

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR 1666 - 15

SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES

11 - 22 July 2005

How supercurrents decay in optical lattices

Presented by:

Ehud Altman

Harvard University

How supercurrents decay in optical lattices

Ehud Altman Harvard University

Collaborators:

Anatoli Polkovnikov Eugene Demler Mikhail Lukin Bert Halperin

How do superfluids lose their super properties?

Equilibrium: Quantum Phase Transition

Greiner et. al. (I. Bloch group), Nature (02)

Ultra cold bosons on an optical lattice

In this talk: Non equilibrium questions

1. Superfluid-Insulator transition of a moving condensate ?

$$\uparrow / / \rightarrow \land \downarrow / / \rightarrow \land \uparrow \uparrow$$

Moving condensate: *p* = phase change/unit cell

2. Dynamical stability of super-currents ?

(critical current)

3. Decay of super-current below the critical current?

NIST exp: Decay of dipole oscillations 1d optical lattice (Fertig etal. 2004)

• Decay of current due to quantum fluctuations.

Asymptotic decay rate near the classical instability from scaling approach

Related questions arise in superconductors

Role of quantum phase slips? Debated! See Bezryadin, Lau and Tinkham, Nature (2000)

What is unique in ultra cold atomic systems?

- Perfectly clean. Periodic potential.
- Isolated from the environment: Underdamped dynamics. Quantum coherent.
- Directly probe time evolution.
- Precise control over parameters. Knob to control quantum fluctuations Access to quantum phase transition

Bose Hubbard Model

Weak coupling: Gross-Pitaevskii dynamics

$$i\frac{d\psi_j}{dt} = -J\sum_{\delta}\psi_{j+\delta} + U|\psi_j|^2\psi_j - \mu\psi_j$$

$$\psi_j = \sqrt{\rho_j} e^{i\theta_j}$$

Rescale:

$$\tilde{\psi}_j = \psi_j / \sqrt{N}$$
 $\tilde{t} = \frac{UN}{\hbar} t$

Continuum limit:

$$\begin{split} i\frac{d\tilde{\psi}}{dt} &= -\left(b^2\frac{J}{UN}\right)\nabla^2\tilde{\psi} + |\tilde{\psi}|^2\psi + \left(\frac{2J-\mu}{UN}\right)\tilde{\psi} \\ & \underbrace{\xi_h^2} \qquad \text{(valid while } \xi_h >> b\text{)} \end{split}$$

$$\xi_{h} - \text{healing length}$$

Suppression of density fluctuations

$$UN > J$$
 ($\xi_h < b$)

- Perturbations in density healed within a lattice constant.
- Density is uniform on the lattice.

$$i\frac{d\psi_{j}}{dt} = -J\sum_{\delta}\psi_{j+\delta} + U|\psi_{j}|^{2}\psi_{j} - \mu\psi_{j}$$
$$\mathbf{D}$$
$$\mathbf{Phase only dynamics:}$$
$$\frac{d^{2}\theta_{j}}{dt^{2}} = -2UJN\sum_{\delta}\sin(\theta_{j+\delta} - \theta_{j})$$

Breakdown of GP and classical phase dynamics

Quantum phase model (equivalent to Hubbard for UN>>J , N>>1):

$$H = \sum_{i} \frac{U}{2} n_i^2 - JN \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) \qquad [\theta_i, n_i] = i$$

For *U*<<*JN*, expand cos:

(Quantum fluctuation)

For $U \sim JN$: θ_i fluctuates strongly

Cannot be described by a classical variable !

Dynamics in the strongly correlated regime (U~JN)

Semiclassical description possible after coarse graining:

U_c

<u>Remark:</u> The coherence length ξ is a "healing length" of the order parameter. Not of density, which is uniform in this regime (recall $\xi_h \sim 1$)

Regimes of dynamics with increasing interaction

Dynamical instability in GP

• Expansion around uniform current $\psi_j = \sqrt{N}e^{ipx_j + \phi_j}$ $\frac{d^2\phi_j}{dt^2} = -2UJN\cos p(\phi_{j+1} - 2\phi_j + \phi_{j-1}) + O(\phi^2)$

 $p > \pi/2$ \implies negative spring constant Imaginary normal mode frequencies

Theory: Wu and Niu PRA (01); Exp. : Smerzi etal. PRL (02).

Decay of current below the critical current

Reminiscent of a 1st order transition. Irreversible.

Semiclassical instanton tunneling:

Single particle semiclassics

Path integral for the transition amplitude:

$$G_{i \to f} = \int_{\phi_I}^{\phi_F} \mathcal{D}\phi \exp\left\{\frac{i}{\hbar} \int_0^t dt' \left[\frac{1}{2}m\dot{\phi}^2 - V(\phi)\right]\right\}$$

Classical path:

$$\frac{\delta S}{\delta \phi}\Big|_{\bar{\phi}} = 0 \qquad m\ddot{\bar{\phi}} + V'(\bar{\phi}) = 0$$

Gaussian fluctuations:

 $\phi = \bar{\phi} + \eta \qquad \eta(0) = \eta(t) = 0$

$$G_{i\to f} = e^{\frac{i}{\hbar}S(\bar{\phi})} \int \mathcal{D}\eta e^{-\frac{i}{2\hbar}\int dt'\eta(t') \left[m\partial_t^2 + V''(\bar{\phi})\right]\eta(t')} \equiv A_q e^{\frac{i}{\hbar}S(\bar{\phi})}$$

Single particle – semiclassical tunneling

No classical trajectory !

• Rotate to imaginary time: $t = -i\tau$

$$G_{i\to f}(\tau) = \int_{\phi_I}^{\phi_F} \mathcal{D}\phi \exp\left\{-\frac{1}{\hbar}\int_0^{\tau} d\tau' \left[\frac{1}{2}m\dot{\phi}^2 + V(\phi)\right]\right\}$$

- Analytically continue to real time at the end.
- Survival amplitude:

$$G_{i \to i}(t) \propto e^{-i\omega t/2} \exp\left[-tAe^{-S[\bar{\phi}_b]/\hbar}\right]$$

• Decay rate:

$$\Gamma = A^{-S_b/\hbar}$$

V Inverted potential in imaginary time action

Single particle - Limit of vanishing barrier

- Obtain parametric dependence on p_c -p near the instability
- Avoid calculation of precise tunneling action.

How does it work?

Single particle - Limit of vanishing barrier

$$S = \int_0^\tau d\tau' \left[\frac{1}{2} m \dot{\phi}^2 + \epsilon \phi^2 - b \phi^3 \right]$$

Rescale:

$$\phi = \frac{\epsilon}{b} \tilde{\phi} \qquad \tau = \tilde{\tau} \sqrt{\frac{m}{\epsilon}}$$

 Scaling facilitated by <u>diverging time</u> of critical bounce

 \mathcal{T}

 $p - p_c \sim \epsilon \to 0$

• vanishing energy barrier:

$$E_{\text{barrier}} \sim \varepsilon \phi^2 \sim \varepsilon^3$$

Quantum decay of current – weak coupling I

$$S = \sqrt{\frac{JN}{2U}} \int d\tau \left[\sum_{j} \left(\frac{d\theta_{j}}{d\tau} \right)^{2} - \sum_{\langle j,j' \rangle} 2\cos(\theta_{j} - \theta_{j'}) \right]$$
$$\sum_{i=1/\hbar''} \text{Controls semiclassics}$$

Expand about a uniform current:

$$\theta_j = px_j + \phi_x(\mathbf{y})$$

Quantum decay of current – weak coupling II

phase slip occurs at the same time in many parallel chains. Justifies continuum approximation in transverse direction.

Quantum decay of current – weak coupling III

Rescaling:

$$\phi = \tilde{\phi} \cos p, \ \tau = \frac{\tilde{\tau}}{\sqrt{\cos p}}, \ y = \frac{\tilde{y}}{\sqrt{\cos p}}$$

Critical instanton has diverging time as well as size in the transverse direction.

$$\Gamma_Q \propto \exp\left[-s_d \sqrt{\frac{JN}{U}} (\pi/2 - p)^{3-d/2}\right]$$

$$s_d = \sum_x \int d^d y \left[\left(\frac{d\phi_j}{d\mathbf{y}} \right)^2 + (\phi_{x+1} - \phi_x)^2 - \frac{1}{3} (\phi_{x+1} - \phi_x)^3 \right]$$

Variational calculation yields:

$$s_1 \approx 7.1$$
 $s_2 \approx 25$ $s_3 \approx 93$

Quantum decay of current – weak coupling IV

$$\Gamma_Q \propto e^{-S_{
m inst}}$$

Instability \rightarrow **crossover** (1< S_{inst} <3)

Experiments in one dimensional traps

$$\Gamma \propto \exp\left[-7.1\sqrt{\frac{JN}{U}}\left(\frac{\pi}{2}-p\right)^{5/2}\right]$$

 $N \sim 10^2 - 10^3$ Sharp instability at $p = \pi/2$

$$\sqrt{\frac{JN}{U}} \leftrightarrow \frac{1}{"\hbar"}$$

Observe decay for $p < \pi/2$

Thermal decay of current – weak coupling

$$S = \sqrt{\frac{JN}{2U}} \int d\tau \left[\sum_{j} \left(\frac{d\theta_j}{d\tau} \right)^2 - \sum_{\langle j,j' \rangle} 2\cos(\theta_j - \theta_{j'}) \right]$$

$$\int d\tau \to \frac{\sqrt{2UJN}}{T}$$

substitute $d \rightarrow d$ -1 in quantum calculation:

$$\Gamma_T \propto \exp\left[-\frac{JN}{T}(\pi/2-p)^{3.5-d/2}s_{d-1}\right]$$

Temperature scale for quantum \rightarrow classical crossover :

$$T^* \sim \sqrt{2UJN}$$

Quantum decay near the SF-MI transition I

$$S = A \int d^{d}x d\tau \left\{ \left| \frac{d\psi}{d\tau} \right|^{2} + |\nabla \psi|^{2} - \xi^{-2} |\psi|^{2} + \frac{1}{2} |\psi|^{4} \right\}$$

Current state + fluctuations (η, ϕ)

$$\psi(x) = \xi^{-1} \sqrt{1 - (p\xi)^2} (1 + \eta) e^{i(px + \phi)}$$

Quantum decay near the SF-MI transition II

Critical instanton (bounce):

$$E_{barrier} \sim (p_c - p)^3$$

$$\tau_{bounce} \sim x_{bounce}^{\perp} \sim (p_c - p)^{-1}$$

$$x_{bounce}^{\parallel} \sim (p_c - p)^{-1/2}$$

Power counting:
$$S_b \sim x_{\perp b}^{d-1} \times x_{\parallel b} \times \tau_b \times E_{\text{barrier}} \sim (p_c - p)^{2.5-d}$$

 $\Gamma \propto e^{-S_d} = \exp\left[-\frac{C_d}{\sqrt{\xi}}(p_c - p)^{2.5-d}\right] \implies \text{Broad crossover in d=1,2}$

<u>d=3</u>: Volume cost is overwhelming. It is cheaper to create noncritical (finite size) instantons, with finite action cost.

$$\Gamma \sim \begin{cases} e^{-4.3} & p < p_c \\ 1 & p > p_c \end{cases}$$

Discontinuity in the decay rate. Mean-field instability is well defined!

Summary

Mean field stability phase diagram:

р

Continuous connection from the modulational instability at $p_c=p/2$ and weak coupling to the equilibrium SF-MI at strong coupling.

<u>d=3 (T=0)</u>: discontinuity in the decay rate near SF-MI transition! Mean field instability is well defined.

Refs: Polkovnikov, Altman, Demler, Lukin and Halperin, Cond-mat/0412497 Altman, Polkovnikov, Demler, Lukin and Halperin, Cond-mat/0411047