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How do superfluids lose their 
super properties?



Equilibrium: Quantum Phase Transition

n

1+n

1−n

t/U

Adiabatic increase 
of interaction

Greiner et. al. (I. Bloch group), Nature (02)

SuperfluidMott insulator

U
µ

Ultra cold bosons on an optical lattice



In this talk: Non equilibrium questions

1. Superfluid-Insulator transition of a moving 
condensate ?

Moving condensate:
p = phase change/unit cell

p

superfluid Mott Insulator
U/t

???

proposed experimental sequence:



2. Dynamical stability of super-currents ?

???

Mean field Stability “phase diagram”
(critical current)

p

U/t

π/2

Stable

Unstable

Superfluid MI

We find direct connection from classical 
instability to equilibrium transition

Exp: Fallani et. al., (Florence) 
cond-mat/0404045 

Theory: Wu and Niu PRA (01); 
Smerzi et. Al. PRL (02). 



3.  Decay of super-current below the critical 
current?

p

U/t

π/2

Superfluid MI

• Decay of current due to quantum fluctuations.

• Asymptotic decay rate near the classical instability from scaling approach

NIST exp: Decay of dipole oscillations 1d 
optical lattice (Fertig etal. 2004) 



Related questions arise in superconductors

Reduction of TC and the critical 
current in superconducting wires

Theory (thermal phase slips):
Langer and Ambegaokar, Phys. Rev. (1967)
McCumber and Halperin, Phys Rev.  (1970)

Webb and Warburton, PRL (1968)

Role of quantum phase slips?  Debated!
See Bezryadin, Lau and Tinkham, Nature (2000)
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What is unique in ultra cold atomic 
systems?

• Perfectly clean. Periodic potential.

• Isolated from the environment:
Underdamped dynamics.
Quantum coherent.

• Directly probe time evolution.

• Precise control over parameters.
Knob to control quantum fluctuations
Access to quantum phase transition



Bose Hubbard Model

Phase diagram: 
Fisher et. al. (1989)

Mott 
insulatorn

1+n

Uµ

0

0.5

- 0.5

1−n

1+n

UJN /
Classical dynamics: Time dependent 

Ginzburg-Landau
Gross-Pitaevskii

Quantum corrections: O(1/d) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

JN
UO

Dynamics?



Weak coupling: Gross-Pitaevskii dynamics

Rescale:

b

ξh - healing length

ξh
2

{

Continuum limit:

( valid while ξh>>b )



Suppression of density fluctuations

Phase only dynamics:

UN > J ( ξh < b )

• Perturbations in density healed within a lattice constant.

• Density is uniform on the lattice.



Breakdown of GP and classical phase dynamics

For U<<JN,  expand cos:

For U~JN :  θj fluctuates strongly 

Cannot be described by a classical variable ! 

Quantum phase model (equivalent to Hubbard for UN>>J , N>>1):

(Quantum fluctuation)



Dynamics in the strongly correlated regime 
(U~JN)

Semiclassical description possible after coarse graining:

ξ
Relativistic Ginzburg-Landau:

ξ

UUC

ν−− CUU
Remark: The coherence length ξ is a “healing 
length” of the order parameter. Not of density, 
which is uniform in this regime (recall ξh ~ 1)

Sachdev, Quantum phase transitions
Altman & Auerbach, PRL (2002)



Regimes of dynamics with increasing interaction

UJ/N JN ~ Uc

jjjj
j UJ

dt
d

i µψψψψ
ψ

δ
δ −+−= ∑ +

2

( )∑ −−= +
δ

δ θθ
θ

jj
j UJN

dt
d

sin22

2

( )ψψξψ  222 −+∇= −&&

Gross-Pitaevskii

Phase model

Relativistic GL



Dynamical instability in GP

p>π/2 negative spring constant

• Expansion around uniform current

Fallani etal. cond-at/0404045

Theory: Wu and Niu PRA (01); 
Exp. : Smerzi etal. PRL (02). 

Imaginary normal mode frequencies



Dynamical Instability near the SF-MI transition

ξ

p

U/t

π/2

Superfluid MI

uup cc −~1~ ξ

Interpolate between the two limits using time-
dependent Gutzwiller approximation.

SF unstable if phase change is of order 
unity over a coherence length

See: cond-mat/0411047



Decay of current below the critical current

p

E

2π/L 4π/L

Below critical current:
tunneling or thermal activ.

Critical current:
dynamical instabillity

Semiclassical instanton tunneling: instS
Q e−∝Γ

Reminiscent of a 1st order transition. Irreversible. 



Single particle semiclassics

Path integral for the transition amplitude:

Classical path:

t

φ

φf

φi

φ

Gaussian fluctuations:



Single particle – semiclassical tunneling

V

φ

No classical trajectory !

τ

bφBounce solution

τb

• Rotate to imaginary time: τit −=

- Analytically continue to real time at the end.

• Survival amplitude:

• Decay rate:

Inverted potential in 
imaginary time action



Single particle - Limit of vanishing barrier

Rescale:

• Obtain parametric dependence on pc-p near the instability

• Avoid calculation of precise tunneling action.

How does it work ?

V

φ



Single particle - Limit of vanishing barrier

V

φRescale:

• Scaling facilitated by
diverging time of critical 
bounce

φ

2/5
barrier ~~ ετ bb ES ×

τ

bφ

• vanishing energy barrier: 32
barrier ~~ εεφE



Quantum decay of current – weak coupling I

Expand about a uniform current:
y

"1" h Controls semiclassics

Continuum approximation in the 
transverse direction



Quantum decay of current – weak coupling II

Justifies continuum approximation in transverse direction.

0cos|| →=
=⊥

pJJ
JJ

current

phase slip occurs at the same time in many parallel chains. 

Instanton configuration



Quantum decay of current – weak coupling III

Rescaling:

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−∝Γ − 232exp d

dQ p
U
JNs π

Variational calculation yields:

1.71 ≈s 252 ≈s 933 ≈s

Critical instanton has diverging time as well as size in 
the transverse direction. 



Quantum decay of current – weak coupling IV

Instability → crossover (1<Sinst<3)

instS
Q e−∝Γ
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p/
π

U/JN

See: Cond-mat/0412497



N~1N~102 - 103

Experiments in one dimensional traps

""
1
h

↔
U
JN

Sharp instability at p=π/2 Observe decay for p<π/2

5/ 2

exp 7.1
2

JN p
U

π⎡ ⎤⎛ ⎞Γ ∝ − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

Fallani etal. 2004 (Florence)

Fertig etal. 2004 (NIST)



Thermal decay of current – weak coupling

T
UJNd 2

→∫ τ
substitute  d → d -1  
in quantum calculation:

( ) ⎥⎦
⎤

⎢⎣
⎡ −−∝Γ −

−
1

25.32exp d
d

T sp
T
JN π

Temperature scale for quantum→classical crossover :

UJNT 2~*



Quantum decay near the SF-MI transition I

Current state + fluctuations ( )φη ,

U/tSF MI

p



Quantum decay near the SF-MI transition II

( )⊥= xy ,τ

||x instanton

( ) d
cbb

d
bb ppExxS −−

⊥ −××× 5.2
barrier||

1 ~~ τ

Broad crossover in d=1,2  

d=3 : Volume cost is overwhelming. It is cheaper to create noncritical
(finite size) instantons, with finite action cost.  

⎩
⎨
⎧

>
<

Γ
−

c

c

pp
ppe

1
~

3.4 Discontinuity in the decay rate. 
Mean-field instability is well defined!

( )3~ ppE cbarrier −
Critical instanton (bounce):

( ) 1~~ −⊥ − ppx cbouncebounceτ

( ) 21|| ~ −− ppx cbounce

Power counting:



Summary

p

U/t

π/2

Superfluid MI

Quantum and thermal Fluctuations:
- Asymptotic decay rates in d=1,2,3
- wide crossover in d=1,2
- Quantum fluctuations dominate at
experimentally relevant temperatures.

Mean field stability phase diagram:
Continuous connection from the modulational instability at pc=p/2 and 
weak coupling to the equilibrium SF-MI at strong coupling.

d=3 (T=0): discontinuity in the decay rate near SF-MI transition! 
Mean field instability is well defined.

Refs:   Polkovnikov, Altman, Demler, Lukin and Halperin, Cond-mat/0412497

Altman, Polkovnikov, Demler, Lukin and Halperin, Cond-mat/0411047


