∫
= B both sides are equal only after they are

integrated

B−> A B is inside the light cone of A

d×l = dl/l multiplicative differential

∂×/∂l = l∂/∂l multiplicative derivative

RD, RD are dual of each other; RD is a space of contra-

variant vectors, RD is a space of covariant vectors

RD×D space of D by D matrices

X, X′ X′ is dual to X
〈x′, x〉 dual product of x ∈ X and x′ ∈ X′

(x|y) scalar product of x, y ∈ X, assuming a metric(
MD, g

)
D-dimensional riemannian space with metric g

TM tangent bundle over M
T ∗M contangent bundle over M
LX Lie derivative in the X-direction

U2D(S) Space of critical points of the action functional

S (Ch 4)

Pµ,ν

(
MD

)
Space of paths with values in MD, satisfying

µ initial conditions and ν final conditions

Uµ,ν := U2D(S) ∩ Pµ,ν

(
MD

)
} arena for WKB

~ = h/2π Planck’s constant

[h] = ML2T−1 physical (engineering) dimension of h

ω = 2πν ν frequency, ω pulsation

tB = −i~β = −i~kBT (1.70)

τ = it (1.100)

Superanalysis (Ch 9)

Ã parity of A ∈ {0, 1}
AB = (−1)ÃB̃BA graded commutator or [A, B] (9.5)

A ∧ B = −(−1)ÃB̃B ∧ A graded anticommutator {A, B} (9.6)

ξµξα = −ξαξµ Grassmann generators (9.11)

z = u + v supernumber, u even ∈ Cc, v odd ∈ Ca (9.12)

Rc ⊂ Cc real elements of Cc (9.16)
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Ra ⊂ Ca real elements of Ca (9.16)

z = zB + zS supernumber zB body, zS soul (9.12)

xA = (xa, ξα) ∈ Rn|ν superpoints
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Conventions

Fourier transforms

(Ff)
(
x′) :=

∫

RD

dDx exp
(
−2πi〈x, x′〉

)
f(x) x ∈ RD, x′ ∈ RD

For Grassmann variables

(Ff) (κ) :=

∫
dξ exp (−2πiκξ) f(ξ)

In both cases

〈δ, f〉 = f(0) i.e. δ(ξ) = c−1ξ

〈Fδ, f〉 = f i.e. c2 = (2πi)−1

∫
dξ ξ = c , here c2 = (2πi)−1
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Formulary

(giving a context to symbols)

• Wiener integral

E

[
exp

(
−

∫ τb

τa

dτ V (q(τ)

)]
(1.1)

• Peierls bracket

(A, B) := D−
AB − (−1)ÃB̃D−

AB (1.9)

• Schwinger variational principle

δ〈A|B〉 = i〈A|δS/~|B〉 (1.11)

• Quantum partition function

Z(β) = Tr
(
e−βĤ

)
(1.71)

• Schrödinger equation




i∂tψ(x, t) =
(
−1

2 µ2δx + ~−1V (x)
)
ψ(x, t)

ψ (x, ta) = φ(x)
(1.77)

µ2 = ~/m

• Gaussian integral (2.29), (2.30)
∫

X

dΓs,Q(x) exp
(
−2πi〈x′, x〉

)
:= exp

(
−sπW

(
x′))

dΓs,Qx

∫
= Ds,Qx exp

(
−π

s
Q(x)

)

Q(x) = 〈Dx, x〉 , W
(
x′) = 〈x′, Gx′〉 (2.28)

∫

X

dΓs,Q(x) 〈x′
1, x〉 . . . 〈x′

2n, x〉 =
( s

2π

)n
′∑

W
(
x′

i1 , x
′
i2

)
. . .W

(
x′

i2n−1
, x′

i2n

)

sum without repetition

• linear maps

〈L̃y′, x〉 = 〈y′, Lx〉 (2.58)

WY′ = WX′ ◦ L̃ , QX = QY ◦ L (Ch 3)
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• Scaling and coarse graining (section 2.5)

Slu(x) = l[u]u
(

u
l

)

SL[a, b[=
[

a
l ,

b
l

[

Pl : Sl/l0 · µ[l∞,l[∗ (2.83)

• Jacobi operator

S′′(q) · ξξ = 〈J (q) · ξ, ξ〉 (5.7)

•

〈b|Ô|a〉 =

∫

Pab

O(γ) exp (iS(γ)/~)µ(γ)Dγ (Ch 6)

• Time ordered exponential

T exp

∫ t

t0

ds A(s) (6.38)

• Dynamical vector fields

dx(t, z) = X(A) (x(t, z)) dzA(t) + Y (x(t, z)) dt (7.14)

Ψ(t, x0) :=

∫

P0RD

Ds,Q0z · exp
(
−π

s
Q0(z)

)
φ

(
x0 ·

∑
(t, z)

)
(7.12)

Q0(z) :=

∫

T

dt hAB żA(t)żB(t)(7.8)





∂Ψ
∂t = s

4πhABLX(A)
LX(B)

Ψ + LY Ψ

Ψ (t0,x) = φ(x)
(7.15)

• Homotopy

|K (b, tb; a, ta)| =

∣∣∣∣∣
∑

α

χ(α)Kα (b, tb; a, ta)

∣∣∣∣∣ (Ch 8)

• Koszul formula

LXω = Divω(X) · ω (11.1)
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• Miscellaneous

det expA = exp tr A (11.48)

d log detA = tr
(
A−1dA

)
(11.47)

∇g−1f := gij∂f/∂xj gradient (11.73)

(
∇g−1 |V

)
g

= V j
,j divergence (11.74)

(V |∇f) = − (divV |f) gradient/divergence (11.79)

• Poisson processes

N(t) :=
∑∞

k=1 θ (t − Tk) counting process (13.17)

• Density of energy states

ρ(E) =
∑

n

δ (E − En) , Hψn = Enψn

• Time ordering

T (φ(xj)φ(xi)) =





φ(xj)φ(xi) for j−> i

φ(xi)φ(xj) for i−> j
(15.7)

• Wick (normal ordering)

operator normal ordering

(
a + a†

)(
a + a†

)
=: :

(
a + a†

)2
: +1 (D.1)

functional normal ordering

: F (φ) :G := exp

(
−1

2
∆G

)
F (φ) (D.4)

functional laplacian defined by the covariance G

∆G =

∫
dvol(x)

∫
dvol(y) G(x, y)

δ

δφ(x)

δ

δφ(y)

• The “Measure” (Ch 18)

µ[φ] ≈ (sdet G+[φ]) (18.3)

i,S,k[φ] G+kj [φ] = −i,δ
j , (18.4)

G+ij [φ] = 0 when i−> j (18.5)
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φi = ui
in AaA

in + uI∗
in AaA∗

in

= ui
out XaX

out + ui∗
out AaX∗

out

(18.18)
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First Lesson: Gaussian Integrals

∫
Ds,Qx exp

(
−π

s
Q(x)

)
exp(−2πi〈x′, x〉) =

exp(−πsW (x′))

Given the experience accumulated since Feynman’s doctoral thesis, the time

has come to extract simple and robust axioms for functional integration from

the body of work done during the past sixty years, and to investigate ap-

proaches other than those dictated by an action functional.

Here, “simple and robust” means easy and reliable techniques for com-

puting integrals by integration by parts, change of variable of integration,

expansions, approximations, etc. . . . .

We begin with gaussian integrals in R and RD, defined in such a way that

their definitions can be readily extended to gaussians in Banach spaces X.

2.1 Gaussians in R

A gaussian random variable and its concomitant the gaussian volume ele-

ment are marvelous multifaceted tools. We summarize their properties in

Appendix IC. In the following we focus on properties particularly relevant

to functional integrals.

2.2 Gaussians in RD

Let

ID(a) :=

∫

RD

dDx exp
(
−π

a
|x|2

)
for a > 0, (2.1)

50
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with dDx := dx1 · · · dxD and |x|2 =
∑D

j=1

(
xj

)2
= δijx

ixj . From elementary

calculus, one gets

ID(a) = aD/2. (2.2)

Therefore when D = ∞,

I∞(a) =





0 if 0 < a < 1

1 if a = 1

∞ if 1 < a ,

(2.3)

which is clearly an unsatisfactory situation, but it can be corrected by in-

troducing a volume element Dax scaled by the parameter a as follows:

Dax :=
1

aD/2
dx1 · · · dxD. (2.4)

The volume element Dax can be characterized by the integral
∫

RD

Dax exp
(
−π

a
|x|2 − 2πi

〈
x′, x

〉)
:= exp

(
−aπ

∣∣x′∣∣2
)

, (2.5)

where x′ is in the dual RD of RD. A point x ∈ RD is a contravariant (or

column vector). A point x′ ∈ RD is a covariant vector (or row vector).

The integral (2.5) suggests the following definition of a volume element

dΓa(x): ∫

RD

dΓa(x) exp(−2πi
〈
x′, x

〉
) := exp

(
−aπ

∣∣x′∣∣2
)

. (2.6)

Here we can write

dΓa(x) = Dax exp
(
−π

a
|x|2

)
. (2.7)

This equality is meaningless in infinite dimensions, however, the integral

(2.5) and (2.6) remain meaningful. We introduce a different equality symbol:
∫
= (2.8)

which is a qualified equality in integration theory; e.g. the expression

dΓa(x)

∫
= Dax exp

(
−π

a
|x|2

)
. (2.9)

indicates that both sides of the equality are defined by the same integral.

A linear map A : RD → RD given by

y = Ax, i.e. yj = Aj
i xi, (2.10)
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transforms the quadratic form δijy
iyj to a general positive quadratic form

Q(x) = δijA
i
kA

j
ℓx

kxℓ =: Qkℓx
kxℓ. (2.11)

Consequently a linear change of variable in the integral (2.5) can be used for

defining the gaussian volume element dΓa,Q with respect to the quadratic

form (2.11). We begin with the definition
∫

RD

Day exp
(
−π

a
|y|2 − 2πi

〈
y′, y

〉)
:= exp

(
−aπ

∣∣y′
∣∣2

)
. (2.12)

Under the change of variable y = Ax, the volume element

Day = a−D/2dy1 ∧ · · · ∧ dyD

becomes

Da,Qx = a−D/2|detA|dx1 ∧ · · · ∧ dxD

= |detQ/a|1/2 dx1 · · · dxD. (2.13)

The change of variable

y′j = x′
iB

i
j , (2.14)

(shorthand y′ = x′B) defined by transposition

〈
y′, y

〉
=

〈
x′, x

〉
, i.e. y′jy

j = x′
ix

i (2.15)

implies

Bi
jA

j
k = δi

k. (2.16)

Equation (2.12) now reads
∫

RD

Da,Qx exp
(
−π

a
Q(x) − 2πi

〈
x′, x

〉)
:= exp(−aπW (x′)), (2.17)

where

W (x′) = δijx′
kx

′
ℓB

k
iB

ℓ
j ,

=: x′
kx

′
ℓW

kℓ. (2.18)

The quadratic form W (x′) = x′
kx

′
lW

kl on RD can be said to be the inverse

of Q(x) = Qklx
kxl on RD since the matrices

(
W kl

)
and (Qkl) are inverse to

each other.
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In conclusion, in RD, the gaussian volume element defined in (2.17) by

the quadratic form aW is

dΓa,Q(x) = Da,Qx exp
(
−π

a
Q(x)

)
(2.19)

= dx1 . . . dxD

(
det
k,ℓ

Qkℓ

a

)1/2

exp
(
−π

a
Q(x)

)
. (2.20)

Remark: The volume element Dax has been chosen so as to be without

physical dimension. In Feynman’s dissertation, the volume element Dx is

the limit for D = ∞ of the discretized expression

Dx =
∏

i

dx(ti) A−1(δti). (2.21)

The normalization factor was determined by requiring that the wave function

for a free particle of mass m moving in one dimension be continuous. It was

found to be

A(δtk) = (2πi~ δtk/m)1/2. (2.22)

A general expression for the absolute value of the normalization factor was

determined by requiring that the short time propagators be unitary[1]. For

a system with action function S, and paths taking their values in an n-

dimensional configuration space,

|A(δtk)| =

∣∣∣∣det
k,ℓ

(2π~)−1 ∂2S(xµ(tk+1), x
ν(tk))

∂xµ(tk+1)∂xν(tk)

∣∣∣∣
1/2

. (2.23)

The “intractable” product of the infinite number of normalization factors

was found to be a Jacobian [1] later encountered by integrating out momenta

from phase space path integrals. Equation (2.5) suggests equation (2.17) and

equation (2.19) in which Da,Q(x) provides a volume element which can be

generalized to infinite-dimensional spaces without working through an infi-

nite product of short time propagators.

2.3 Gaussians on a Banach Space

In infinite dimensions, the reduction of a quadratic form to a sum of squares

of linear forms (see formula (2.11)) is very often inconvenient, and shall be

bypassed. Instead, we take formulae (2.17) and (2.19) as our stating point.
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The set up

We denote by X a Banach space, which may consist of paths

x : T → RD (2.24)

where T = [ta, tb] is a time interval, and RD the configuration space in

quantum mechanics. In quantum field theory, X may consist of fields, that

is functions

φ : MD → C (2.25)

for scalar fields, or

φ : MD → C (2.26)

for spinor or tensor fields, where MD is the physical space (or space-time).

To specify X, we take into account suitable smoothness and/or boundary

conditions on x, or φ.

We denote by X′ the dual of X, that is the Banach space consisting of the

continuous linear forms x′ : X → R, by < x′, x > we denote the value taken

by x′ in X′ on the vector x in X.

Our formulas require the existence of two quadratic forms Q(x) for x in

X and W (x′) for x′ in X′. By generalizing the fact that the matrices (Qll)

in (2.11) and (W kl) in (2.18) are inverse to each other, we require that the

quadratic forms Q and W be inverse of each other in the following sense.

There exist two continuous linear maps

D : X → X′ , G : X′ → X

with the following properties:

• they are inverse of each other:

DG = 1 (on X′) , GD = 1 (on X) (2.27)

• they are symmetrical:

< Dx, y > = < Dy, x > for x, y in X,

< x′, Gy′ > = < y′, Gx′ > for x′, y′ in X′ ;

• the quadratic forms are given by

Q(x) =< Dx, x > , W (x′) =< x′, Gx′ > . (2.28)

We set also W (x′, y′) :=< x′, Gy′ > for x′, y′ in X′.
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Definition

A gaussian volume element on the Banach space X is defined by its Fourier

transform FΓa,Q, namely

(FΓa,Q) (x′) :=

∫

X

dΓa,Q(x) exp(−2πi
〈
x′, x

〉
) = exp(−aπW (x′)) (2.29)

for x′ arbitrary in X′. We also define formally a volume element Da,Qx in X
by†

dΓa,Qx

∫
= Da,Qx exp

(
−π

a
Q(x)

)
(2.30)

So far we have been working with dΓa,Q where a was a positive number. As

long as gaussians are defined by their Fourier transforms we can

replace a by s ∈ {1, i}. Hence we rewrite (2.29) and (2.30):

(FΓs,Q) (x′) :=
∫

X
dΓs,Q(x) exp(−2πi 〈x′, x〉) = exp(−sπW (x′)) (2.29)s

dΓs,Qx

∫
= Ds,Qx exp

(
−π

s Q(x)
)

(2.30)s

Important remark: Because of the presence of i in the exponent of the Feyn-

man integral, it was (and occasionally still is) thought that the integral

could not be made rigorous. The gaussian definition (2.29)s is rigorous for

Q(x) > 0 when s = 1, and for Q(x) real when s = i.

Physical interpretation

In our definitions, the case s = 1 (or a > 0) corresponds to problems in

statistical mechanics, whereas the case s = i corresponds to quantum physics

via the occurrence of the phase factor exp i
~
S(ψ).

The volume element definition corresponding to (2.29) and (2.30) can be

written
∫

Dψ exp

(
i

~
S(ψ) − i 〈J, ψ〉

)
= exp

(
i

~
W (J)

)
= Z(J) , (2.31)

where ψ is either a self-interacting field, or a collection of interacting fields.

But the generating functional Z(J) is difficult to ascertain a priori for the

following reason. Let Γ
(
ψ̄

)
be the Legendre transform of W (J). For given

ψ̄, J(ψ̄) is the solution of the equation hψ̄ = δW (J)/δJ and

Γ
(
ψ̄

)
:= W

(
J
(
ψ̄

))
− ~

〈
J
(
ψ̄

)
, ψ̄

〉
. (2.32)

† We use the qualified equality symbol

∫
= for terms which are equal after integration.
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Then Γ
(
ψ̄

)
is the inverse of W (J) in the same sense as Q and W are inverse

of each other (2.27)and (2.28), but Γ
(
ψ̄

)
is the effective action which is used

for computing observables. If S(ψ) is quadratic, the bare action S(ψ) and

the effective action Γ(ψ) are identical, and the fields do not interact. In the

case of interacting fields, the exact relation between the bare and effective

actions is the main problem of quantum field theory. (see Chapters 15, 16,

17,18).

Examples

In this chapter we define a volume element on a space Φ of fields φ on MD

by the equation

∫

Φ
Ds,Qφ · exp

(
−π

s
Q(φ)

)
exp(−2πi 〈J, φ〉) := exp(−πsW (J)) . (2.33)

for given Q and W inverse of each other. For convenience, we will define

instead the volume element dµG by†
∫

Φ
dµG(φ) exp(−2πi 〈J, φ〉) := exp(−πsW (J)) . (2.34)

As before W is defined by the covariance G

W (J) = 〈J, GJ〉 ; (2.35)

G is the inverse of the operator D defined by

Q(φ) = 〈Dφ, φ〉 . (2.36)

It is also the two-point function

s

2π
G(x, y) =

∫

Φ
dµG(φ)φ(x)φ(y) . (2.37)

We shall construct covariances in quantum mechanics and quantum field

theory in two simple examples.

In Quantum Mechanics:

Let D = − d2

dt2
; its inverse on the space Xab of paths with two fixed end

† Hence dµG is the same as dΓs,Q, but with the emphasis now placed on the covariance G.
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points is‡

G(t, s) = θ(s − t) (t − ta) (ta − tb)
−1 (tb − s)

−θ(t − s) (t − tb) (tb − ta)
−1 (ta − s) . (2.38)

In Quantum Field Theory:

Let D = −∆ on RD; then

G(x, y) =
CD

|x − y|D−2
, (2.39)

with a constant CD equal to

Γ

(
D

2
− 1

)
/4πD/2. (2.40)

Notice that G(t, s) is a continuous function. The function G(x, y) is singular

at the origin for euclidean fields and on the lightcone for minkowskian fields.

However, we note that the quantity of interest is not the covariance G, but

the variance W :

W (J) = 〈J, GJ〉 ,

which is singular only if J is a point-like source

〈J, φ〉 = c · φ(x0) ,

where c is a constant, and x0 a fixed point.

2.4 Variances and covariances

The quadratic form W on X′ that characterizes the Fourier transform FΓs,Q

of the gaussian which in turn characterizes the gaussian Γs,Q is known in

probability theory as the variance. The kernel G in (2.27) is known as

the covariance of the gaussian distribution. In quantum theory G is the

propagator of the system. It is also the “two-point function” since (2.47)

gives ∫

X

dΓs,Q

〈
x′

1, x
〉 〈

x′
2, x

〉
=

s

2π
W

(
x′

1, x
′
2

)
. (2.41)

‡ We denote by θ(u) the Heaviside function

θ(u) =





1 for u > 0
0 for u < 0

undefined for u = 0
.
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The exponential exp (−sπW (x′)) is a generating functional which yields the

moments (2.43) and (2.44) and the polarization (2.47). It has been used

extensively by Schwinger who considers the term 〈x′, x〉 (2.29)s as a source.

In this section, we work only with the variance W . In Chapter 3 we work

with gaussian volume elements, i.e. with the quadratic form Q on X. In

other words we move from the algebraic theory of gaussians (Chapter 2) to

their differential theory (Chapter 3), which is commonly used in physics.

Moments

The integral of polynomials with respect to a gaussian volume element fol-

lows readily from the definition (2.28) after replacing x′ by c
2πix

′, i.e.
∫

X

dΓs,Q(x) exp
(
−c

〈
x′, x

〉)
= exp

(
c2sW

(
x′) /4π

)
. (2.42)

Expanding both sides in powers of c, yields
∫

X

dΓs,Q(x)
〈
x′, x

〉2n+1
= 0 (2.43)

and
∫

X

dΓs,Q(x)
〈
x′, x

〉2n
=

2n!

n!

(
sW (x′)

4π

)n

=
2n!

2nn!

( s

2π

)n
W

(
x′)n

. (2.44)

Hint: W (x′) is an abbreviation of W (x′, x′), therefore n-th order terms in

expanding the right-hand side are equal to 2n-th order terms of the left-hand

side,

Polarization.1

The integral of a multilinear expression,
∫

X

dΓs,Q(x)
〈
x′

1, x
〉
· · ·

〈
x′

2n, x
〉

(2.45)

can be readily be computed. Replacing x′ in the definition (2.28)a by the

linear combination c1x
′
1 + · · ·+ c2nx′

2n and equating the (c1c2 · · · c2n)-terms
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in both sides of the equation yields
∫

X

dΓs,Q(x)
〈
x′

1, x
〉
· · ·

〈
x′

2n, x
〉

=
1

2nn!

( s

2π

)n ∑
W

(
x′

i1 , x
′
i2

)
· · ·W

(
x′

i2n−1
, x′

i2n

)
, (2.46)

where the sum is performed over all possible distributions of the arguments.

However each term is respected 2nn! times in this sum since W
(
x′

ij
, x′

ik

)
=

W
(
x′

ik
, x′

ij

)
and since the product order is irrelevant. Finally†
∫

X

dΓs,Q(x)
〈
x′

1, x
〉
· · ·

〈
x′

2n, x
〉

=
( s

2π

)n ∑
′
W

(
x′

i1 , x
′
i2

)
· · ·W

(
x′

i2n−1
, x′

i2n

)
, (2.47)

where
∑′ is a sum without repetition of identical terms‡.

Example If 2n = 4, the sum consists of three terms which can be recorded

by three diagrams as follows. Let 1, 2, 3, 4 designate x′
1, x

′
2, x

′
3, x

′
4 respec-

tively, and a line from i1 to i2 records W
(
x′

i1
, x′

i2

)
. Then the sum in (2.47)

is recorded by the three diagrams

s s

s s

x′
3

x′
1

x′
4

x′
2

s s

s s

x′
3

x′
1

x′
4

x′
2

s s

s s

�
�

�
�

�
�

��@
@@

@
@@

x′
3

x′
1

x′
4

x′
2

Fig. 2.1. Diagrams

† Corrected by Leila Javindpoor.
‡ For instance, we can assume the inequalities

i1 < i2, i3 < i4, . . . , i2n−1 < i2n

i1 < i3 < i5 < . . . i2n−1

in the summation.
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Polarization.2

The following proof of the polarization formula (2.47) belongs also to several

other chapters:

• Chapters 11 and 15 where the integration by parts (2.48) is justified

• Chapter 3 where we introduce (Section 3.3) the quadratic form Q on X
inverse of the quadratic form W on X′ in the sense of equations (2.26)

and (2.27).

Given the qualified equality (2.30)s

dΓs,Q

∫
= Ds,Qx exp

(
−π

s
Q(x)

)
,

the gaussian defined in term of W by (2.29)s is then expressed in terms of

Q by (2.30)s.

We consider the case where X consists of paths x = (x(t))ta≤t≤tb in a

one-dimensional space. Furthermore D = Dt is a differential operator.

The basic integration by parts formula

∫

X

Ds,Q(x) exp
(
−π

s
Q(x)

) δF (x)

δx(t)

:= −
∫

X

Ds,Q(x) exp
(
−π

s
Q(x)

)
F (x)

δ

δx(t)

(
−π

s
Q(x)

)
(2.48)

yields the polarization formula (2.47) when

Q(x) =

∫ tb

ta

dr Dx(r) · x (r) . (2.49)

Indeed,

− δ

δx(t)

π

s
Q(x) = −2

π

s

∫ tb

ta

dr Dx(r) δ(r − t) = −2π

s
Dtx(t) . (2.50)

When

F (x) = x(t1) . . . x(tn) , (2.51)

then

δF (x)

δx(t)
=

n∑

i=1

δ(t − ti) x(t1) . . . x̂(ti) . . . x(tn) , (2.52)
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where a ˆ over a term means that the term is deleted. The n-point function

with respect to the quadratic action S = 1
2Q is by definition

Gn(t1, . . . , tn) :=

(
2π

s

)n/2 ∫
Ds,Q(x) exp

(
−π

s
Q(x)

)
x(t1) . . . x(tn) .

(2.53)

Therefore the left-hand side of the integration by parts formula (2.48) is
∫

X

Ds,Q(x) exp
(
−π

s
Q(x)

) δF (x)

x(t)

=
( s

2π

)(n−1)/2
n∑

i=1

δ(t − ti)Gn−1

(
t1, . . . , t̂i, . . . , tn

)
. (2.54)

Given (2.50) the right-hand side of (2.48) is

−
∫

X

Ds,Q(x) exp
(
−π

s
Q(x)

)
x(t1) . . . x(tn)

(
−2π

s
Dtx(t)

)

=
2π

s

( s

2π

)(n+1)/2
DtGn+1(t, t1, . . . , tn) . (2.55)

The integration by parts formula (2.48) yields a recurrence formula for the

n-point functions, Gn, namely

DtGn+1(t, t1, . . . , tn) =
n∑

i=1

δ(t − ti) Gn−1

(
t1, . . . , t̂i, . . . , tn

)
; (2.56)

equivalently (replace n by n − 1)

Dt1Gn(t1, . . . , tn) =
n∑

i=2

δ(t1 − ti)Gn−2

(
t̂1, . . . , t̂i, . . . , tn

)
. (2.57)

The solution is given by the rules:

• the 2-point function G2 is a solution of the differential equation

Dt1G2 (t1, t2) = δ (t1 − t2) ;

• the n-point function is 0 for m odd;

• for m = 2n even, the m-point function is given by

G2n (t2, . . . , t2n) =
∑

G2 (ti1 , ti2) . . . G2

(
ti2n−1 , ti2n

)

with the same restrictions on the sum as in (2.47).
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Linear Maps

Let X and Y be two Banach spaces, possibly two copies of the same space.

Let L be a linear continuous map L : X → Y by x 7→ y and L̃ : Y′ → X′ by

y′ 7→ x′ defined by 〈
L̃y′, x

〉
=

〈
y′, Lx

〉
. (2.58)

If L maps X onto Y, then we can associate to a gaussian ΓX on X another

gaussian ΓY on Y such that the Fourier transforms FΓX, FΓY on X and Y
respectively satisfy the equation

FΓY = FΓX ◦ L̃, (2.59)

i.e. for the variances

WY′ = WX′ ◦ L̃. (2.60)

If the map L is invertible, then we have similarly QX = QY◦L, but no simple

relation exists between QX and QY when L is not invertible. The following

diagram will be used extensively'
&

$
%

'
&

$
%

-HHHHHHHHH

©©©©©©©©©

j ¼

x yX Y
L

QX QY

'
&

$
%

'
&

$
%

¾HHHHHHHHH

©©©©©©©©©

j ¼

x′ y′
X

′
Y

′
L̃

WX′ WY′

Fig. 2.2. Linear maps

2.5 Scaling and coarse-graining

In this section, we exploit the scaling properties of gaussian volume elements

on spaces Φ of fields φ on MD. These properties are valid for vector space

MD with either euclidean or minkowskian signature. These properties are
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applied to the λφ4 system in Section 16.2.

The gaussian volume element µG is defined according to the conventions

described in formulae (2.33) to (2.36). The covariance G is the two-point

function (2.36). Objects defined by the covariance G include [See Wick

Calculus in Appendix ID]

• convolution with volume element µG

(µG ∗ F )(φ) :=

∫

X

dµG(ψ) F (φ + ψ) , (2.61)

• which yields

µG ∗ F = exp

(
1

2
∆G

)
F, (2.62)

• where the functional Laplacian

∆G :=
s

2π

∫

MD

dDx

∫

MD

dDy G(x, y)
δ2

δφ(x) δφ(y)
, s ∈ {1, i}, (2.63)

• the Bargmann-Segal transform defined by

BG := µG∗ = exp

(
1

2
∆G

)
, (2.64)

• and the Wick transform

: :G := exp

(
−1

2
∆G

)
. (2.65)

Scaling

The scaling properties of covariances can be used for investigating the trans-

formation (or the invariance) of some quantum systems under a change of

scale.

The definition of a gaussian volume element µG (2.34) in Quantum Field

Theory reads
∫

Φ
dµG(φ) exp (−2πi < J, φ >) := exp (−πiW (J)) (2.66)

where φ is a field on spacetime (Minkowski or euclidean). The gaussian µG

of covariance G can be decomposed into the convolution of any number of

gaussians. For example, if

W = W1 + W2 (2.67)
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then

G = G1 + G2 (2.68)

and

µG = µG1 + µG2 (2.69)

The convolution (2.69) can be defined by (2.70):
∫

Φ

dµG(φ) exp(−2πi 〈J, φ〉)

=

∫

Φ

dµG2(φ2)

∫

Φ

dµG1(φ1) exp(−2πi 〈J, φ1 + φ2〉) (2.70)

where

φ = φ1 + φ2 . (2.71)

The additive property (2.68) makes it possible to express a covariance G as

an integral over an independent scale variable.

Let λ ∈ [0,∞[ be an independent scale variable†. A scale variable has no

physical dimension

[λ] = 0 (2.72)

The scaling operator Sλ acting on a function f of physical length dimension

[f ] is by definition

Sλ f(x) := λ[f ] f
(x

λ

)
, x ∈ R. (2.73)

A physical dimension is often given in powers of mass, length, and time.

Here we set ~ = 1, c = 1, and the physical dimensions are physical length

dimensions. We choose length dimension rather than the more conventional

mass dimension because we define fields on coordinate space, not on mo-

mentum space. The subscript of the scaling operator has no dimension.

The scaling of an interval [a, b[ is given by

Sl [a, b[ =
{s

l

∣∣∣s ∈ [a, b[
}

, i.e. Sl [a, b[ =

[
a

l
,
b

l

[
. (2.74)

By definition the (dimensional) scaling of a functional F is

(SlF ) (φ) = F (Slφ) . (2.75)

† Brydges et al use λ ∈ [1,∞[, and λ−1 ∈ [0, 1[.
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We use multiplicative differentials which are scale invariant:

d×l = dl/l (2.76)

∂×/∂l = l ∂/∂l . (2.77)

Scaled covariances

In order to control infrared problems at large distances, and ultraviolet

divergences at short distances, of the following covariance

G(x, y) = cD/|x − y|D−2 , x, y ∈ RD , (2.78)

one introduces a scaled (truncated) covariance

G[l0,l[(x, y) :=

∫ l

l0

d×s Ss/l0u(|x − y|) (2.79)

where the length dimension of the various symbols are

[l] = 1, [l0] = 1, [s] = 1, [u] = [G] = 2 − D . (2.80)

In agreement with (2.37),

[G] = 2[φ] . (2.81)

The function u is chosen so that

lim
l0=0,l=∞

G[l0,l[(x, y) = G(x, y) (2.82)

For G(x, y) given by (2.78) the only requirement on u is
∫ ∞

0
d×r · r−[u] = cD . (2.83)

In the Minkowski case, |x − y| sums over the domain

[0,∞[ ∪ i[0,∞[ in C (2.84)

and we assume the homogeneity

u(ir) = i2−Du(r) . (2.85)

Example: ∆G = 11 with ∆ =
∑

∂2/(∂xi)2.

cD = Γ(D/2 − 1)/4πD/2 (2.86)
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The decomposition of the covariance G into scale dependent contributions

(2.79) is also written

G =
+∞∑

j=−∞
G[2j l0,2j+1l0[ (2.87)

The contributions are self-similar in the following sense. According to (2.79)

G[a,b[(ξ) =

∫

[a,b[
d×s · Ss/au(ξ) ; (2.88)

given a scale parameter λ,

G[a,b[(ξ) =

∫

Sλ[a,b[
Sλ

(
d×s · Ss/au (ξ)

)

=

∫ b/λ

a/λ
d×s Sλs/a l2[φ] u(ξ/λ) .

Hence, by (2.88)

G[a,b[(ξ) = λ[2φ] G[a/λ,b/λ[(ξ/λ) . (2.89)

Henceforth the suffix G in the objects defined by covariances such as µG, ∆G,

BG, : :G is replaced by the interval defining the scale dependent covariance.

Example: convolution

µ[l0∞[ ∗ F = µ[l0,l[ ∗
(
µ[l,∞[ ∗ F

)
(2.90)

for any functional F of the fields. That is in terms of the Bargmann-Segal

transform (2.64)

BG = BG1BG2 (2.91)

where G, G1, G2 correspond respectively to the intervals [l0,∞[, [l0, l[, [l,∞[.

To the covariance decomposition (2.87) corresponds, according to (2.71)

the field decomposition

φ =
+∞∑

j=−∞
φ[2j l0,2j+1l0[ . (2.92)

We also write

φ(x) =
+∞∑

j=−∞
φj(l0, x) . (2.93)

where the component fields φj(l0, x) are stochastically independent.
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Brydges coarse-graining operator Pl

D. Brydges, J. Dimock, and T.R. Hurd [2] introduced and developed the

properties of a coarse-graining operator Pl which rescales the Bargmann-

Segal transform so that all integrals are performed with a scale independent

gaussian

PlF := Sl/l0 B[l0,l[F := Sl/l0

(
µ[l0,l[ ∗ F

)
. (2.94)

Here l0 is a fixed length and l runs over [l0,∞[.

The six following properties of the coarse-graining operator are frequently

used in Chapter 16 (Renormalization 2: Scaling):

i. Pl obeys a multiplicative semigroup property. Indeed

Pl2Pl1 = Pl2l1/l0 , (2.95)

whenever l1 ≥ l0, l2 ≥ l0.

Proof of multiplicative property (2.95)†

Pl2Pl1F = Sl2/l0

(
µ[l0,l2[ ∗

(
Sl1/l0

(
µ[l0,l1[ ∗ F

)))

= Sl2/l0Sl1/l0

(
µl0l1/l0,l2l1/l0 ∗

(
µ[l0,l1[ ∗ F

))

= S l2l1
l0

1
l0

(
µ[

l0,
l2l1
l0

[ ∗ F

)
.

ii. Pl does not define a group because convolution does not have an

inverse. Information is lost by convolution. Physically, information

is lost by integrating over some degrees of freedom.

iii. Wick ordered monomials defined by (2.65) and in Appendix ID are

(pseudo) eigenfunctions of the coarse-graining operator.

Pl

∫

MD

dDx(x) : φn(x) :[l0,∞[

=

(
l

l0

)n[φ]+D ∫

MD

dDx(x) : φn(x) :[l0,∞[ (2.96)

If the integral is over a finite volume, the volume is scaled down

by Sl/l0 . Hence we use the expression “pseudo-eigenfunction” rather

than “eigenfunction.”

† In the proof we use the identity Sl

(
µ[a,b[

)
= µ[a/l,b/l[ which follows easily from (2.89).
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Proof of eigenfunction equation (2.96)

Pl : φn(x) :[l0,∞[ = Sl/l0

(
µ[l0,l[ ∗

(
exp

(
−1

2
∆[l0,l[

)
φn(x)

))

= Sl/l0

(
exp

(
1

2
∆[l0,l[ −

1

2
∆[l0,∞[

)
φn(x)

)

= Sl/l0

(
exp

(
−1

2
∆[l,∞[

)
φn(x)

)

= exp

(
−1

2
∆[l0,∞[

)
Sl/l0φ

n(x)

= exp

(
−1

2
∆[l0,∞[

) (
l

l0

)n[φ]

φn

(
l0
l
x

)

=

(
l

l0

)n[φ]

: φn

(
l0
l
x

)
:[l0,∞[ (2.97)

Note that Pl preserves the scale range. Integrating both sides of (2.86)

over x gives, after a change of variable l0
l x 7→ x′, equation (2.85) and

the scaling down of integration when the domain is finite.

iv. The coarse-graining operator satisfies a parabolic evolution equation,

valid for l ≥ l0 with initial condition Pl0F (φ) = F (φ)

(
∂×

∂l
− Ṡ − 1

2

s

2π
∆̇

)
PlF (φ) = 0 , (2.98)

where

Ṡ =
∂×

∂l

∣∣∣∣
l=l0

Sl/l0 and ∆̇ =
∂×

∂l

∣∣∣∣
l=l0

∆[l0,l[. (2.99)

Explicitly

∆̇F (φ) =

∫

MD

dDx

∫

MD

dDy
∂×

∂l

∣∣∣∣
l=l0

G[l0,l[(|x − y|)

· δ2F (φ)

δφ(x) δφ(y)

with

∂×

∂l

∣∣∣∣
l=l0

G[l0,l[(ξ) =
∂×

∂l

∣∣∣∣
l=l0

∫ l

l0

d×s Ss/l0 u(ξ)

= u(ξ) . (2.100)
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Note that u is independent of the scale, and the final formula

∆̇F (φ) =

∫

MD

dDx

∫

MD

dDy u(|x − y|) δ2F (φ)

δφ(x) δφ(y)
(2.101)

Remark Frequently u is labeled Ġ, an abbreviation of (2.100) mean-

ingful to the cognoscenti.

Proof of evolution equation (2.98) One computes ∂×

∂l Pl at l = l0,

then uses the semigroup property (2.95) to prove the validity of the

evolution equation (2.98) for all l. Starting from the definition of Pl

(2.94), one computes the convolution (2.61)

(
µ[l0,l[ ∗ F

)
(φ) =

∫

Φ

dµ[l0,l[(ψ)F (φ + ψ) . (2.102)

The functional Taylor expansion of F (φ + ψ) up to second order is

sufficient for deriving (2.98)
(
µ[l0,l[ ∗ F

)
(φ) =

∫

Φ

dµ[l0,l[ (ψ)

(
F (φ) +

1

2
F ′′(φ) · ψψ + · · ·

)
(2.103)

= F (φ)

∫

Φ

dµ[l0,l[ (ψ) +
1

2

s

2π
∆[l0,l[ F (φ) (2.104)

to second order only

where ∆[l0,l[ is the functional laplacian (2.63)

∆[l0,l[ =

∫

MD

dDx

∫

MD

dDy G[l0,l[ (x, y)
δ2

δφ(x) δφ(y)
(2.105)

obtained by the ψ integration in (2.103) and the two-point function

property (2.37)
∫

Φ

dµ[l0,l[ (ψ) ψ(x) ψ(y) =
s

2π
G[l0,l[ (x, y) . (2.106)

Finally

∂×

∂l

∣∣∣∣
l=l0

Sl/l0

(
µ[l0,l[ ∗ F

)
(φ) =

(
Ṡ +

1

2

s

2π
∆̇

)
F (φ) . (2.107)

v. The generator H of the coarse-graining operator is defined by

H :=
∂×

∂l
Pl

∣∣∣∣
l=l0

, (2.108)
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equivalently

Pl =: exp
l

l0
H. (2.109)

The evolution operator in (2.98) can therefore be written

∂×

∂l
− Ṡ − 1

2

s

2π
∆̇ =

∂×

∂l
− H. (2.110)

The generator H operates on Wick monomials as follows (2.96)

H : φn(x) :[l0,∞[ =
∂×

∂l
Pl : φn(x) :

∣∣∣∣
l=l0

=
∂×

∂l

(
l

l0

)n[φ]

: φn

(
l0
l
x

)
:[l0,∞[

∣∣∣∣
l=l0

;

hence

H : φn(x) :[l0,∞[= n : [φ]φn(x) + φn−1(x)Eφ(x) :[l0,∞[ (2.111)

where E is the Euler operator
∑D

i=1 xi∂/∂xi.

The second order operator H, consisting of scaling and convolution,

operates on Wick monomials as a first order operator.

vi. Coarse-grained integrands in gaussian integrals

The following equation is used in Section 17.1 for deriving the scale

evolution of the effective action.

〈
µ[l0,∞[, A

〉
=

〈
µ[l0,∞[, PlA

〉
(2.112)

Proof of equation (2.112)

〈
µ[l0,∞[, A

〉
=

〈
µ[l,∞[, µ[l0,l] ∗ A

〉

=
〈
µ[l0,∞[, Sl/l0 · µ[l0,l] ∗ A

〉

=
〈
µ[l0,∞[, PlA

〉

The important step in this proof is the second one,

µ[l,∞[ = µ[l0,∞[Sl/l0 . (2.113)



2.5 Scaling and coarse-graining 71

We check on an example that µ[l0,∞[Sl/l0 = µ[l,∞[.
∫

dµ[l0,∞[(φ)Sl/l0φ(x)φ(y)

=

∫
dµ[l0,∞[(φ)

(
l

l0

)2[φ]

φ

(
l0
l
x

)
φ

(
l0
l
y

)

=
s

2π

(
l

l0

)2[φ]

G[l0,∞[

(
l0
l
|x − y|

)

=
s

2π
G[l,∞[(|x − y|)

=

∫
dµ[l,∞[(φ)φ(x)φ(y)

where we have used (2.89), then (2.37).

From this example we learn the fundamental concepts involved in

(2.102): the scaling operator Sl/l0 with l/l0 > 1 shrinks the domain

of the fields (first line), a change of range from [l0,∞[ to [l,∞[ (third

line) restores the original domain of the fields. These steps, shrinking,

scaling, restoring, are at the heart of renormalization in condensed

matter physics. The second and fourth lines, convenient for having

an explicit presentation of the process relate the gaussian µG to its

covariance G. The selfsimilarity of covariances in different ranges

makes this renormalization process possible.
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9

Grassmann analysis: basics

Parity

9.1 Introduction

Parity is ubiquitous, and Grassmann analysis is a tool well adapted for

handling systematically parity and its implications in all branches of algebra,

analysis, geometry and topology. Parity describes the behavior of a product

under exchange of its two factors. The so-called Koszul’s parity rule states:

“Whenever you interchange two factors of parity 1, you get a minus sign”.

Formally the rule defines graded commutative products

AB = (−1)ÃB̃ BA , (9.1)

where Ã ∈ {0, 1} denotes the parity of A. Objects with parity zero are

called even, and objects with parity one odd. The rule also defines graded

anticommutative products. For instance,

A ∧ B = −(−1)ÃB̃ B ∧ A . (9.2)

• A graded commutator [A, B] can be either a commutator [A, B]− = AB−
BA, or an anticommutator [A, B]+ = AB + BA.

• A graded anticommutative product {A, B} can be either an anticommu-

tator {A, B}+, or a commutator {A, B}−.

Most often, the context makes it unnecessary to use the + and − signs.

There are no (anti)commutative rules for vectors and matrices. Parity is

assigned to such objects in the following way.

180
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• The parity of a vector is determined by its behavior under multiplication

with a scalar z:

zX = (−1)z̃X̃ Xz . (9.3)

• A matrix is even if it preserves the parity of graded vectors. A matrix is

odd if it inverts the parity.

Vectors and matrices do not necessarily have well-defined parity, but they

can always be decomposed into a sum of even and odd parts.

The usefulness of Grassmann analysis in physics became apparent in the

works of F.A. Berezin [1], and M.S. Marinov [2]. We refer the reader to [3],

[4], [5], [6], and [7] for references and recent developments. The next section

summarizes the main formulae of Grassmann analysis.

As a rule of thumb, it is most often sufficient to insert the word “graded” in

the corresponding ordinary situation. For example, an ordinary differential

form is an antisymmetric covariant tensor. A Grassmann form is a graded

antisymmetric covariant tensor: ω...αβ... = −(−1)α̃β̃ ω...βα... where α̃ ∈ {0, 1}
is the grading of the index α. Therefore a Grassmann form is symmetric

under the interchange of two Grassmann odd indices.

9.2 A compendium of Grassmann analysis

Contributed by Maria E. Bell†
This section is extracted from the Master’s Thesis [8] of Maria E. Bell “In-

troduction to Supersymmetry.” For convenience, we collect here formulae

which are self-explanatory, as well as formulae whose meaning is given in

the following sections.

Basic graded algebra

• Ã := parity of A ∈ {0, 1}
• Parity of a product:

ÃB = Ã + B̃ mod2 . (9.4)

• Graded commutator:

[A, B] := AB − (−1)ÃB̃ BA or [A, B]∓ = AB ∓ BA . (9.5)

† For an extended version see [8].
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• Graded anticommutator:

{A, B} := AB + (−1)ÃB̃ BA or {A, B}± = AB ± BA (9.6)

• Graded Leibnitz rule for a differential operator:

D(A · B) = DA · B + (−1)ÃD̃ (A · DB) (9.7)

(referred to as “anti-Leibnitz” when D̃ = 1).

• Graded symmetry:

A αβ...
... has graded symmetry if

A...αβ... = (−1)α̃β̃ A...βα... (9.8)

• Graded antisymmetry:

A...αβ... has graded antisymmetry if

A...αβ... = −(−1)α̃β̃ A...βα... (9.9)

• Graded Lie derivative:

LX = [iX , d]+ for X̃ = 0 and LΞ = [iΞ, d]− for Ξ̃ = 1 . (9.10)

Basic Grassmann algebra

• Grassmann generators {ξµ} ∈ Λν , Λ∞, Λ, algebra generated respectively

by ν generators, an infinite or an unspecified number.

ξµξσ = −ξσξµ ; Λ = Λeven ⊕ Λodd . (9.11)

• Supernumber (real) z = u + v, where u is even (has ũ = 0), and v is odd

(has ṽ = 1). Odd supernumbers anticommute among themselves; they are

called a-numbers. Even supernumbers commute with everything; they are

called c-numbers. The set Cc of all c-numbers is a commutative subalgebra

of Λ. The set Ca of all a-numbers is not a subalgebra.

z = zB + zS , zB ∈ R is the body, zS is the soul. (9.12)

Similar definition for complex supernumber.

• Complex conjugation of a complex supernumber:

(zz′)∗ = z∗z′∗ . (9.13)

Complex conjugation is sometimes defined [4] by (zz′)∗ = z′∗z∗. We prefer

the definition (9.13) for the following reason [5]:

Let a supernumber

ψ = c0 + ci ξ
i +

1

2!
cij ξi ξj + . . . (9.14)
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be called real if all its coefficients ci1...ip are real numbers. Let

ψ = ρ + iσ

where both ρ and σ have real coefficients. Define complex conjugation by

(ρ + iσ)∗ = ρ − iσ . (9.15)

Then the generators {ξi} are real, and the sum and product of two real

supernumbers are real. Furthermore

ψ is real ⇔ ψ∗ = ψ . (9.16)

If one uses the alternate definition of complex conjugation, one finds that

the product of two real supernumbers is purely imaginary.

We denote by Rc the subset of all real elements of Cc and by Ra the

subset of all real elements of Ca.

• Superpoints. Real coordinates x, y ∈ Rn, x = (x1, . . . , xn). Superspace

coordinates

(x1, . . . , xn, ξ1, . . . , ξν)∈Rn|ν , (9.17)

are also written in condensed notation xA =(xa, ξα)

(u1, . . . , un, v1, . . . , vν) ∈ Rn
c × Rν

a . (9.18)

• Supervector space, i.e. a graded module over the ring of supernumbers

X = U + V, where U is even, and V is odd

X = e(A)
AX

XA = (−1)X̃Ã AX .

The even elements of the basis (e(A))A are listed first. A supervector is

even if each of its coordinates AX has the same parity as the corresponding

basis element e(A). It is odd if the parity of each AX is opposite to the

parity of e(A). Parity cannot be assigned in other cases.

• Graded Matrices. Four different uses of graded matrices:

Given V = e(A)
AV = ē(B)

BV̄ with A = (a, α) and e(A) = ē(B)
BMA

then BV̄ = BMA
AV .

Given 〈ω, V 〉 = ωA
AV = ω̄B

BV̄ where ω = ωA
(A)θ = ω̄B

(B)θ̄ then

〈ω, V 〉 = ωA〈(A)θ, e(B)〉 BV implies 〈(A)θ, e(B)〉 = AδB, ωA = ω̄B
BMA,

and (B)θ̄ = BMA
(A)θ.

• Matrix parity:

M̃ = 0, if forallA and B, B̃MA + ˜columnB + r̃ow A = 0 mod 2 . (9.19)
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M̃ = 1, if forallA and B, B̃MA + ˜columnB + r̃ow A = 1 mod 2 . (9.20)

Parity cannot be assigned in other cases. Multiplication by an even matrix

preserves the parity of the vector components, an odd matrix inverts the

parity of the vector components.

• Supertranspose: Supertransposition, labeled “ST”, is defined so that the

basic rules apply
(
MST

)ST
= M

(MN)ST = (−1)M̃Ñ NST MST . (9.21)

• Superhermitian conjugate:

MSH := (MST)∗ = (M∗)ST (9.22)

(MN)SH = (−1)M̃Ñ NSH MSH . (9.23)

• Graded operators on Hilbert spaces. Let |Ω〉 be a simultaneous eigenstate

of Z and Z ′ with eigenvalues z and z′:

ZZ ′ |Ω〉 = zz′ |Ω〉 (9.24)

〈Ω|Z ′SH ZSH = 〈Ω| z′∗z∗ . (9.25)

• Supertrace:

StrM = (−1)Ã AMA . (9.26)

Example: A matrix of order (p, q). Assume the p even rows and columns

written first

M0 =

( )
=

(
A0 C1

D1 B0

)
M1 =

( )
=

(
A1 C0

D0 B1

)
.

These are two matrices of order (1, 2). The shaded areas indicate even

elements. The matrix on the left is even; the matrix on the right is odd.

Given the definitions above

StrM0 = trA0 − trB0 ; StrM1 = tr A1 − trB1 . (9.27)

In general M = M0 + M1.
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• Superdeterminant (a.k.a. Berezinian). It is defined so that it satisfies the

basic properties

BerMN = Ber M BerN (9.28)

δ ln BerM = Str(M−1δM) (9.29)

Ber expM = expStrM (9.30)

Ber

(
A C

D B

)
:= det(A − CB−1D)(det B)−1 . (9.31)

The determinants on the right hand side are ordinary determinants defined

only when the entries commute. It follows that the definition (9.31) applies

only to the Berezinian of even matrices, i.e. A and B even, C and D odd.

• Parity assignments for differentials:

d̃ = 1, (d̃x) = d̃ + x̃ = 1, (d̃ξ) = d̃ + ξ̃ = 0 , (9.32)

where x is an ordinary variable, and ξ is a Grassmann variable,

(∂̃/∂x) = x̃ = 0, (∂̃/∂ξ) = ξ̃ = 1 (9.33)

ĩ = 1, ĩX = ĩ + X̃ = 1, ĩΞ = ĩ + Ξ̃ = 0 . (9.34)

Parity of real p-forms: even for p = 0 mod 2, odd for p = 1 mod 2.

Parity of Grassmann p-forms: always even.

Graded exterior product: ω ∧ η = (−1)ω̃η̃ η ∧ ω.

Forms and densities will be introduced in Section 9.4. We first list defini-

tions and properties of objects defined on ordinary manifolds MD without

metric tensors, then on riemannian manifolds (MD, g).

Forms and densities of weight 1 on ordinary manifolds MD

(without metric tensors)

(A•, d) Ascending complex of forms d : Ap → Ap+1

(D•,∇ or b) Descending complex of densities ∇ : Dp → Dp−1

Dp ≡ D−p used for ascending complex in negative degrees.

• Operators on A•(MD):

M(f) : Ap → Ap, multiplication by a scalar function f : MD → R
e(f) : Ap → Ap+1 by ω 7→ df ∧ ω

i(X) : Ap → Ap−1 by contraction with the vector field X
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LX ≡ L(X) = i(X)d + di(X) maps Ap → Ap by the Lie derivative with

respect to X.

• Operators on D•(MD):

M(f) : Dp → Dp, multiplication by scalar function f : MD → R
e(f) : Dp 7→ Dp−1 by F → df · F (contraction with the form df)

i(X) : Dp → Dp+1 by multiplication and partial antisymmetrization

LX ≡ L(X) = i(X)∇+∇i(X) maps Dp → Dp by the Lie derivative with

respect to X.

• Forms and densities of weight 1 on a riemannian manifold (MD, g):

Cg : Ap → Dp (see equation (9.59))

∗ : Ap → AD−p such that T (ω | η) = ω ∧ ∗η (see equation (9.67)

δ : Ap+1 → Ap is the metric transpose defined by

[dω | η] =: [ω | δη] s.t. [ω | η] :=

∫
T (ω | η)

δ = C−1
g bCg (see equation (9.66))

β : Dp → Dp+1 is defined by Cg d C−1
g .

We now list definitions and properties of objects defined on Grassmann vari-

ables.

Grassmann calculus on ξλ ∈ Λν , Λ∞, Λ

dd = 0 remains true, therefore

∂

∂ξλ

∂

∂ξµ
= − ∂

∂ξµ

∂

∂ξλ
(9.35)

dξλ ∧ dξµ = dξµ ∧ dξλ . (9.36)

• Forms and densities of weight −1 on R0|ν :
Forms are graded totally symmetric covariant tensors. Densities are graded

totally symmetric contravariant tensors of weight −1.

(A•(R0|ν), d) Ascending complex of forms not limited above

(D•(R0|ν),∇ or b) Descending complex of densities not limited above.

• Operators on A•(R0|ν):
M(ϕ) : Ap(R0|ν) → Ap(R0|ν) multiplication by a scalar function ϕ

e(ϕ) : Ap(R0|ν) → Ap+1(R0|ν) by ω 7→ dϕ ∧ ω

i(Ξ) : Ap(R0|ν) → Ap−1(R0|ν) by contraction with the vector field Ξ

LΞ ≡ L(Ξ) := i(Ξ)d− di(Ξ) maps Ap(R0|ν) → Ap(R0|ν) by Lie derivative
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with respect to Ξ.

• Operators on D•(R0|ν):
M(ϕ) : Dp(R0|ν) → Dp(R0|ν), multiplication by scalar function ϕ

e(ϕ) : Dp(R0|ν) → Dp−1(R0|ν) by F 7→ dϕ · F (contraction with the form

dϕ)

i(Ξ) : Dp(R0|ν) → Dp+1(R0|ν) by multiplication and partial symmetriza-

tion

LΞ ≡ L(Ξ) = i(Ξ)∇−∇i(Ξ) maps Dp(R0|ν) → Dp(R0|ν) by Lie derivative

with respect to Ξ.

In Section 10.2 we will construct a supersymmetric Fock space. The opera-

tors e and i defined above can be used for representing the following:

fermionic creation operators: e(xm)

fermionic annihilation operators: i(∂/∂xm)

bosonic creation operators: e(ξµ)

bosonic annihilation operators: i(∂/∂ξµ).

We refer to [3]-[7] for the different definitions of graded manifolds, super-

manifolds, supervarieties, superspace and sliced manifolds. Here we consider

simply superfunctions F on Rn|ν : functions of n real variables {xa} and ν

Grassmann variables {ξα}

F (x, ξ) =

ν∑

p=0

1

p!
fα1...αp(x) ξα1 . . . ξαp (9.37)

where the functions fα1...αp are smooth functions on Rn that are antisym-

metric in the indices α1, . . . , αp.

9.3 Berezin integration†
A Berezin integral is a derivation

The fundamental requirement on a definite integral is expressed in terms of

an integral operator I and a derivative operator D on a space of functions,

and is

DI = ID = 0 . (9.38)

† See Project 19.4.6 “Berezin functional integrals. Roepstorff’s formulation”.
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The requirement DI = 0 for functions of real variables f : RD → R states

the definite integral does not depend upon the variable of integration

d

dx

∫
f(x) dx = 0 , x ∈ R . (9.39)

The requirement ID = 0 on the space of functions that vanish on their

domain boundaries states
∫

df = 0, or explicitly

∫
d

dx
f(x) dx = 0 . (9.40)

Equation (9.40) is the foundation of integration by parts

0 =

∫
d(f(x) g(x)) =

∫
df(x) · g(x) +

∫
f(x) · dg(x) , (9.41)

and of Stokes’ theorem for a form ω of compact support
∫

M

dω =

∫

∂M

ω = 0, (9.42)

since ω vanishes on. We shall use the requirement ID = 0 in Section 11.1

for imposing a condition on volume elements.

We now use the fundamental requirements on Berezin integrals defined

on functions f of the Grassmann algebra Λν . The condition DI = 0 states

∂

∂ξα
I(f) = 0 for α ∈ {1, . . . , ν} . (9.43)

Any operator on Λν can be set in normal ordering†
∑

CJ
KξK ∂

∂ξJ
(9.44)

where J and K are ordered multi-indices where K = (α1 < . . . < αq), J =

(β1 < . . . < βp), ξK = ξα1 . . . ξαq , and ∂/∂ξJ = ∂/∂ξβ1 . . . ∂/∂ξβp

Therefore the condition DI = 0 implies that I is a polynomial in ∂/∂ξi,

I = Q

(
∂

∂ξ1
, . . . ,

∂

∂ξν

)
. (9.45)

† This ordering is also the operator normal ordering, in which the creation operator is followed by
annihilation operator, since e(ξµ) and i(∂/∂ξµ) can be interpreted as creation and annihilation
operators (see Section 10.2).
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The condition ID = 0 states

Q

(
∂

∂ξ1
, . . . ,

∂

ξν

)
∂

∂ξµ
= 0 for every µ ∈ {1, . . . , ν} . (9.46)

Equation (9.46) implies

I = Cν ∂

∂ξν
. . .

∂

∂ξ1
with C a constant. (9.47)

A Berezin integral is a derivation. Nevertheless we write

I(f) =

∫
δξ f(ξ)

where the symbol δξ is different from the differential form dξ satisfying

(9.36). In a Berezian integral, one does not integrate a differential form.

Recall ((9.36) and parity assignment (9.32)) that dξ is even

dξλ ∧ dξµ = dξµ ∧ dξλ

On the other hand, it follows from the definition of the Berezin integral

(9.47) that ∫
δηδξ · F (ξ, η) = c2 ∂

∂η
· ∂

∂ξ
F (ξ, η)

Since the derivatives on the right hand side are odd,

δξδη = −δηδξ ;

hence δξ, like its counterpart dx in ordinary variables, is odd.

The constant is a normalization constant chosen for convenience in the

given context. Notice that C =
∫

δξ · ξ. Typical choices include 1, (2πi)1/2,

(2πi)−1/2. We choose C = (2πi)−1/2 for the following reason.

Fourier transform and normalization constant

The constant C in (9.47) can be obtained from the Dirac δ-function defined

by two conditions:

〈δ, f〉 =

∫
dξ δ(ξ)f(ξ) = f(0) (9.48)

〈Fδ, f〉 = f where Fδ is the Fourier transform of δ.

The first condition implies

δ(ξ) = C−1ξ.
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Define the Fourier transform f̃ of a function f by

f̃(κ) :=

∫
dξ f(ξ) exp(−2πiκξ). (9.49)

The inverse Fourier transform is

f(ξ) =

∫
dδ f̃(κ) exp(2πiκξ).

Then

f(ξ) =

∫
δp δ(ξ − p)f(p)

provided

δ(ξ − p) =

∫
δκ exp

(
2πiκ(ξ − p)

)
. (9.50)

Hence, according to the definition of Fourier transforms given above

Fδ = 1.

According to (9.50)

δ(ξ) = 2πi

∫
δκ κξ = 2πiCξ.

Together (9.49) and (9.50) imply

C−1ξ = 2πiCξ

and therefore

C2 = (2πi)−1. (9.51)

Exercise: Use the Fourier transforms to show that

1 =

∫∫
δκδξ exp (−2πiκξ) . 2

Conclusion

Let

f(ξ) =
∑

α1<...αp

cα1...αpξ
α1 . . . ξαp , and dνξ = δξν . . . δξ1

then ∫
δνξ f

(
ξ1, . . . , ξν

)
= (2πi)−ν/2 c1...ν .
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Remark: Berezin’s integrals satisfy Fubini’s theorem:
∫∫

δηδξ f(ξ, η) =

∫
δη g(η)

where

g(η) =

∫
δξ f(ξ, η)

Remark: The Fourier transform and its inverse are reciprocal in the following

sense

f(ξ) =

∫
δκ f̃(κ) exp (2πiκξ)

=

∫
δκ f̃(κ) exp (−2πiξκ)

f̃(κ) =

∫
δξ f(ξ) exp (−2πiκξ) .

Change of variable of integration

Since integrating f(ξ1, . . . , ξν) is equivalent to taking its derivatives with

respect to ξ1, . . . , ξν , a change of variable of integration is most easily per-

formed on the derivatives. Recall the induced transformations on the tan-

gent and cotangent spaces given a change of coordinates f . Let y = f(x)

and θ = f(ζ);

M

x

F0 f F0 fF F
M M M

y ζ θ
f f

Tx M
* Ty M

* Tθ MTζ M

f'(y) f'(ζ)

Fig. 9.1.
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dy1 ∧ . . . ∧ dyD = dx1 ∧ . . . ∧ dxD

(
det

∂yi

∂xj

)
(9.52)

and
∫

dx1 ∧ . . . ∧ dxD(F ◦ f)(x)

(
det

∂f i

∂xj

)
=

∫
dy1 ∧ . . . ∧ dyDF (y) . (9.53)

For an integral over Grassmann variables, the antisymmetry leading to a

determinant is the antisymmetry of the product ∂1 . . . ∂ν where ∂α = ∂/∂ξα.

Also
(

∂

∂ζ1
. . .

∂

∂ζν

)
(F ◦ f)(ζ) =

(
det

∂fλ

∂ζµ

)
∂

∂θ1
. . .

∂

∂θν
F (θ) . (9.54)

The determinant is now on the right hand side; it will become an inverse

determinant when brought to the left hand side as in (9.53).

Exercise: A quick check of (9.54). Let θ = f(ξ) be a linear map

θλ = cλ
µξµ,

∂fλ

∂ξµ
=

∂θλ

∂ξµ
= cλ

µ,
∂

∂ξµ
= cλ

µ
∂

∂θλ
.

∂

∂ξν
. . .

∂

∂ξ1
= det

(
∂fλ

∂ξµ

)
∂

∂θν
. . .

∂

∂θ1
2

Exercise: Change of variable of integration in the Fourier transform of the

Dirac δ

δ(ξ) =

∫
δκ exp(2πiκξ) = 2π

∫
δα exp(iαξ)

where α = 2πκ and δα = 1
2π δκ.

9.4 Forms and densities

On an ordinary manifold MD, a volume form is an exterior differential form

of degree D. It is called a “top form” because there are no forms of degree

higher than D on MD; this is a consequence of the antisymmetry of forms.

In Grassmann calculus, forms are symmetric. There are forms of arbitrary

degrees on R0|ν ; therefore, there are no “top forms” on R0|ν . We require

another concept of volume element on MD which can be generalized to R0|ν .



9.4 Forms and densities 193

In the 1930’s [9], densities were used extensively in defining and comput-

ing integrals. Densities fell into disfavor, possibly because they do not form

an algebra as forms do. On the other hand, complexes (ascending and de-

scending) can be constructed with densities as well as with forms, in both

ordinary and Grassmann variables.

A form (an exterior differential form) is a totally antisymmetric covariant

tensor. A density (a linear tensor density) is a totally antisymmetric con-

travariant tensor-density of weight 1†.

Recall properties of forms and densities on ordinary D-dimensional mani-

folds MD which can be established in the absence of a metric tensor. These

properties can therefore be readily generalized to Grassmann calculus.

Ascending complex of forms on MD

Let Ap be the space of p-forms on MD, and let d be the exterior differenti-

ation

d : Ap → Ap+1 . (9.55)

Explicitly:

dωα1...αp+1 =

p+1∑

j=1

(−1)j−1∂αjωα1...αj−1αj+1...αp

Since dd = 0, the graded algebra A• is an ascending complex with respect

to the operator d

A0 d−→ A1 d−→ . . .
d−→ AD . (9.56)

Descending complex of densities on MD

Let Dp be the space of p-densities on MD, and let ∇ be the divergence

operator, also labeled b

∇ : Dp → Dp−1 , ∇ ≡ b . (9.57)

Explicitly:

∇Fα1...αp−1 = ∂αFαα1...αp−1

† See eqn. (9.75) for the precise meaning of weight 1.
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(ordinary derivative, not covariant derivative).

Since bb = 0, D• (which is not a graded algebra) is a descending complex

with respect to the divergence operator

D0
b←− D1

b←− . . .
b←− DD . (9.58)

Metric-dependent and dimension-dependent transformations

The metric tensor g provides a correspondence Cg between a p-form and a

p-density. Set

Cg : Ap → Dp (9.59)

Example: The electromagnetic field F is a 2-form with components Fαβ and

Fαβ =
√

det gµνFγδg
αγgβδ

are the components of 2-density F . The metric g is used twice: 1) when

raising indices, 2) when introducing weight 1 by multiplication with
√

det g.

This correspondence does not depend on the dimension D.

On an orientable manifold, the dimension D can be used for transforming

a p-density into a (D − p)-form. Set

λD : Dp → AD−p (9.60)

Example: Let D = 4 and p = 1, define

tαβγ := ǫ1234αβγδFδ

where the alternating symbol ǫ defines an orientation, tαβγ are the compo-

nents of a 3-form.

The star operator (Hodge-de Rham operator, see Ref. [10], p. 295) is the

composition of the dimension-dependent transformation λD with the metric-

dependent one Cg. It transforms a p-form into a D − p-form.

−−−−→∗

−−−−−−→Cg

−−−−−−→ λD

Ap AD−p

Dp

Let T be the volume element defined by

T (ω|η) = ω ∧ ∗η (9.61)
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where the scalar product of two p-form ω and η is

(ω|η) =
1

p!
gi1j1 . . . gipjpωi1...ipηj1...jp (9.62)

See (9.67) for the explicit expression.

We shall exploit the correspondence mentioned in the first paragraph

Cg : Ap → Dp (9.63)

for constructing a descending complex on A• with respect to the metric

transpose δ of d (Ref. [10], p. 296)

δ : Ap+1 → Ap (9.64)

and an ascending complex on D•

β : Dp → Dp+1 (9.65)

where β is defined by the following diagram

Ap
δ←−−−−−−−−−−−→
d

Ap+1

Cg

y
yCg

Dp

β−−−−→←−−−−−−−
b

Dp+1





⇐⇒
{

δ = C−1
g bCg

β = Cg d C−1
g

. (9.66)

Example 1: Volume element on an oriented D-dimensional riemannian man-

ifold. Set ω = η = 1 in the definition (9.61), then

T = ∗1 = λDCg1

1 is a 0-form, I := Cg1 is a 0-density with component
√

det gµν . λD trans-

forms the 0-density with component I into the D form

T := dx1 ∧ . . . ∧ dxD I = dx1 ∧ . . . ∧ dxD
√

det g (9.67)

under the change of coordinates x′j = Aj
ix

i, the scalar density I transforms

into I ′ such that

I ′ = I |detA|−1 (9.68)

and the D-form

dx′1 ∧ . . . ∧ dx′D = |detA| dx1 ∧ . . . ∧ dxD . (9.69)
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Example 2: The electric current. In the 1930’s the use of densities was often

justified by the fact that, in a number of useful examples, it reduces the

number of indicies. For example (9.60) the vector-density T of component

T l = ǫijkl
1234Tijk (9.70)

can replace the 3-form T . An axial vector in R3 can replace a 2-form.

Grassmann forms

The two following properties of forms on real variables remain true for forms

on Grassmann variables:

ddω = 0 (9.71)

d(ω ∧ θ) = dω ∧ θ + (−1)ω̃d̃ ω ∧ dθ (9.72)

where ω̃ and d̃ = 1 are the parities of ω and d, respectively. A form on

Grassmann variables is a graded totally antisymmetric covariant tensor; this

means that a Grassmann p-form is always even.

Since a Grassmann p-form is symmetric the ascending complex A∗(R0|ν)
does not terminate at ν-forms.

Grassmann densities

The two following properties of densities on real variables remain true for

densities F on Grassmann variables:

∇∇F = 0 . (9.73)

Since a density is a tensor of weight 1, multiplication by a tensor of weight

zero is the only possible product which maps a density into a density.

∇ · (XF ) = (∇ · X) · F + (−1)X̃∇̃ X∇ · F, (9.74)

where X is a vector field.

Since a density on Grassmann variables is a symmetric contravariant ten-

sor, the descending complex D•(R0|ν) of Grassmann densities with respect

to ∇ does not terminate at ν-densities.
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Volume elements

The purpose of introducing densities was to arrive at a definition of volume

elements suitable both for ordinary and Grassmann variables. In example

1 (eqn. (9.67)) we showed how a scalar density enters a volume element on

MD, and we gave the transformation (eqn. (9.69)) of a scalar density under

a change of coordinates in MD. But in order to generalize scalar densities

to Grassmann volume elements, we start from Pauli’s definition ([11], p. 32)

which follows Weyl’s terminology ([12], p. 109). “If
∫
Fdx is an invariant

[under a change of coordinate system] then F is called a scalar density.”

Under the change of variable x′ = f(x), the integrand F obeys the rule

(9.69):

F = det
(
∂xj/∂xi

)
F ′ . (9.75)

If the Berezin integral
∫

δξν . . . δξ1 f(ξ1, . . . , ξν) =
∂

∂ξν
. . .

∂

∂ξ1
f(ξ1, . . . , ξν)

is invariant under the change of coordinates θ(ξ), then f is a Grassmann

scalar density. It follows from the formula for change of variable of integra-

tion (9.54) that a Grassmann scalar density obeys the rule

f = det
(
∂θλ/∂ξκ

)−1
f ′ (9.76)

with the inverse of the determinant.



References

[1] F.A. Berezin. The method of Second Quantization (in Russian Nauka, Moscow,
1965; English translation: Academic Press, New York 1966).

[2] F.A. Berezin and M.S. Marinov. “Classical spin and Grassmann algebra”,
JETP Lett. 21, 320-321 (1975).
F.A. Berezin and M.S. Marinov. “Particle spin dynamics as the Grassmann
variant of classical mechanics”, Annals of Physics 104, 336-362 (1977).
M.S. Marinov. “Path integrals in quantum theory”, Physics Reports 60, 1-57
(1980).

[3] P. Cartier, C. DeWitt-Morette, M. Ihl, and Ch. Sämann, Appendix by M.E.
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Encyclopädie der mathematischen Wissenschaften, Vol. 5, Part 2, pp. 539-775
(B.G. Teubner, Leipzig 1921).

[12] H. Weyl. Raum-Zeit-Materie (Julius Springer, Berlin, 1921) [English
translation: Space-Time-Matter (Dover, New York, 1950)]. The word “skew”
is missing in the English translation of schiefsymmetrischen.

198



References 199

[13] G. Roepstorff. Path Integral Approach to Quantum Physics, An Introduction.
Springer Verlag, Heidelberg 1994.



10

Grassmann Analysis: Applications

ξ1
 ξ2 = − ξ2 ξ1

10.1 The Euler-Poincaré characteristic

A characteristic class is a topological invariant defined on a bundle over a

base manifold X. Let X be a 2n-dimensional oriented compact, riemannian

or pseudoriemannian manifold. Its Euler number χ(X) is the integral over

X of the Euler class γ

χ(X) =

∫

X

γ. (10.1)

The Euler-Poincaré characteristic is equal to the Euler number χ(X). The

definition of the Euler-Poincaré characteristic can start from the definition

of the Euler class, or from the definition of the Betti numbers bp (i.e. the

dimension of the p-homology group of X). Chern [1] called the Euler char-

acteristic “the source and common cause of a large number of geometrical

disciplines”. See e.g. [2, p. 321] for a diagram connecting the Euler-Poincaré

characteristic to more than half a dozen topics in geometry, topology, and

combinatorics. In this section we compute χ(X) by means of a supersym-

metric path integral [3][4][5].

Supertrace of exp(−∆)

We recall some classic properties of the Euler number χ(X) beginning with

its definition as an alternate sum of Betti numbers

χ(X) =
2n∑

p=0

(−1)p bp . (10.2)

200
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It follows from the Hodge theorem that the sum of the even Betti numbers is

equal to the dimension de of the space of harmonic forms ω of even degrees,

and similarly the sum of the odd Betti numbers is equal to the dimension

do of the space of odd harmonic forms. Therefore

χ(X) = de − do . (10.3)

By definition a form ω is said to be harmonic if

∆ω = 0 (10.4)

where ∆ is the laplacian. On a compact manifold, ∆ is a positive self-

adjoint operator with discrete spectrum λ0 = 0, λ1, . . . , λn, . . .. Its trace in

the Hilbert space of functions spanned by its normalized eigenvectors is

Tr exp(−∆) =
∞∑

n=0

νn exp(−λn) , (10.5)

where νn is the (finite) dimension of the space spanned by the eigenvectors

corresponding to λn. Let H+ and H− be the Hilbert spaces of even and odd

forms on X respectively. Let H±
λ be the eigenspaces of ∆ corresponding to

the eigenvalues λ ≥ 0. Then

χ(X) = Tr exp(−∆)|H+ − Tr exp(−∆)|H− =: Str exp(−∆) . (10.6)

Proof Let d be the exterior derivative and δ the metric transpose, then†
∆ = (d + δ)2 . (10.7)

Let

Q = d + δ . (10.8)

Q is a selfadjoint operator such that

Q : H± −→ H∓ (10.9)

Q : H±
λ −→ H∓

λ . (10.10)

Eq. (10.10) follows from ∆Qf = Q∆f = λQf together with (10.9)

Q2
∣∣H±

λ = λ . (10.11)

If λ 6= 0, then λ−1/2 Q|H±
λ and λ−1 Q|H∓

λ are inverse of each other, and‡
dimH+

λ = dimH−
λ . (10.12)

† Note that (10.7) defines a positive operator; that is a laplacian with sign opposite to the usual
definition gij ∂i∂j .

‡ Each eigenvalue of λ has finite multiplicity, hence the spaces H+
λ and H−

λ have a finite dimen-
sion.
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By definition

Str exp(−∆) =
∑

λ

exp(−λ)
(
dimH+

λ − dimH−
λ

)
(10.13)

= dimH+
0 − dimH−

0

= de − do

since a harmonic form is an eigenstate of ∆ with 0 eigenvalue.

The definition (10.2) of the Euler number belongs to a graded algebra.

Expressing it as a supertrace (10.6) offers the possibility of computing it by

a supersymmetric path integral.

Scale invariance

Since the sum (10.13) defining Str exp(−∆) depends only on the term λ = 0,

Str exp(−∆) = Str exp(z∆) (10.14)

for any z ∈ C. In particular, the laplacian scales like the inverse metric

tensor, but according to (10.14) Str exp(−∆) is scale invariant.

Supersymmetry

When Bose and Fermi systems are combined into a single system, new kind

of symmetries and conservation laws can occur. The simplest model consists

of combining a Bose and a Fermi oscillator. The action functional S(x, ξ)

for this model is an integral of the lagrangian

L(x, ξ) =
1

2

(
ẋ2 − ω2x2

)
+

1

2

(
ξT ξ̇ + ωξT Mξ

)

= Lbos(x) + Lfer(ξ) (10.15)

The Fermi oscillator is described by two real a-type dynamical variables

ξ :=

(
ξ1

ξ2

)
, ξT := (ξ1, ξ2) , and M :=

(
0 1

−1 0

)
. (10.16)
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Remark: M is an even antisymmetric matrix;

ξT Mη = ηT Mξ = ξ1η2 + η1ξ2

The dynamical equation for the Fermi trajectory is

ξ̇ + ωMξ = 0; (10.17)

it implies

ξ̈ + ω2ξ = 0. (10.18)

The general solution of (10.17) is

ξ(t) = f u(t) + f∗ u∗(t) (10.19)

where

u(t) :=

(
1/
√

2

i/
√

2

)
e−iωt, (10.20)

and where f is an arbitrary complex a-number; upon quantization, the

number f becomes an operator f̂ satisfying the graded commutators

[f̂ , f̂ ]+ = 0 , [f̂ , f̂ †]+ = 1. (10.21)

The Bose oscillator is described by one real c-type dynamical variable x.

Its dynamical equation is

ẍ + ω2x = 0. (10.22)

The general solution of (10.22) is

x(t) =
1√
2ω

(
b e−iωt + b∗ eiωt

)
(10.23)

where b is an arbitrary complex c-number; upon quantization it becomes an

operator b̂ satisfying the graded commutators

[b̂, b̂]− = 0, [b̂, b̂†]− = 1. (10.24)

Bosons and fermions have vanishing graded commutators

[f̂ , b̂]− = 0, [f̂ , b̂†]− = 0. (10.25)
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The action functional S(x, ξ) is invariant under the following infinitesimal

changes of the dynamical variables generated by the real a-numbers δα =(
δα1

δα2

)
:

{
δx = ξ̃ Mδα

δξ = (ẋ112 − ωxM)δα
. (10.26)

The action functional S(x, ξ) is called supersymmetric because it is invariant

under the transformation (10.26) that defines δx by ξ and δξ by x. The

supersymmetry occurs because the frequencies ω of the Bose and Fermi

oscillators are equal.

The transformation (10.26) is a global supersymmetry because α is as-

sured to be time-independent.

Remark: Global supersymmetry implemented by a unitary operator. Let us

introduce new dynamical variables b = (ωx + iẋ) /
√

2ω, f = (ξ1 − iξ2) /
√

2

as well as as their complex conjugates b∗ and f∗. The equation of motion

reads as

ḃ = −iωb , ḟ = −iωf

and the hamiltonian is H = ω (b∗b + f∗f). Introducing the time indepen-

dent Grassmann parameter β =
√

ω (α2 + iα1) and its complex conjugate

β∗ =
√

ω (α2 − iα1), the infinitesimal supersymmetric transformation is

given now by

δb = fδβ∗ , δf = −fδβ .

By taking complex conjugates, we get

δb∗ = f∗δβ , δf∗ = −b∗δβ∗ .

After quantization, the dynamical variables b and f correspond to operators

b̂ and f̂ obeying the commutation rules (10.21), (10.24), and (10.25). The

global supersymmetry is implemented by the unitary operator

T = exp
(
b̂†f̂β + f̂ †b̂β∗

)
,

where β, β∗ are complex conjugate Grassmann parameters commuting with

b̂, b̂†, and anticommuting with f̂ , f̂ †. Hence any quantum dynamical variable

Â is transformed into TÂT−1.
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Equation (10.26) is modified when x and ξ are arbitrary functions of time.

For the modified supersymmetric transformation see [5, p. 292].

In quantum field theory supersymmetry requires bosons to have fermion

partners of the same mass.

A supersymmetric path integral†
Consider the following superclassical system on an (m, 2m) supermanifold

where the ordinary dynamical variables x(t) ∈ X, an m-dimensional rieman-

nian manifold:

S(x, ξ) =

∫

T

dt

(
1

2
gij ẋi ẋj +

1

2
gij ξi

α ξ̇j
α +

1

8
Rijkl ξi

α ξj
α ξk

β ξl
β

)
(10.27)

where i, j ∈ {1, . . . , m} and α ∈ {1, 2}. Moreover g is a positive metric

tensor, the Riemann tensor is

Ri
jkl = −Γi

jk,l + Γi
jl,k + Γi

mk Γm
jl − Γi

ml Γm
jk , (10.28)

and Γa
bc are the components of the connection ∇. Introducing two sets(

ξ1
α, . . . , ξm

α

)
for α ∈ {1, 2} is necessary for the contribution of the curvature

term in (10.27) to be nonvanishing. This is obvious when m = 2. It can be

proved by calculation in the general case.

The action (10.27) is invariant under the supersymmetric transformation

generated by δη =

(
δη1

δη2

)
and δt, namely





δxi = ẋi δt + ξi
α δηα

δξi
α =

(
dξi

α/dt
)
δt + ẋi δηα + Γi

jk ξj
α ξk

β δηβ

(10.29)

where summation convention applies also to the repeated greek indices

ξα δηα = ξ1 δη1 + ξ2 δη2 etc. (10.30)

and where δt and δη are of compact support in T. Therefore the action

S(x, ξ) is supersymmetric.

The hamiltonian H derived from the action functional (10.27) is precisely

† This section is extracted from [5, pp. 386-389] where the detailed calculations are carried out.
For facilitating the use of [5], we label m (rather than D) the dimension of the riemannian
manifold. In [5] the symbol δξ introduced in chapter 9 is written dξ.
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equal to half the laplacian operator ∆ on forms [6, p. 319]. Therefore using

(10.6) and (10.14),

χ(X) = Str exp(−iHt). (10.31)

We shall show that for m even†

Str exp(−iHt) =
1

(8π)m/2(m/2)!

∫

X

dmx g−1/2 ǫi1...im ǫj1...jm

× Ri1i2j1j2 · · ·Rim−1imjm−1jm (10.32)

and

Str exp(−iHt) = 0 for m odd. (10.33)

That is we shall show that the Gauss-Bonnet-Chern-Avez formula for the

Euler-Poincaré characteristic can be obtained by computing a supersym-

metric path integral. Since Str exp(−iHt) is independent of the magnitude

of t, we compute it for an infinitesimal time interval ǫ. The path integral

reduces to an ordinary integral, and the reader may question the word “path

integral” in the title of this section. The reason is that the path integral for-

malism simplifies the calculation considerably since it uses the action rather

than the hamiltonian.

To spell out Str exp(−iHt) one needs a basis in the super Hilbert space

H on which the hamiltonian H i.e. the laplacian ∆, operates. A convenient

basis is the coherent states basis defined as follows. For more on its property

see [5, p. 381]. Let |x′, t〉 be a basis for the bosonic sector

xi(t)|x′, t〉 = x′i|x′, t〉. (10.34)

Replace the a-type dynamical variables ξ =

(
ξ1

ξ2

)
by

zi :=
1√
2

(
ξi
1 − iξi

2

)
, zi∗ :=

1√
2

(
ξi
1 + iξi

2

)
. (10.35)

The superjacobian of this transformation is

∂(z∗, z)

∂(ξ1, ξ2)
=

(
sdet

(
1/
√

2 i/
√

2

1/
√

2 −i/
√

2

))m

= im. (10.36)

Set

zi = gij zj , z∗i = gij zj∗. (10.37)

† We set g := det (gµν).
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The new variables satisfy
[
zi, z

∗
j

]
+

= gij , (10.38)

the other graded commutators vanish.

Define supervectors in H
∣∣x′, z′, t

〉
:= exp

(
−1

2
z′∗i z′i + z∗i (t) z′i

) ∣∣x′, t
〉

(10.39)

and

〈
x′, z′∗, t

∣∣ :=
∣∣x′, z′, t

〉†
=

〈
x′, t

∣∣ exp

(
1

2
z′∗i z′i + z′∗i zi(t)

)
. (10.40)

This basis is called a coherent states basis because the |x′, z′, t〉 are right

eigenvectors of the zi(t) while the 〈x′, z′∗, t| are left eigenvectors of the zi∗(t).
In terms of this basis

Str exp(−iHt) =
1

(2πi)m

∫
dmx′

m∏

j=1

(
δz′∗j δz′j

)
g−1(x′)

× 〈x′, z′∗, t′|e−iHt|x′, z′, t′〉. (10.41)

We need not compute the hamiltonian, it is sufficient to note that it is a

time translation operator; therefore

〈x′, z′∗, t′| exp(−iHt)|x′, z′, t′〉 = 〈x′, z′∗, t′ + t|x′, z′, t′〉. (10.42)

Two circumstances simplify the path integral representation of this proba-

bility amplitude:

• It is a trace, therefore the paths are loops beginning and ending at the

same point in the supermanifold.

• The supertrace is scale invariant, therefore, the time interval t can be

taken arbitrarily small.

It follows that the only term in the action functional (10.27) contributing to

the supertrace is the Riemann tensor integral,

1

8

∫

T

dt Rijkl ξi
α ξj

α ξk
β ξl

β =
1

2

∫

T

dt Rijkl zi∗ zj zk∗ zl. (10.43)

For an infinitesimal time interval ǫ,

Str exp(−iHǫ) = (2πiǫ)−
1
2
m(2π)−m

×
∫

Rm|2m

exp

(
1

4
iRijkl(x

′) ξi
1 ξj

1 ξk
2 ξl

2 ǫ

)
g−

1
2 (x′) dmx′

m∏

i=1

δξi
1 δξi

2 .(10.44)
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The detour by the the z-variables was useful for constructing a supervec-

tor basis. The return to the ξ-variables simplifies the Berezin integrals.

Expanding the exponent in (10.44), one sees that the integral vanishes for
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m odd, and for m even is equal to†

Str exp(−iHǫ) =
(2π)−3m/2

4m/2(m/2)!

∫

Rm|2m

(
Rijkl(x) ξi

1 ξj
1 ξk

2 ξl
2

)m/2

× g−1/2(x) dmx δξ1
1 δξ1

2 . . . δξm
1 δξm

2 . (10.45)

Finally

χ(X) = Str exp(−iHǫ) =
1

(8π)m/2(m/2)!

∫

X

g−1/2 ǫi1...im ǫj1...jm

× Ri1i2j1j2 . . . Rim−1imjm−1jm dmx. (10.46)

¤

In two dimensions, m = 2, one obtains the well-known formula for the

Euler number

χ(X) =
1

8π

∫

X

g−1/2 ǫij ǫkl Rijkl d2x (10.47)

=
1

8π

∫

X

g1/2
(
gik gjl − gil gjk

)
Rijkld

2x

=
s

2π

∫
g1/2 R d2x.

Again one can check that the r.h.s. is invariant under a scale transformation

of the metric. When g → cg with a constant c, the Christoffel symbols are

invariant, the Riemann scalar R = Rij gij goes into Rc−1 and g1/2 goes into

cD/2g1/2. Therefore in two dimensions g1/2R goes into g1/2R.

Starting from a superclassical system more general than (10.27)

A. Mostafazadeh [7] has used supersymmetric path integrals for deriving

the index of the Dirac operator formula, and the Atiyah-Singer index theo-

rem.

10.2 Supersymmetric Quantum Field Theory

It is often, but erroneously, stated that the “classical limits” of Fermi fields

take their values in a Grassmann algebra because “their anticommutators

† The detailed calculation is carried out in [5, pp. 388-389]. There the normalization of the
Berezin integral is not (9.51) but C2 = 2πi; however it can be shown that (10.45) does not
depend on the normalization.



210 Grassmann Analysis: Applications

vanish when ~ = 0.” Leaving aside the dubious concept of a “Fermi field’s

classical limit,” we note that in fact the canonical anticommutators of Fermi

fields do not vanish when ~ = 0 because they do not depend on ~: given the

canonical quantization

[Φ(x), Π(y)]− = i~δ(x − y) for a bosonic system (10.48)

[ψ(x), π(y)]+ = i~δ(x − y) for a fermionic system (10.49)

and the Dirac lagrangian

L = ψ̄(−pµγµ − mc)ψ = i~ψ̄γµ∂µψ − mcψ̄ψ, (10.50)

the conjugate momentum π(x) = δL/δψ̇ is proportional to ~. The net result

is that the graded commutator is independent of ~. 2

Clearing up the above fallacy does not mean that Grassmann algebra

plays no role in fermionic systems. Grassmann analysis is necessary for

a consistent and unified functional approach to quantum field theory; the

functional integrals are integrals over functions of Grassmann variables.

Supersymmetry in Quantum Field Theory is a symmetry that unites par-

ticles of integer and half-integer spin in common symmetry multiplets, called

supermultiplets.

Supersymmetry in physics is too complex to be thoroughly addressed in

this book. We refer the reader to works by Martin [ref: S. Martin, “A su-

persymmetry primer,” hep-ph/9709356.], Weinberg [ref: S. Weinberg, The

Quantum Theory of Fields Volume III: Supersymmetry. Cambridge Univer-

sity Press, 2000.], and Wess and Bagger [ref: J. Wess and J. Bagger, Super-

symmetry and Supergravity. Princeton University Press, 2nd ed., 1992.].

Here we only mention supersymmetric Fock spaces, i.e. spaces of states

which carry a representation of a supersymmetric algebra - that is, an alge-

bra of bosonic and fermionic creation and annihilation operators.

Representations of fermionic and bosonic creation and annihilation oper-

ators are easily constructed on the ascending complex of forms (Section 9.4

and Section 9.2)

• on MD for the fermionic case

• on R0|ν for the bosonic case.
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They provide representations of operators on supersymmetric Fock spaces.

The operator e defines creation operators, and the operator i defines anni-

hilation operators. On MD, let f be a scalar function f : MD → R,

e(f) : Ap → Ap+1 by ω 7→ df ∧ ω. (10.51)

Let X be a vector field on MD,

i(X) : Ap → Ap−1 by contraction with the vector field X. (10.52)

Let φ be a scalar function on R0|ν such that φ : R0|ν → R,

e(φ) : Ap → Ap+1 by ω 7→ dφ ∧ ω. (10.53)

Let Ξ be a vector field on R0|ν ,

i(Ξ) : Ap → Ap−1 by contraction with the vector field Ξ. (10.54)

Representations of fermionic and bosonic creation and annihilation oper-

ators can also be constructed on descending complex of densities. They can

be read off from Section 9.2 (a compendium of Grassmann analysis). They

are given explicitly in [8].

A physical example of fermionic operators: Dirac fields

The second set of Maxwell’s equations (see e.g. [6, p. 336])

δF + J = 0,

together with some initial data, gives the electromagnetic field F created by

a current J . Dirac gave an expression for the current J :

Jµ = ecψ̄γµψ, with ψ̄ such that ψ̄ψ is a scalar, (10.55)

e is the electric charge, the {γµ}’s are the Dirac matrices, and ψ is a Dirac

field which obeys Dirac’s equation. The structural elements of Quantum

Electrodynamics are the electromagnetic field and the Dirac fields. Their

quanta are photons, electrons, and positrons, which are viewed as particles.

The Dirac field ψ is an operator on a Fock space. It is a linear combination

of an electron annihilation operator a and a positron creation operator b†,
constructed so as to satisfy the causality principle, namely, the requirement

that supercommutators of field operators vanish when the points at which

the operators are evaluated are separated by a space-like interval (see [10,
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Vol. I] and [11]).

The Dirac field describes particles other than electrons and antiparticles

other than positrons, generically called fermions and antifermions. There

are several representations of Dirac fields that depend on the following:

• the signature of the metric tensor

• whether the fields are real [9] or complex

• the choice of Dirac pinors (one set of four complex components) or Weyl

spinors (two sets of two complex components).

For example [11]

Ψ(x) =

∫
d3p

(2π)3
1√
2Ep

∑

s

(
as
p us(p)e−ip·x + bs

p
† vs(p)eip·x

)

Ψ̄(x) =

∫
d3p

(2π)3
1√
2Ep

∑

s

(
bs
p v̄s(p)e−ip·x + as

p
† ūs(p)eip·x

)

represent a fermion and antifermion.

In Quantum Electrodynamics, the operator as
p
† creates electrons with en-

ergy Ep, momentum p, spin 1/2, charge +1 (in units of e), and polarization

determined by the (s)pinor us. The operator bs
p
† creates positrons with en-

ergy Ep, momentum p, spin 1/2, charge −1, and polarization opposite that

of us.

The creation and annihilation operators are normalized so that

{Ψa(x), Ψ†
b(y)} = δ3(x − y)δab

with all other anticommutators equal to zero. The (s)pinors us and vs obey

Dirac’s equation. The term d3p/
√

2Ep is Lorentz invariant; it is the positive

energy part of d4p δ(p2 − m2).

There are many [8] constructions of supermanifolds and many represen-

tations of bosonic and fermionic algebras, that is many possibilities for a

framework suitable for supersymmetric quantum field theory.

10.3 Dirac operator and Dirac matrices

The Dirac operator is the operator on a Pin bundle,

6∂ := γa∂a,
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where ∂a := ∂/∂xa and {γa} are the Dirac matrices. The Dirac operator is

the square root of the laplacian

∆ = gab ∂a ∂b.

The operator Q on differential forms, (10.8)

Q = d + δ,

is also a square root of the laplacian. We shall develop a connection between

the Dirac operator 6∂ and the Q-operator acting on superfunctions.

Consider a D-dimensional real vector space V with a scalar product.

Introducing a basis e1, . . . , eD we represent a vector by its components

v = ea va. The scalar product reads

g(v, w) = gab va wb. (10.56)

Let C(V ) be the corresponding Clifford algebra generated by γ1, . . . , γD

satisfying the relations

γa γb + γb γa = 2gab. (10.57)

The dual generators are given by γa = gab γb and

γa γb + γb γa = 2gab (10.58)

where gab gbc = δa
c as usual.

We define now a representation of the Clifford algebra C(V ) by operators

acting on a Grassmann algebra. Introduce Grassmann variables ξ1, . . . , ξD

and put†

γa = ξa + gab ∂

∂ξb
. (10.59)

Then the relations (10.58) hold. In more intrinsic terms we consider the

exterior algebra ΛV ∗ built on the dual V ∗ of V with a basis (ξ1, . . . , ξD) dual

to the basis (e1, ..., eD) of V . The scalar product g defines an isomorphism

v 7→ Igv of V with V ∗ characterized by

〈Igv, w〉 = g(v, w). (10.60)

Then we define the operator γ(v) acting on ΛV ∗ as follows

γ(v) · ω = Igv ∧ ω + i(v)ω, (10.61)

† Here again ∂/∂ξb denotes the left derivation operator, often denoted by
←−
∂ /∂ξb.
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where the contraction operator i(v) satisfies

i(v)(ω1 ∧ . . . ∧ ωp) =

p∑

j=1

(−1)j−1〈ωj , v〉ω1 ∧ . . . ∧ ω̂j ∧ . . . ∧ ωp (10.62)

for ω1, . . . , ωp in V ∗. (The hat ˆ means that the corresponding factor is

omitted.) An easy calculation gives

γ(v)γ(w) + γ(w)γ(v) = 2g(v, w). (10.63)

We recover γa = γ(ea), hence γa = gab γb.

The representation constructed in this manner is not the spinor represen-

tation since it is of dimension 2D. Assume D is even, D = 2n, for simplicity.

Hence ΛV ∗ is of dimension 2D = (2n)2, and the spinor representation should

be a “square root” of ΛV ∗.

Consider the operator J on ΛV ∗ given by

J(ω1 ∧ . . . ∧ ωp) = ωp ∧ . . . ∧ ω1 = (−1)p(p−1)/2ω1 ∧ . . . ∧ ωp (10.64)

for ω1, . . . , ωp in V ∗.
Introduce the operator

γo(v) = Jγ(v)J. (10.65)

In components γo(v) = vaγo
a where γo

a = JγaJ . Since J2 = 1, they satisfy

the Clifford relations

γo(v)γo(w) + γo(w)γo(v) = 2g(v, w). (10.66)

The interesting point is the commutation property †

γ(v) and γo(w) commute for all v, w.

According to the standard wisdom of quantum theory, the degrees of freedom

associated with the γa decouple with the ones for the γo
a. Assume that the

scalars are complex numbers, hence the Clifford algebra is isomorphic to the

algebra of matrices of type 2n × 2n. Then ΛV ∗ can be decomposed as a

tensor square

ΛV ∗ = S ⊗ S (10.67)

with the γ(v) acting on the first factor only, and the γo(v) acting on the

† This construction is reminiscent of Connes’ description of the standard model in [12]
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second factor in the same way:

γ(v)(ψ ⊗ ψ′) = Γ(v)ψ ⊗ ψ′ (10.68)

γo(v)(ψ ⊗ ψ′) = v ⊗ Γ(v)ψ′. (10.69)

The operator J is then the exchange

J(ψ ⊗ ψ′) = ψ′ ⊗ ψ. (10.70)

The decomposition S ⊗ S = ΛV ∗ corresponds to the formula

ci1...ip = ψ̄γ[i1 . . . γip]ψ (0 ≤ p ≤ D) (10.71)

for the currents † ci1...ip (by [. . .] we denote antisymmetrization).

In differential geometric terms, let (MD, g) be a (pseudo-)riemannian man-

ifold. The Grassmann algebra ΛV ∗ is replaced by the graded algebra A(MD)

of differential forms. The Clifford operators are given by

γ(f)ω = df ∧ ω + i(∇f)ω (10.72)

(∇f is the gradient of f with respect to the metric g, a vector field). In

components γ(f) = ∂µf · γµ with

γµ = e(xµ) + gµνi

(
∂

∂xν

)
. (10.73)

The operator J satisfies

J(ω) = (−1)p(p−1)/2ω (10.74)

for a p-form ω. To give a spinor structure on the riemannian manifold

(MD, g) (in the case D even) is to give a splitting ‡
ΛT ∗

CMD ≃ S ⊗ S (10.75)

satisfying the analog of relations (10.68) and (10.70). The Dirac operator 6∂
is then characterized by the fact that 6∂×1 acting on bispinor fields (sections

of S⊗S on MD) corresponds to d+δ acting on (complex) differential forms,

that is on (complex) superfunctions on ΠTMD.

† For n = 4, this gives a scalar, a vector, a bivector, a pseudo-vector and a pseudo-scalar.
‡ T ∗

C
MD is the complexification of the cotangent bundle. We perform this complexification to

avoid irrelevant discussions on the signature of the metric.
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H. Cartan. “Notions d’algèbre différentielle; application aux groupes de Lie et aux
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11

Volume Elements, Divergences, Gradients

D

X ω D = 0      X ω  = divω (X) • ω

11.1 Introduction. Divergences

So far we have constructed the following volume elements:

• Chapter 2. An integral definition of gaussian volume elements on Banach

spaces (2.29), (2.30).

• Chapter 4. A class of ratios of infinite-dimensional determinants that are

equal to finite determinants.

• Chapter 7. A mapping from spaces of pointed paths on RD to spaces of

pointed paths on riemannian manifolds ND that makes it possible to use

the results of Chapter 2 in non linearspaces.

• Chapter 9. A differential definition of volume elements, in terms of scalar

densities, that is useful for integration over finite-dimensional spaces of

Grassmann variables (Section 9.4).

In this chapter we exploit the triptych volume elements–divergences–

gradients on nonlinear, infinite-dimensional spaces.

Lessons from finite-dimensional spaces

Differential calculus on Banach spaces and differential geometry on Banach

manifolds are natural generalizations of their finite-dimensional counter-

parts. Therefore, we review differential definitions of volume elements on

D-dimensional manifolds, which can be generalized to infinite-dimensional

spaces.

218



11.1 Introduction. Divergences 219

Top-forms and divergences

Let ω be a D-form on MD, i.e., a top-form†. Let X be a vector field on MD.

Koszul [1] has introduced the following definition of divergence, henceforth

abbreviated to “Div” which generalizes “div”:

LX ω =: Divω(X) · ω . (11.1)

According to this formula, the divergence of a vector X is the rate of change

of a volume element ω under a transformation generated by the vector field

X. The rate of change of a volume element is easier to comprehend than

the volume element. This situation is reminiscent of other situations. For

example it is easier to comprehend, and measure, energy differences than

energy. Another example: ratios of infinite-dimensional determinants may

have meaning even when each determinant alone is meaningless.

We shall show in (11.20) that this formula applies to the volume element

ωg on a riemannian manifold (M, g)

ωg(x) := |det gαβ(x)|1/2 dx1 ∧ . . . ∧ dxD , (11.2)

and in (11.30) that it applies to the volume element ωΩ on a symplectic man-

ifold (M2N , Ω), where 2N = D and the symplectic form Ω is a nondegenerate

closed 2-form of rank 1,

ωΩ(x) =
1

N !
Ω ∧ . . . ∧ Ω (N factors). (11.3)

In canonical coordinates (p, q), the symplectic form is

Ω =
∑

α

dpα ∧ dqα (11.4)

and the volume element in strict components (components with ordered

indices) is

ωΩ(p, q) = dp1 ∧ dq1 ∧ . . . ∧ dpN ∧ dqN . (11.5)

It is surprising that ωg and ωΩ obey equations with the same structure,

namely

LX ω = D(X) · ω , (11.6)

† The set of top-forms on MD is an interesting subset of the set of closed forms on MD. Top-forms
satisfy a property not shared with arbitrary closed forms, namely,

LfX ω = LX fω where f is a scalar function on M
D.
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because riemannian and symplectic geometry are notoriously different [2].

For instance

Riemannian geometry Symplectic geometry

line element surface area∫
ds

∫
Ω

geodesics minimal surface areas

LX g = 0 ⇒ X is Killing LX Ω = 0 ⇒ X is Hamiltonian

Killings are few Hamiltonians are many

Riemannian manifolds (MD, g) [3]

We want to show that the equation (11.6) with

D(X) :=
1

2
Tr

(
g−1LXg

)
(11.7)

characterizes the volume element ωg up to a multiplication constant. Indeed,

let

ω(x) = µ(x)ddx . (11.8)

By the Leibnitz rule

LX(µ dD x) = LX(µ) dDx + µLX(dDx) . (11.9)

Since dDx is a top form on MD,

LX(dDx) = d(iX dDx) = ∂α Xα dDx = Xα,α dDx . (11.10)

Hence

LX(µ dDx) = (Xαµ,α +µ Xα,α )µ−1 · µ dDx . (11.11)

On the other hand

(LX g)αβ = Xγ gαβ ,γ + gγβ Xγ ,α + gαγ Xγ ,β , (11.12)

that is (LXg)αβ = Xα;β + Xβ;α. Hence

D(X) =
1

2
Tr (g−1 LX g) =

1

2
gβα Xγ gαβ ,γ + Xα,α . (11.13)

The equation

LX ω = D(X) · ω (11.14)
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is satisfied if and only if

(Xγµ,γ +µ Xα,α )µ−1 =
1

2
gαβ Xγ gαβ ,γ + Xα,α , (11.15)

i.e., if and only if

∂γ lnµ =
µ,γ
µ

=
1

2
gαβ gαβ ,γ (11.16)

=
1

2
∂γ ln |det g| ,

that is

µ(x) = C |det g(x)|1/2 , (11.17)

where C is a constant. The quantity D(X) = 1
2 Tr(g−1 LX g) is the covariant

divergence

Divg(X) := Xα
; α := Xα,α + Γβ

βα Xα (11.18)

= Xα,α +
1

2
gβγ gγβ ,α Xα

=
1

2
Tr(g−1 LX g) . (11.19)

In conclusion

LX ωg = Xα
; α ωg = Divg X · ωg . (11.20)

Remark: If X is a Killing vector field with respect to isometries, then LX g =

0, LX ωg = 0, Xα; β + Xβ; α = 0, Xα
; α = 0, and eq. (11.20) is trivially

satisfied.

Remark: On RD the gaussian volume element dΓQ has the same structure

as ωg

dΓQ(x) := |detQ|1/2 exp(−πQ(x)) dx1 ∧ . . . ∧ dxD . (11.21)

In the infinite-dimensional version (2.19) of (11.21), we have regrouped the

terms in order to introduce Ds,Q(x) a dimensionless translation invariant

volume element on a Banach space

dΓs,Q(x)

∫
= Ds,Q(x) exp

(
−π

s
Q(x)

)
. (11.22)
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Remark: For historical reasons, different notation is used for volume ele-

ments. For instance, in the above remark we use different notations when

we say “dΓ has the same structure as ω”. Why not use “dω”? Integrals were

introduced with the notation
∫

f(x)dx. Much later, f(x)dx was identified

as a differential one-form, say ω,
∫

f(x)dx =
∫

ω. The symbol dω is used

for the differential of ω, i.e., for a two-form.

Symplectic manifolds
(
MD

)
, Ω, D = 2N

We shall show that the symplectic volume element ωΩ satisfies the structural

equation

LX ω = D(X)ω (11.23)

with D(X) = DivΩ(X) defined by (11.29) if and only if†

ωΩ =
1

N !
Ω∧N (11.24)

= |detΩαβ |1/2 dD x =: Pf (Ωαβ) dD x

up to a multiplicative constant. Pf is a pfaffian. We define Ω−1 and calculate

Tr (Ω−1 LX Ω).

• The symplectic form Ω defines an isomorphism from the tangent bundle

TM to the cotangent bundle T ∗M by

Ω : X 7→ iX Ω . (11.25)

We can then define

Xα := Xβ Ωβα .

The inverse Ω−1 : T ∗M → TM of Ω is given by

Xα = Xβ Ωβα

where

Ωαβ Ωβγ = δα
γ . (11.26)

Note that in strict components, i.e., with Ω = ΩAB dxA ∧ dxB for A < B,

XA is not equal to XB ΩBA.

† The symplectic form Ω is given in coordinates as Ω = 1
2
Ωαβdxα ∧ dxβ with Ωαβ = −Ωβα.
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• We compute

(LX Ω)αβ = Xγ Ωαβ ,γ + Ωγβ Xγ ,α + Ωαγ Xγ ,β (11.27)

= Xβ,α − Xα,β

using dΩ = 0, also written as Ωβγ ,α + Ωγα,β + Ωαβ ,γ = 0. Hence

(Ω−1 LX Ω)γ
β = Ωγα(Xβ,α − Xα,β) (11.28)

and

1

2
Tr (Ω−1 LX Ω) = Ωγα Xγ,α (11.29)

=: DivΩ(X) .

• We compute LX ωΩ. According to Darboux’ theorem, there is a coordinate

system (xα) in which the volume form ωΩ = 1
N ! Ω∧N is

ωΩ = dx1 ∧ . . . ∧ dx2N

and Ω = Ωαβ dxα⊗dxβ with constant coefficients Ωαβ . The inverse matrix

Ωβα of Ωαβ is also made up of constants, hence Ωβα,γ = 0. In these

coordinates

LX ωΩ = Xα,α ωΩ

= (Xβ Ωβα),α ωΩ

= (Xβ,α Ωβα + Xβ Ωβα,α )ωΩ

= Xβ,α Ωβα ωΩ

= DivΩ X · ωΩ , (11.30)

and equation (11.23) is satisfied.

Remark: If X is a hamiltonian vector field, then LX Ω = 0, LX ωΩ = 0, and

DivΩ X = 0. The basic equation (11.23) is trivially satisfied.

Supervector spaces Rn|ν [4]

Let x be a point in the supervector space (Section 9.2) Rn|ν with coordinates

xA = (xa, ξα)

{
a ∈ {1, . . . , n}
α ∈ {1, . . . , ν} (11.31)
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where xa is a bosonic variable, and ξα is a fermionic variable. Let X be a

vector field on Rn|ν

X = XA ∂/∂xA ,

and let ω be a top-form. The divergence Div X defined, up to an invertible

“volume density” f , by the Koszul formula

LX ω = Div X · ω (11.32)

is [4]

Div X =
1

f
(−1)Ã(1+X̃) ∂

∂XA
(XA f) (11.33)

where Ã, X̃ are the parities of A and X respectively.

The general case LX ω = D(X) · ω
Two properties of D(X) dictated by properties of LX ω:

(i)

L[X,Y ] = LX LY − LY LX ⇔ D([X, Y ]) = LXD(Y ) − LY D(X)

(11.34)

since ω is a top-form

LX ω = diX ω

and

(ii)

LX (f ω) = diX (f ω) = d ifX ω = LfX ω .

Therefore, when acting on a top-form (project 19.5)

LfX = fLX + LX(f) ⇔ D(fX) = fD(X) + X(f) . (11.35)

11.2 Comparing volume elements

Volume elements and determinants of quadratic forms are offsprings of in-

tegration theory. Their values are somewhat elusive because they depend

on the choice of coordinates. For instance, consider a quadratic form Q on

some finite-dimensional space with coordinates x1, . . . , xD, namely

Q(x) = hab xa xb . (11.36)
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In another system of coordinates defined by

xa = ua
ℓ x̄ℓ , (11.37)

the quadratic form

Q(x) = h̄ℓm x̄ℓ x̄m , (11.38)

introduces a new kernel

h̄ℓm = ua
ℓ ub

m hab . (11.39)

There is no such thing as “the determinant of a quadratic form” because it

scales with a change of coordinates

det h̄ℓm = det hab · (det ua
ℓ )

2 . (11.40)

Ratios of the determinants of these forms, on the other hand, have an in-

trinsic meaning. Consider two quadratic forms Q0 and Q1

Q0 = h
(0)
ab xa xb , Q1 = h

(1)
ab xa xb . (11.41)

Denote by det(Q1/Q0) the ratio of the determinants of their kernels

det(Q1/Q0) := det(h
(1)
ab )/ det(h

(0)
ab ) . (11.42)

This ratio is invariant under a change of coordinates. Therefore, one ex-

pects that ratios of infinite-dimensional determinants can be defined using

projective systems [5] or similar techniques.

Ratios of infinite-dimensional determinants

Consider two continuous quadratic forms Q0 and Q1 on a Banach space X.

Assume Q0 to be invertible in the following sense. Let D0 be a continuous,

linear map from X into its dual X′ such that

Q0(x) = 〈D0 x, x〉 , 〈D0 x, y〉 = 〈D0 y, x〉 . (11.43)

The form Q0 is said to be invertible if the map D0 is invertible, i.e., if there

exists a unique† inverse G of D0

G ◦ D0 = 1I . (11.44)

Let D1 be defined similarly, but without the invertibility requirement. There

exists a unique continuous operator U on X such that

D1 = D0 ◦ U , (11.45)

† The inverse G of D0 is uniquely determined either by restricting X or by choosing W in (2.2,
2.30).
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that is U = G ◦D1. If U − 1 is nuclear (see equations (11.47)–(11.63)), then

the determinant of U is defined [6]. Let us denote det (Q1/Q0) the deter-

minant of U . It can be calculated as follows. Let V be a finite-dimensional

subspace of X, and let Q0,V and Q1,V be the restrictions of Q0 and Q1 to

V . Assume that V runs through an increasing sequence of subspaces, whose

union is dense in X, and that Q0,V is invertible for every V . Then

Det(Q1/Q0) = lim
V

det(Q1,V /Q0,V ) . (11.46)

The fundamental trace/determinant relation

The fundamental relation between the trace and the determinant of a matrix

A in RD is

d log detA = tr (A−1 dA) (11.47)

also written

det expA = exp trA . (11.48)

Indeed, the trace and the determinant of A are invariant under similarity

transformations; the matrix A can be made triangular by a similarity trans-

formation, and the above formula is easy to prove for triangular matrices [7,

Part I, p. 174].

The fundamental relation (11.47) is valid for operators on nuclear spaces

[6] [8].

Let X be a Banach space, and let Q be an invertible† positive definite

quadratic form on X. The quadratic form Q(x) defines a norm on X, namely

‖x‖2 = Q(x) , (11.49)

and a dual norm ‖x′‖ on X′, as usual.

According to Grothendieck, an operator T on X is nuclear if it admits a

† A positive-definite continuous quadratic form is not necessarily invertible. For instance, let X

be the space ℓ2 of sequences (x1, x2, . . .) of real numbers with
∑∞

n=1(xn)2 < ∞ and define the

norm by ‖x‖2 =
∑∞

n=1(xn)2. We can identify X with its dual X′, where the scalar product

is given by
∑∞

n=1 x′
nxn. The quadratic form Q(x) =

∑∞
n=1(xn/n)2 corresponds to the map

D : X → X′ that takes (x1, x2, . . .) into (x1/1, x2/2, . . .). The inverse of D does not exist as a
map from ℓ2 into ℓ2 since the sequence 1, 2, 3, . . . is unbounded.
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representation of the form

Tx =
∑

n≥0

〈x′
n, x〉xn (11.50)

with elements xn in X and x′
n in X′ such that

∑
n≥0 ‖xn‖ · ‖x′

n‖ is finite.

The greatest lower bound of all such sums
∑

n ‖xn‖ · ‖x′
n‖ is called the

nuclear norm of T , denoted by ‖T‖1. The nuclear operators on X form a

Banach space, denoted by L1(X), with norm ‖ · ‖1. On L1(X), there exists

a continuous linear form, the trace, such that

Tr (T ) =
∑

n≥0

〈x′
n, xn〉 (11.51)

for an operator T given by (11.50).

We now introduce a power series in λ, namely:

∑

p≥0

σp(T )λp := exp

(
λ Tr (T ) − λ2

2
Tr (T 2) +

λ3

3
Tr (T 3) − . . .

)
. (11.52)

From Hadamard’s inequality of determinants, we obtain the basic estimate

|σp(T )| ≤ pp/2‖T‖p
1/p! . (11.53)

It follows that the power series
∑

p≥0 σp(T )λp has an infinite radius of

convergence. We can therefore define the determinant as

Det (1 + T ) :=
∑

p≥0

σp(T ) (11.54)

for any nuclear operator T . Given the definition (11.52) of σp, we obtain

the more general definition

Det (1 + λ T ) =
∑

p≥0

σp(T )λp . (11.55)

The fundamental property of determinants is, as expected, the multiplicative

rule

Det(U1 ◦ U2) = Det (U1)Det (U2) , (11.56)

where Ui is of the form 1 + Ti, where Ti is nuclear (for i = 1, 2). From

equation (11.56) and the relation σ1(T ) = Tr (T ), we find a variation formula

(for nuclear U − 1 and δU)

Det(U + δU)

Det(U)
= 1 + Tr (U−1 · δU) + O(‖δU‖2

1) . (11.57)
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In other words, if U(ν) is an operator of the form 1 + T (ν), where T (ν) is

nuclear and depends smoothly on the parameter ν, we obtain the derivation

formula

d

dν
log Det (U(ν)) = Tr

(
U(ν)−1 d

dν
U(ν)

)
. (11.58)

Remark: For any other norm ‖ · ‖1 defining the topology of X, we have an

estimate

C−1‖x‖ ≤ ‖x‖1 ≤ C‖x‖ , (11.59)

for a finite numerical constant C > 0. It follows easily from (11.59) that

the previous definitions are independent of the choice of the particular norm

‖x‖ = Q(x)1/2 in X.

Explicit formulae

Introduce a basis (en)n≥1 of X that is orthonormal for the quadratic form

Q. Therefore Q(Σn tn en) = Σn t2n. An operator T in X has a matrix repre-

sentation (tmn) such that

T en =
∑

m

em · tmn . (11.60)

Assume that T is nuclear. Then the series Σn tnn of diagonal terms in

the matrix converges absolutely, and the trace Tr (T ) is equal to Σn tnn,

as expected. Furthermore, σp(T ) is the sum of the series consisting of the

principal minors of order p

σp(T ) =
∑

i1<···<ip

det(tiα,iβ )1≤α≤p
1≤β≤p

. (11.61)

The determinant of the operator U = 1 + T , whose matrix has elements

umn = δmn + tmn, is a limit of finite-size determinants

Det (U) = lim
N=∞

det(umn)1≤m≤N
1≤n≤N

. (11.62)

As a special case, suppose that the basic vectors en are eigenvectors of T

T en = λn en . (11.63)
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Then

Tr (T ) =
∑

n

λn , and Det (1 + T ) =
∏

n

(1 + λn) ,

where both the series and the infinite product converge absolutely.

The nuclear norm ‖T‖1 can also be computed as follows: there

exists an orthonormal basis (en) such that the vectors T en are mutually

orthogonal (for the quadratic form Q). Then ‖T‖1 = Σn ‖T en‖.

Remark: Let T be a continuous linear operator in X. Assume that the series

of diagonal terms Σn tnn converges absolutely for every orthonormal basis.

Then T is nuclear. When T is symmetric and positive, it is enough to assume

that this statement holds for one given orthonormal basis. Then it holds

for all. Counterexamples exist for the case in which T is not symmetric and

positive [6].

Comparing divergences

A divergence is a trace. For example†

divA(X) =
1

2
tr (A−1 LX A) (11.64)

regardless of whether A is the metric tensor g, or the symplectic form Ω (in

both cases, an invertible bilinear form on the tangent vectors). It follows

from the fundamental relation between trace and determinant

d log det A = tr (A−1 dA) , (11.65)

that

divA(X) − divB(X) = LX log((det A)1/2/(det B)1/2) . (11.66)

Given Koszul’s definition of divergence (11.1) in terms of volume elements,

namely

LX ω = Divω(X) · ω (11.67)

equation (11.66) gives ratios of volume elements in terms of ratios of deter-

minants.

† Notice the analogy between the formulae (11.2) and (11.24) for the volume elements

ωg = |det gµν |1/2 dx1 ∧ . . . ∧ dxD

ωΩ = |det Ωαβ |1/2dx1 ∧ . . . ∧ dxD ,

for the metric g = gµνdxµdxν and the symplectic form Ω = 1
2
Ωαβdxα ∧ dxβ = Ωαβdxα ⊗ dxβ .
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Example: Let Φ be a manifold equipped with two riemannian metrics gA

and gB. Let

P : Φ → Φ . (11.68)

be a map transforming gA into gB. Let ωA and ωB be the corresponding

volume elements on Φ such that by P ,

ωA 7→ ωB = ρ ωA . (11.69)

Then

DivωB (X) − DivωA(X) = LX log ρ (11.70)

and

ωB/ωA = (det gB)1/2/(det gA)1/2 . (11.71)

ρ(x) is the determinant of the jacobian matrix of the map P . The proof

is given in Appendix F, equations (F.23–F.25). It can also be done by an

explicit calculation of the change of coordinates defined by P .

11.3 Integration by parts

Integration theory is unthinkable without integration by parts, not only

because it is a useful technique but also because it has its roots in the

fundamental requirements of definite integrals, namely (see Section 9.3):

DI = 0 , ID = 0 (11.72)

where D is a derivative operator and I an integral operator. We refer the

reader to Chapter 9 for the meaning and some of the uses of the fundamental

requirements (11.72).

Already in the early years of path integrals Feynman was promoting in-

tegration by parts in functional integration, jokingly and seriously. Here we

use integration by parts for relating divergences and gradients; this relation

completes the triptych “volume elements - divergences - gradients.”

Divergences and gradients

In R3 the concept “gradient” is intuitive and easy to define: it measures the

steepness of a climb. Mathematically, the gradient (or nabla ∇ ≡ ∇g−1 is a

contravariant vector:

∇i := gij ∂

∂xj
. (11.73)
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The divergence of a vector is its scalar product with the gradient vector:

(∇|V )g = gij ∇i V j = gij gik ∂

∂xk
V j = V j ,j . (11.74)

Divergence and gradient are related by integration by parts. Indeed

(V |∇f)g (x) = gij V i gjk ∂f/∂xk = V i f,i (x)

= LV f(x) (11.75)

(div V |f) (x) = V i,i f(x) (11.76)

and
∫

d3x
(
(V |∇f)g(x) + (div V |f)(x)

)
=

∫
d3x

∂

∂xk

(
fV k

)
. (11.77)

Assume that fV vanishes on the boundary of the domain of integration, and

integrate the right-hand side by parts. The right-hand side vanishes because

the volume element dDx is invariant under translation, hence
∫

RD

dDx(V |∇f)(x) = −
∫

RD

dDx(div V |f)(x) ; (11.78)

the functional scalar products satisfy modulo a sign the adjoint relation

(V |∇f) = −(div V |f) . (11.79)

The generalizations of (11.78) and (11.74) to spaces other than R3 face two

difficulties:

• Contrary to d3x, generic volume elements are not invariant under trans-

lation.

• Traces in infinite-dimensional spaces are notoriously sources of problems.

Two examples:

The infinite-dimensional matrix

M = diag(1, 1/2, 1/3, . . .)

has the good properties of a Hilbert-Schmidt operator (the sum of the

squares of its elements is finite), but its trace is infinite.

Closed loops in Quantum Field Theory introduce traces; they have to be

set apart by one technique or another. For instance Wick products (see

Appendix D) serve this purpose among others.

The definition of divergence provided by the Koszul formula (11.1)

LV ω =: DivωV (11.80)
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bypasses both difficulties mentioned above: the definition (11.80) is not re-

stricted to translation invariant volume elements and it is meaningful in

infinite-dimensional spaces.

The definition (11.73) of the gradient vector as a contravariant vector

requires the existence of a metric tensor g. Let Ap be the space of p-forms

on MD and X the space of contravariant vector fields on MD:

A0 d−→←−
A1

g−1

−→←−
g

X , (11.81)

∇g−1 = g−1 ◦ d . (11.82)

On the other hand the scalar product (11.75)

(V |∇g−1f)g = LV f

is simply the Lie derivative with respect to V of the scalar function f , hence

it is independent of the metric and easy to generalize to scalar functionals.

From the definitions (11.80) and (11.82), one sees that

• the volume element defines the divergence

• the metric tensor defines the gradient because it provides a canonical

isomorphism between covariant and contravariant vectors.

If it happens that the volume element ωg is defined by the metric tensor g,

then one uses the explicit formulae (11.2) and (11.18).

With the Koszul definition (11.80) and the property (11.75), one can

derive the grad/div relationship as follows
∫

MD

(V |∇g−1f)g(x) · ω =

∫

MD

LV f(x) · ω (11.83)

by the property (11.75)

= −
∫

MD

f(x) · LV ω by integration by parts

= −
∫

MD

f(x)Divω(V ) · ω by Koszul formula(11.84)

hence finally

(V |∇f)ω = −(DivωV |f)ω . (11.85)
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Divergence and gradient in function spaces

The basic ingredients in constructing the grad/div relationship are:

Lie derivatives, Koszul formula, scalar products of functions and scalar prod-

ucts of contravariant vectors. They can be generalized in function spaces X,

as follows:

• Lie derivatives. As usual on function spaces, one introduces a one-parameter

family of paths {xλ}λ, λ ∈ [0, 1].

xλ : T −→ MD , xλ(t) ≡ x(λ, t) (11.86)

ẋ(λ, t) :=
d

dt
x(λ, t) (11.87)

x′(λ, t) :=
d

dλ
x(λ, t) . (11.88)

For λ = 0, x0 is abbreviated to x and

x′(λ, t)
∣∣
λ=0

=: Vx(t) . (11.89)

Vx is a vector at x ∈ X, tangent to the one-parameter family {xλ}.

Let F be a scalar functional on the function space X, then

LV F (x) =
d

dλ
F (xλ)

∣∣∣∣
λ=0

, x ∈ X . (11.90)

• The Koszul formula (11.1) defines the divergence of a vector field V as the

rate of change of a volume element ω under the group of transformations

generated by the vector field V :

LV ω =: Divω(V ) · ω .

We adopt the Koszul formula as the definition of divergence in function

space.

• Scalar products of real valued functionals

(F1|F2)ω =

∫

X

ωF1(x)F2(x) . (11.91)

• Scalar products of contravariant vectors. In the finite-dimensional case,

such a scalar product requires the existence of a metric tensor defining

a canonical isomorphism between the dual spaces RD and RD. In the

infinite-dimensional case, a gaussian volume element on X,

dΓQ(x)

∫
= DQ(x) · exp

(
−π

s
Q(x)

)
=: ωQ (11.92)
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defined by (2.30), does provide a canonical isomorphism between X and

its dual X′, namely the pair (D, G) defined by Q and W , respectively,

Q(x) = 〈Dx, x〉 and W (x′) = 〈x′, Gx′〉 . (11.93)

X′ G−→←−
D

X . GD = 11 , DG = 11 . (11.94)

The role of the pair (G, D) as defining a canonical isomorphism between

X and X′ is interesting but is not necessary for generalizing the grad/div

relation (11.85): indeed the scalar product of a contravariant vector V

with the gradient of a scalar function F does not depend on the metric

tensor (11.75); it is simply the Lie derivative of F in the V -direction.

• The functional grad/div relation

At x ∈ X,

(V |∇F )(x) = LV F (x) , x ∈ X ; (11.95)

upon integration on X with respect to the gaussian (11.92)
∫

X

ωQLV F (x) = −
∫

X

LV ωQ · F (x) (11.96)

= −
∫

X

DivωQ(V ) · ωQF (x) .

The functional grad/div relation is the global scalar product

(V |∇F )ωQ = −
(
DivωQ(V )|F

)
ωQ

. (11.97)

Translation invariant symbols

The symbol “dx” for x ∈ R is translation invariant

d(x + a) = dx for a, a fixed point in R. (11.98)

Equivalently, one can characterize the translation invariance of dx by the

following integral
∫

R

dx
d

dx
f(x) = 0 , (11.99)

provided f is a function vanishing on the boundary of the domain of inte-

gration. In order to generalize (11.99) on RD introduce a vector field V in
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RD; eq. (11.99) becomes
∫

dDx ∂αV α(x) = 0 , ∂α = ∂/∂xα

and ∫
dDx ∂α(fV α)(x) =

∫
dDx (∂αf · V α + f∂αV α) = 0 .

Hence ∫
dDx (LV f + fdiv V ) = 0 .

This calculation reproduces (11.78) in a more familiar notation.

Let F be a class of functionals F on the space X of functions x. We shall

formally generalize the characterization of translation invariant symbols D
on linear spaces X, namely

D(x + x0) = Dx for x0 a fixed function, (11.100)

by the following requirement on Dx
∫

X

Dx
δF

δx(t)
= 0 . (11.101)

The characterization (11.101) is meaningful only for F in a class F such

that ∫

X

δ

δx(t)
(Dx F ) = 0 . (11.102)

Although work remains to be done for an operational definition of F , we

note that it is coherent with the fundamental requirement (11.75), ID = 0.

We shall assume that F satisfies (11.102) and exploit the triptych

gradient – divergence – volume element

linked by the grad/div relation (11.97) and the Koszul equation (11.1).

The Koszul formula applied to the translation invariant symbol Dx is a

straightforward generalization of (11.10). Namely

LV dDx = d(iV dDx) = V i,i dDx = div(V )dDx (11.103)

generalizes to

LV Dx =

∫

T

dt
δV (x, t)

δx(t)
Dx =: div(V )Dx , (11.104)

where the Lie derivative LV is defined by (11.90), i.e., by a one-parameter
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family of paths {xλ}. Recall that deriving the coordinate expression of

div(V ) by computing LV dDx is not a trivial exercise on D-forms. We take

for granted its naive generalization

div(V ) =

∫

T

dt
δV (x, t)

δx(t)
(11.105)

and bypass the elusive concept “top-form on X.”

Example: The divergence DivQ(V ) of the gaussian volume element,

ωQ(x) := dΓQ(x) := exp
(
−π

s
Q(x)

)
DQx , (11.106)

is given by the Koszul formula

LV ωQ = LV

(
exp

(
−π

s
Q(x)

))
DQx + exp

(
−π

s
Q(x)

)
LV DQx

=: DivQ(V )ωQ .

The gaussian divergence is the sum of the “naive” divergence (11.105) and

−π
sLV Q(x), that is with the notation (11.93)

DivQ(V ) = −2π

s
〈Dx, V (x)〉 + div(V ) . (11.107)

We recover a well-known result of Malliavin calculus [9].

Remark: Two translation invariant symbols are frequently used: The di-

mensionless volume elements DQx defined by (2.30) and the formal product

d[x] =
∏

t

dx(t) . (11.108)

In D-dimensions,

DQ(x) = |detQ|1/2dx1 . . . dxD ; (11.109)

in function spaces, we write symbolically

DQ(x) = |DetQ|1/2d[x] . (11.110)
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Application: The Schwinger variational principle

In the equation (11.101) which defines the translation invariant symbol

Dx, replace F (x) by

F (x)µ(x) exp

(
i

~
Scl(x)

)
. (11.111)

Then
∫

X

Dx

(
δF

δx(t)
+ F

δ log µ(x)

δx(t)
+

i

~
F

δScl

δx(t)

)
µ(x) exp

i

~
Scl(x) = 0 . (11.112)

Translated in the operator formalism (6.80), this equation gives, for X =

Pa,b, 〈
b

∣∣∣∣∣
δ̂F

δx(t)
+ F

δ̂ log µ

δx(t)
+ F

i

~

δ̂Scl

δx(t)

∣∣∣∣∣ a

〉
= 0 (11.113)

where Ô is the time-ordered product of operators corresponding to the func-

tional O. For F = 1, equation (11.113)
〈

b

∣∣∣∣∣
δ̂ log µ

δx(t)
+

i

~

δ̂Scl

δx(t)

∣∣∣∣∣ a

〉
= 0 (11.114)

gives, for fixed initial and final states, the same quantum dynamics as the

Schwinger variational principle

0 = δ〈b|a〉 =

〈
b

∣∣∣∣
i

~
δSq

∣∣∣∣ a

〉
(11.115)

where the quantum action functional

Sq = Scl +
~

i
log µ

corresponds to the Dirac quantum action function [10] up to order ~2.

Remark: In Chapter 6 we derived the Schwinger variational principle by

varying the potential, i.e. by varying the action functional.

Group invariant symbols

LaChapelle [11] has investigated the use of integration by parts when there

is a group action on the domain of integration other than translation. We

have generalized [6] [12] the gaussian volume element defined in Section 2.3
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on Banach spaces as follows. Let Θ and Z be two given continuous bounded

functionals defined on a Banach space X and its dual X′, respectively by

Θ : X × X′ → C , Z : X′ → C . (11.116)

Define a volume element DΘ,Z by
∫

X

DΘ,Z(x)Θ(x, x′) = Z(x′) . (11.117)

There is a class F of functionals on X integrable with respect to DΘ,Z defined

[12] as follows:

Fµ ∈ F ⇔ Fµ(x) =

∫

X′

Θ(x, x′)dµ(x′) (11.118)

where µ is a bounded measure on X′. Although µ is not necessarily defined

by F = Fµ, it can be proved that
∫

X
F (x)DΘ,Z(x) is defined. Moreover it is

not necessary to identify µ in order to compute
∫

X
F (x)DΘ,Z(x). The class

F generalizes the class chosen by Albeverio and Høegh-Krohn [13]. Let σg

be a group action on X and σ′
g be a group action on X′ such that

〈σ′
gx

′, x〉 = 〈x′, σgx〉 . (11.119)

-

¾

x

σ′
gx

′

σgx

x′

σg

σ′
g

X X

X
′

X
′

The volume element DΘ,Z defined by (11.117) is invariant under the group

action if µ and Θ are invariant, namely if

Z(σ′
gx

′) = Z(x′) (11.120)

Θ(σgx, x′) = Θ(x, σ′
gx

′) .

Then ∫

X

Fµ(σgx)DΘ,Z(x) =

∫

X

Fµ(x)DΘ,Z(x) . (11.121)

Let V be an infinitesimal generator of the group of transformations {σg},
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then ∫

X

LV Fµ(x) · DΘ,Z(x) = −
∫

X

Fµ(x) · LV DΘ,Z(x) = 0 . (11.122)

This equation is to the group invariant symbol DΘ,Z what the following

equation is to the translation invariant symbol DQ
∫

X

δF

δx(t)
DQ(x) = −

∫
F

δ

δx(t)
DQ(x) = 0 . (11.123)
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J. Rodŕıguez-Quintero, C. Roiesnel, Asymptotic scaling of the gluon
propagator on the lattice, Phys. Rev. D61, 114508 (2000), quoted in ch. 17.

M.E. Bell. Introduction to Supersymmetry (Master Thesis, University of Texas
2002), quoted in ch. 9.

F.A. Berezin. The method of Second Quantization (in Russian Nauka, Moscow,
1965; English translation Academic Press, New York 1966), quoted in ch. 9.

F.A. Berezin. “Quantization”, Math. USSR, Izvestija 8, 1109-1165 (1974),
quoted in ch. 7.

453



454 Bibliography

F.A. Berezin and M.S. Marinov. “Classical spin and Grassmann algebra”, JETP
Lett. 21, 320-321 (1975), quoted in ch. 9.

F.A. Berezin and M.S. Marinov. “Particle spin dynamics as the Grassmann
variant of classical mechanics”, Ann. Phys. 104 (1977), 336-362, quoted in
ch. 9.

M. Berg. “Geometry, Renormalization, and Supersymmetry”, Ph.D. Thesis,
University of Texas at Austin (2001), quoted in ch. 15.

M. Berg, P. Cartier. “Representations of the Renormalization Group as Matrix
Lie Algebra”, arXiv:hep-th/0105315, quoted in ch. 17.

N. Berline, E. Getzler, and M. Vergne. Heat Kernels and Dirac Operators,
(Springer-Verlag, Berlin 1992), quoted in ch. 10.

M. Berry. “Scaling and nongaussian fluctuations in the catastophe theory of
waves”
(in Italian) Berry, M.V. 1985, Prometheus 1 41-79 (A Unesco publication,
eds. Paulo Bisigno and Augusto Forti)
(English) Berry, M.V. 1986 in Wave Propogation and Scattering ed. B.J.
Uscinski (Oxford Clarendon Press) pp. 11-35, quoted in ch. 4.

N.D. Birrell and P.C.W. Davies. Quantum Fields in Curved Space (Cambridge
University Press, 1982), quoted in ch. 19.

Ph. Blanchard and M. Sirugue. “Treatment of some singular potentials by change
of variables in Wiener integrals”, J. Math. Phys. 22(7), pp. 1372-1376 (July
1981), quoted in ch. 14.

S. Bochner. Harmonic Analysis and the theory of probability (University of
California Press, Berkeley 1955).
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delta-functional, 304, 305, 393
densities

Grassmann, weight −1, 186, 192, 196
ordinary, weight 1, 185

desintegration of measure, 417
determinant

Van Vleck-Morette, 106
determinants

finite-dimensional, 103
traces, 443

determinat, 441
diagrams, 20, 59
differential equations

interaction representation, 281
stochastic solutions, 279

differential space, 18, 74
dimensional regularization, 346, 389
Dirac δ-function, 189
Dirac equation, 246, 270

4-component, 250
spinor chain path integral solution, 250
two-dimensional, 247, 288

Dirac volume element, 304
distribution, 393

Dirac, 394
Fourier transform, 393
infinite-dimensional, 393
tempered, 394

divergence, 218, 230, 402
in function spaces, 233

dominated convergence theorem, 30
dynamical tunneling, 396
dynamical vector fields, 155, 161
Dyson series, 142
Dyson’s time-ordered exponential formula, 280

effective action, 56, 339
first order approximation, 341
second order approximation, 341

elementary solution, 292
energy constraint, 301
energy function, 47
energy states

density, 306
engineering dimension, 337
Euler beta integral, 426
Euler class, 200
Euler number, 200
Euler-Lagrange equation, 120, 434
Euler-Poincaré characteristic, 200
external leg correction, 364

Feynman formula, 45
Feynman functional integral, 22
Feynman propagator, 387
Feynman’s checkerboard, 249, 408
Feynman’s integral, 47
Feynman-Kac formula, 141
Feynman-Vernon influence functional, 257
first exit time, 297, 299
first order perturbation, 151

fixed-energy amplitude, 302
Fock space, 386
forced harmonic oscillator, 80, 87
form

symplectic, 222
forms

Grassmann, 186, 192, 196
ordinary, 185

forward integral, 418
Fourier transform, 36, 55, 190
functional integral

density functional, 382
volume element, 382

functional Laplacian, 63

gaussian
distribution, 429
on a Banach space, 53
on field distributions, 429
scale dependent, 334

gaussian integral, 50, 392
gaussian random variable

normalization, 426
translation invariance, 426

gaussian random variables, 424
gaussian volume element, 319
ghosts, 351
glory scattering, 21, 117, 125
gluing operation, 364
graded

algebra, 181
anticommutative products, 180
anticommutator, 182
antisymmetry, 182
commutative products, 180
commutator, 181
exterior product, 185
Leibnitz rule, 182
Lie derivative, 182
matrices, 183
operators on Hilbert space, 184
symmetry, 182

gradient, 218, 230, 402
in function spaces, 233

grafting operator, 352
matrix representation, 361, 375

graph, 352
insertion, 354
object, 354

Grassmann analysis, 180, 200
Berezinian, 185
complex conjugation, 182
generators, 182
superdeterminant, 185
superhermitian conjugate, 184
supernumbers, 182
superpoints, 183
supertrace, 184
supertranspose, 184
supervector space, 183

Green’s example, 325
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Green’s function
fixed energy, 297
Jacobi operator, 436
spectral decomposition, 298

group invariant symbols, 237
group manifold, 392
groups of transformations, 155, 162

Hamilton-Cayley equation, 289
hamiltonian operator, 46
hamiltonian vector field, 223
heat equation, 45
Hermite polynomial, 430
hessian, 97, 435
Hilbert space ℓ2, 25
homotopy, 168, 398
homotopy theorem for path integration, 172
Hopf algebra, 349, 415

Ihara bracket, 360, 369
immersion in a fluid, 326
indistinguishable particles, 174
influence functional, 251
influence operator, 257
injection, 79
insertion

insertion points, 353
operator, 353
table, 362, 373

integral, 29
locally bounded, 29

integration by parts, 323
intrinsic time, 311
Ito integral, 149

Jacobi equation, 309, 436
Jacobi field, 119, 309, 436
Jacobi field operator, 382
Jacobi matrix, 119
Jacobi operator, 92, 118, 434

eigenvalues, 444
eigenvectors, 443
functional, 436
in phase space, 309

joint probability density, 264

Kac’s formula, 46
Kac’s solution, 270
Klein-Gordon equation, 246, 270, 292
Koszul formula, 219, 224, 371, 402, 406, 407

in function space, 233
Koszul’s parity rule, 180
Kustaanheimo-Stiefel transformations, 313

lagrangian, 47
Laplace-Beltrami operator, 161
lattice field theory, 412
Lebesgue measure, 28
Lebesque integration, 25
length dimension, 332
Lie algebra, 349, 415

Lie derivative
in funtion space, 233

linear maps, 62, 73
logarithmic derivative, 421
loop expansion, 91

three loop, 367
loop expansions, 384

marginal, 394
marginals, 33
markovian principle, 146
mass dimension, 338
mean value, 32
measure, 23, 406
measure in a Polish space, 26

complex, 27
locally bounded, 27
product measure, 28
regular, 27
variation of, 27

Mellin transform, 334
Milnor-Moore theorem, 350
moment generating function, 425
moments, 58
momentum-to-position transition, 100
Morse index, 308
Morse lemma, 121
multiplicative functional, 282
multistep method, 141

nested divergences, 355
nonrenormalizable theories, 369
normal ordered lagrangian, 339
normal ordered product, 430
nuclear space, 226

operator causal ordering, 320
operator formalism, 136
operator ordering, 428
operator quantization rule, 22
orbits

periodic, 305
quasiperiodic, 305

parity
forms, 185
matrix parity, 181, 183
vector parity, 181

particles in a scalar potential, 140
particles in a vector potential, 149
partition function, 43
path integral, 19
Peierls bracket, 22
pfaffian, 222
phase space, 300
phase space path integrals, 91
physical dimension, 136
Planck constant, 42
Poincaré map, 308, 309
Poisson bracket, 22
Poisson functional integral, 254
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Poisson law, 266
probability measure, 264

Poisson process, 408
basic properties of, 262
counting process, 261, 265
decay constant, 261, 264
generating functional, 268
group manifolds, 409
hits, 261
mathematical theory, 261
unbounded domain, 261
waiting time, 261, 263

Poisson-distributed impurities, 398
polarization, 58, 60
Polish space, 25

closed, 26
complete, 25
open, 26
separability, 25

position-to-position transition, 107
pre-Lie algebra, 361
probability density, 33

compatibility, 34
symmetry, 34

probability law, 32, 264
probability measure, 32
probability space, 300
probablity density, 34
prodistribution, 21, 36, 38
product integrals, 141, 420

indefinite, 421
similarity, 423
sum rule, 421

projective system, 103
promeasure, 21, 34, 272
pseudomeasure, 21, 38
pulsation, 40

quantum dynamics, 136
Quantum Field Theory

measure, 382
volume elements, 381

quantum mechanics, 417
quantum partition function, 43

radiative corrections, 410
rainbow scattering, 123
random hits, 261, 272
random process

classical, 416
random times, 245
random variable, 32
regularization, 318
renomalization group, 369
renormalization, 317, 331, 349, 364, 410

combinatorics, 349
flow, 344
scale, 335

renormalization group, 331
resolvent operator, 297
riemannian geometry, 220

Riesz-Markoff theorem, 31
Roepstorff’s formulation, 400

sample space, 31
scale evolution, 336–338
scale variable, 64, 332
scaling, 62, 331
scaling operator, 332, 335
scattering of particles by a repulsive Coulomb

potential, 122
Schrödinger equation, 45, 136, 143, 406

free particle, 137, 138
in momentum space, 138
time independent, 297

Schwinger variational principle, 22
Schwinger’s variational method, 146
semiclassical approximation, 385
semiclassical expansion, 96, 116, 396
short-time propagator, 284
sigma model

noncompact, 412
simple harmonic oscillator, 439
soap bubble problem, 122
space L2, 30
space of field histories, 381
spaces of pointed paths, 418
spaces of Poisson paths, 270

complex bounded measure, 275
complex measure, 271
volume element, 278

spectral energy density, 41
spinning top, 168
star operation, 360
Stefan’s law, 40
stochastic independence, 32
stochastic Loewner distribution, 399
stochastic process

conformally invariant, 399
Stratonovich integral, 150
sum over histories, 283
superdeterminant, 382
supermanifold, 381
supersymmetry, 202
supertrace, 200
supervector spaces Rn|ν , 223
symmetries, 155
symplectic geometry, 220
symplectic manifold, 162
symplectomorphism, 162

telegrapher’s equation, 241, 289
analytic continuation, 249, 262
four-dimensional, 249
Kac’s solution, 244, 245, 289
Monte Carlo calculation, 243

thermal equilibrium distribution, 43
time dependent potential, 90
time-frequency diagram, 40
time-ordered exponentials, 142
time-ordered operator, 151
time-ordering, 19, 152
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time-ordered product, 420
Tomonaga-Schwinger theory, 146
top form, 403
trace/determinant relation, 226
transition amplitude, 417

fixed energy, 298
transition probability, 417
transitions

momentum-to-momentum, 440
momentum-to-position, 440
position-to-momentum, 440
position-to-position, 440

translation invariance, 323
Trotter-Kato-Nelson formula, 422
Trotter-Kato-Neslon formula, 141
tuned time, 311
tunneling, 117, 127
two-loop order, 386
two-point function, 438
two-state system

interacting with its environment, 251, 253
isolated, 251

vacuum persistence amplitude, 387
variance, 57
variational methods, 321
Vinberg algebra, 361
volume element, 197, 218, 402

Dirac, 404
gamma, 404
group invariant, 237
Hermite, 404
non-gaussian, 404
riemannian, 219
symplectic, 222
translation invariant, 221, 234

Ward identities, 351
wave equation, 270

Cauchy data, 290
Wick calculus, 428
Wick grafting operator, 415
Wick ordered monomials, 67
Wick rotation, 388–390
Wick transform, 63, 428, 429
Wien’s displacement law, 40
Wiener measure, 73

marginals of, 75
Wiener’s integral, 46
Wiener-Kac integrals, 47
WKB, 96
WKB approximation, 303, 307, 385

physical interpretation, 112




