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1 Introduction

Physical systems composed of many particles are generally very difficult
to study because the dimension of their associated Hilbert space is usually
growing exponentially with the number of constituents. In this lecture, we
review some fundamentals of Quantum Information Theory (QIT) in order
to present newly proposed algorithms to simulate slightly entangled systems.

2 Classical versus quantum coin tossing

Let us start by considering by considering the tossing of an unbiased clas-
sical coin. We know that in half the cases where we toss such a coin, the
outcome will be heads and in the other half, it will be tails. Furthermore,
we know that, in principle, there is absolutely nothing probabilistic inher-
ent to this experiment. If we were to include in our description the exact
movement of the hand as well as the exact initial position and speed of both
hand and coin, we would be able to predict the outcome of the result with
certainty1. Once we have included the appropriate initial conditions, the
outcome of this experiment is completely determined by Newton’s laws of
motion. There is nothing that breaks classical determinism in this experi-
ment. The probabilities are solely due to our incomplete knowledge of the
system. Nevertheless, we can consider classical coin tossing as a prototype
for a probabilistic classical experiment presenting two possible outcomes.

1Of course, we can imagine situations, where additional parameters have to be included
in our description in order to predict the outcome of the experiment. For example, there
may be extreme winds or strong electromagnetic fields that influence the movement of the
coin. In principle, however, there is nothing inherently probabilistic to this experiment.
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Now, we would like to consider the tossing of two coins. A priori, for unbi-
ased coins, the two outcomes are completely uncorrelated. The measurement
of one coin does not influence the measurement of the other. If, however,
we were to construct two coins – that is, two binary systems – for which
the value of the first one influences the value of the other, the only way
would be to include some communication between the two coins. For ex-
ample, we could manufacture two binary random number generators that
include wireless communication. We could then program them in such a
way that whenever the first random number generator takes one value, the
second one takes the other value. Note, however, that it is not possible to
build such a classical system without kind of communication between the
two experiments. In particular, if we were to measure one of these coins on
Earth and the other one on Mars at the same time, the correlation would
disappear since the signal emitted from the one apparatus could not reach
the other before the experiment was completed. This concept of signalling,
i.e. the fact that correlation is not instantaneous is absolutely fundamental
for discussion of quantum correlation. The peculiar thing about the latter,
commonly referred to as entanglement, is, that it is an experimental fact,
that the correlation persists even if we exclude signalling.

So what kind of system would we consider in the quantum case? A standard
example that is very suitable for intuitive argumentation is the polarisation
of a single photon. Consider a vertically polarised photon. We know that
measuring it with a polarising beam-splitter (PBS) that is oriented accord-
ing to the horizontal-vertical basis will lead to a deterministic result. The
detector corresponding to the vertical measurement of the photon will al-
ways fire2. If, on the contrary, we were to set the PBS to the diagonal basis,
the outcome of the measurement is completely random. It is important to
understand that this randomness is inherent to the physical system. Above,
we considered a classical coin whose measurement was random because of
our incomplete knowledge of the system. This kind of randomness is re-
ferred to as hidden variable: the outcome of the experiment is completely
deterministic, however, we cannot predict the outcome because we do not
know the value of the hidden variable (for example, the movement of the
hand). The example with the photon, in contrast, is totally different. There
is no hidden variable that would allow us to predict what of at the PBS
we will detect the photon. The outcome of the measurement is inherently
random3.

2We neglect the fact that real (i.e. existing) detectors are not perfect.
3Of course, one could argue that this cannot be proven for single particles – and it is

true, this claim cannot be proven for single particles. However, as we will see later, it can
be proven for two-particle and multi-particle systems that predictions of hidden variable
approaches fail to explain experimental observations. From this, combined with the fact
that our claim is consistent with experiments we infer the justification of our point of
view.
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Talking about correlation is, obviously, talking about at least two systems.
Well, with quantum systems such as photons, it is possible to realise com-
posite systems that behave as if they felt what the other parts are doing.
For example, it is possible to prepare photon pairs for which the result of
the individual measurements are random but equal for both particles. With
classical systems, we could try to imitate such correlation in two ways. The
trivial possibility is to simply prepare the two coins for the same result. It
is obvious that we would then always measure the same state of the two
coins. Of course, if the state in which both photons are prepared is cho-
sen arbitrarily, the outcome of the measurement of the coin would appear
to be random but correlated to the other coin. This set-up corresponds
to a measurement of a system presenting a hidden variable. There exist,
however, mathematical tools that allow testing for hidden variables. Usu-
ally, these tests translate into inequalities that are satisfied for all classical
correlation. In the present example, the test translates to the famous Bell
inequalities. The violation of these inequalities proves that it is impossible
to find a model with hidden variables that generates the same correlation.
Experimental Bell inequality tests were performed in the seventies of the last
century. They clearly proved that it is not possible to explain this quantum
correlation via hidden variable models. The second, slightly more compli-
cated way to imitate correlation is to consider high-tech coins that exchange
signals. We then only need to include an electronic heads or tails display
on both sides of the coin in order to reproduce the correlation. As soon as
one of the coins is measured, it would then send a signal with the result to
the other coin, which, in return, would display the corresponding face on
both sides. This kind of correlation is generated after the measurement of
the first coin via some signal. Through general relativity, however, we know
that now information can be exchanged faster than with the speed of light.
Consequently, if two very distant partners perform the experiment, the cor-
relation should vanish. For example, it takes a light-beam several minutes
to go from earth to mars. If two partners completed the experiments faster
than that, there would be no way the two coins can exchange a signal.
Therefore, this correlation would vanish. Here again, however, it was shown
experimentally, that no signal could have been exchanged. In fact, the ex-
periments showed that if there was a signal being exchanged between the
two photons, it would have had to be a lot faster than the speed of light.
Some experiments suggest for example at least 107 times faster than the
speed of light. Taking the theory of general relativity as a fact, however, we
must exclude the possibility of faster-than-light communication. Hence, we
cannot explain this correlation via the exchange of (hidden) signals. In fact,
this Non-Signalling4 also is a central ingredient of this quantum correlation,

4Note that it is not possible to use the present quantum correlation to transport infor-
mation. From this point of view, it is perfectly consistent with general relativity.
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usually referred to as entanglement.

3 Tensor product and entanglement

Let us now take it one step further and consider the formalism of quantum
physics. First of all, let us denote the Hilbert space of the complete (com-
posite) physical system by Htot. For simplicity, let us consider a system that
is composed of two disjoint and distinguishable particles A and B described
by their associated Hilbert spaces HA and HB. The Hilbert space structure
of quantum mechanics, together with the superposition principle, tells us
that a composite quantum system is described by the tensor product of the
constituent’s Hilbert spaces

Htot = HA ⊗HB. (1)

That is, for any set of two basis {|Φi〉A} and {|Φj〉B} of the constituent’s
Hilbert spaces, the system’s total Hilbert space is

Htot =

|ψ〉tot | ∃ {cij ∈ C},∑
i,j

|cij |2 = 1 : |ψ〉tot =
∑
i,j

cij |Φi〉A |Φj〉B

 .

(2)
A direct consequence of this definition is that the dimension of the resulting
Hilbert space Htot is not the sum of the dimensions of the subspaces but
their product. For this reason, it is clear that the dimension of a Hilbert
space associated to a large composite system does not grow linearly with
the number of constituents but exponentially. While this fact is great for
(theoretically possible) quantum computation, it is the major problem when
trying to simulate condensed matter systems or even smaller quantum sys-
tems numerically.

Investigating the properties of the tensor product, we see that every combi-
nation of states from the subsystems, |φ〉A and |ϕ〉B is represented by a state
|ψ〉tot of the composite system. In fact, expanding to their bases, we write

|φ〉A =
∑

i

ai |Φi〉A , |ϕ〉B =
∑

j

bj |Φj〉B (3)

and
|ψ〉tot =

∑
i,j

cij |Φi〉A |Φj〉B . (4)

With this in mind – and reviewing some common ways to write tensor a
tensor product – we are able to derive the representation of this state in the
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composite Hilbert space

|ψ〉tot = |φ〉A ⊗ |ϕ〉B ≡ |φ〉A |ϕ〉B ≡ |φ〉|ϕ〉 ≡ |φ, ϕ〉 = (5)

=

(∑
i

ai |Φi〉A

)
⊗

∑
j

bj |Φj〉B

 = (6)

=
∑
i,j

ai bj |Φi〉A |Φj〉B (7)

Comparing equation (7) to the definition of a tensor product state (4), we
see that it is enough to set

cij = ai bj . (8)

in order to describe any composite state that is formed of two pure states
in terms of the tensor product expansion. States that can be written as
|ψ〉tot = |φ〉A |ϕ〉B are called product states. Note that the maximal number of
(complex) parameters describing any product state is dim(HA) + dim(HB).
Since dim(HA) and dim(HB) are natural numbers, we see that the set of
all product states is only a – potentially marginal – subset of the whole
tensor-space Htot because, as we have seen above,

dim(Htot) = dim(HA) · dim(HB) ≥ dim(HA) + dim(HB). (9)

From this we infer that there are there exist states of the composite system
that cannot be described as a certain state in subsystem A and a certain
state in B but only in terms of the whole system. These states have no
classical analogue, the correlation resulting from this need for the composite
description (i.e. the fact that it is not possible to write them as in equa-
tion (5)) is called entanglement. Therefore, a state that cannot be written
as a product of pure states of the respecting subsystem is called an entangled
state.

4 Schmidt decomposition

Now that we know how to write a composite system in quantum mechanical
notation, let us come back to our initial example of an entangled state. In
fact, the quantum correlation we described in Section 2 is nothing else but
an intuitive characterisation of an entangled system. The example given
in that section is even a very special entangled state: it’s one of the four
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maximally entangled states for a two-qubit5 system, a singlet state6. Using
the mathematical tools introduced in Section 3, a system of two quantum
coins that always show the same result is, for example, represented by

|ψ〉tot =
1√
2

(|0〉A |0〉B + |1〉A |1〉B ) , (10)

where the facter 1/
√

2 is assuring the normalisation of the state. It can easily
be verified that the measurement of either of the subsystems will always be
completely random with same probabilities for result 0 and 1. Furthermore,
we know that any quantum state collapses during a measurement to an
eigenstate of the corresponding operator. Therefore, as soon as one qubit is
measured, the other qubit will instantaneously collapse to the same value.

It is important to understand entangled states cannot be written as product
states. For example, it is not possible to write |ψ〉tot as the tensor product of
two states |φ〉A of equation (10) and |ϕ〉B . When considering small systems,
it is, of course, possible to verify this claim by just trying all the possibilities.
Furthermore, we can think that there are may be more complicated entan-
gled states that require more than two terms. Generally speaking, every
(pure) state |ψ〉tot can be written as

|ψ〉tot =
N∑

i=1

λi |Φ′
i〉A |Φ

′
i〉B , (11)

where N = min (dim(HA),dim(HB)), 〈Φ′
i|Φ′

i〉 = δi,j (where δi,j is the Kro-
necker Delta-Function) and λi ∈ R∀i with λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 and∑

i λ
2
i = 1. Note that the basis vectors {|Φ′

i〉} are, in fact, summed over
the same index (that is not a typo!) and that they are not, in general,
the same as {|Φi〉} in Section 3. The decomposition of a system state into
the minimum number of terms using orthonormal bases of the constituting
systems is called the Schmidt decomposition (SD). The coefficients {λi} are
called Schmidt coefficients and {|Φ′

i〉} are the Schmidt vectors. There are
different ways to prove the fact that we can always write a quantum state as
in equation (11). One of the most elegant one is based on the singular value
decomposition (SVD) known from linear algebra. In fact, since everything
that follows relies on the Schmidt decomposition, we will derive SD from
SVD here.

5For our needs, it is enough to think of a qubit as a polarized photon. In general, a qubit
is a quantum physical two-level system that can take one of two reference values (denoting
zero and one) as well as any linear superposition of these two states. In the case of photon
polarisation, |0〉 may correspond to vertical polarisation and |1〉 to horizontal polarisation.
Diagonal polarisation (with an angle of ±45o) is usually described by |±〉 = 1√

2
(|0〉 ± |1〉).

6The four singlet states are: 1√
2

(|0〉A |0〉B ± |1〉A |1〉B ) and 1√
2

(|+〉A |+〉B ± |−〉A |−〉B )
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The Theorem of the Singular Value Decomposition states that every linear
operator, represented by a complex m×n matrix A can be written (decom-
posed) as

A = UD V+, (12)

where

• D = diag(σ1, σ2, . . . σr) is a diagonal matrix of dimension r = min(m,n)
with σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0, where σi are the singular values of A.

• U and V are complex unitary matrices of dimensions m× r and r×n.
The first r columns of V are called the right singular vectors and the
first r columns of U the left singular vectors.

For the sake of clarity, we will denote the elements of U and V as uij and
vij . The diagonal elements of D will be denoted dii ≡ σi as defined above.
Keep in mind that uij , vij ∈ C, ∀i, j and that dii ∈ R with dii ≥ 0∀i. Using
these notations, we can re-write equation (12) as

aij =
r∑

k=1

uik dkk (vjk)∗, (13)

where (vjk)∗ is the complex conjugate of vjk. Starting from here, recall that
every state |ψ〉tot of the composite system can be written as

|ψ〉tot
(4)
=
∑
i,j

cij |Φi〉A |Φj〉B
(13)
=
∑
i,j,k

uik dkk (vjk)∗ |Φi〉A |Φj〉B (14)

=
∑

k

dkk ·

(∑
i

uik|Φi〉A

)
⊗

∑
j

(vjk)∗ |Φj〉B

 (15)

It is now very natural to set

λk = dkk ≡ σk , |Φ′
k〉A =

∑
i

uik|Φi〉A , |Φ′
k〉B =

∑
j

(vjk)∗ |Φj〉B . (16)

Because U and V are unitary matrices, the scalar products between vectors
of the same basis before and after application of these operators remain the
same. For this reason, if {|Φi〉} is an orthonormal basis, {|Φ′

i〉} will be one
as well. Writing N = r, we can therefore conclude that

|ψ〉tot
(15)
=

(16)

N∑
i=1

λi |Φ′
i〉A |Φ

′
i〉B ,

q.e.d. �
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The Schmidt rank χ is defined as the number of non-zero singular values.
In other words, χ ≤ N is the number of terms that will appear in the
summation of the Schmidt Decomposition,

|ψ〉tot =
N∑

i=1

λi |Φ′
i〉A |Φ

′
i〉B =

χ∑
i=1

λi |Φ′
i〉A |Φ

′
i〉B . (17)

The Schmidt rank χ will be of utmost importance for our simulation algo-
rithm. If the subsystems are not of the same dimension, the collection of the
{|Φi〉X} of the larger-dimensional subspace do not span the whole subspace
of the corresponding system. Mathematically speaking,

if N < dim(HX),
N∑

i=1

|Φi〉X〈Φi| 6= 1. (18)

where the index X stands for the larger-dimensional subsystem A or B. The
same argument holds even for the smaller-dimensional subsystem, if we only
consider the first χ out of all N basis vectors {|Φi〉}. The base may not be
complete.

So far so good. We know that we can always decompose a pure state of
a composite system into a linear combination of some (particular) basis
vectors of the subspaces. But what is all this good for? Well, first of all,
recall that a product state can always be written as |ψ〉tot = |φ〉A |ϕ〉B . Hence,
for a product state, χ = 1. From this perspective, we can therefore think
of χ as some measure of the entanglement between the two subsystems7.
Conversely, the more terms we need in the Schmidt decomposition, i.e. the
higher the Schmidt rank χ, the more entanglement there is between the two
subsystems.

Well then, now that we know why the Schmidt decomposition is so impor-
tant, how can we compute it? After all, we guessing the right decomposition
may be quite difficult! Consider the density matrix ρ ≡ ρtot of the total sys-
tem. For better readability, we will omit the index tot from now on. From
equation (4) we can compute the corresponding density matrix for the pure
state of the complete system

ρ = |ψ〉〈ψ| (4)
=

∑
i,j

cij |Φi〉A |Φj〉B

∑
i′,j′

(ci′j′)∗A〈Φi′ |B〈Φj′ |

 , (19)

7In fact, χ itself is not exactly suited for measuring the amount of entanglement as
it does not scale linearly with the system size. A product state – i.e. a state without
any entropy – has χ = 1. Therefore, it is more suitable to take the entropy of the
different Schmidt coefficients H({λi}) = −

∑χ
i=1 λi log(λi) as a measure of entanglement.

In particular, this definition assures that the measure of a product state (one single λ
which is equal to 1) is 0 and that the entanglement reaches its maximum if all terms of
Schmidt decomposition contribute with the same amplitude.
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which expands to

ρ =
∑

i,j,i′,j′

cij (ci′j′)∗ |Φi〉A〈Φi′ |⊗|Φj〉B〈Φj′ |. (20)

Of course, it is not quite obvious how to get from this form to the Schmidt
decomposition. Recalling, however, that the same ρ can be written in terms
of the Schmidt decomposition of the state, we note

ρ
(11)
=

(
N∑

i=1

λi |Φ′
i〉A |Φ

′
i〉B

)(
N∑

i′=1

λi′A〈Φ
′
i′ |B〈Φ

′
i′ |

)
, (21)

which, again, can be expanded

ρ =
∑
i,i′

λiλi′ |Φ′
i〉A〈Φ

′
i′ |⊗|Φ′

i〉B〈Φ
′
i′ |. (22)

At this point, we have to introduce a new concept: the partial trace, denoted
by trX . Recall that, in linear algebra, the trace of a n×n matrix M is usually
defined as

tr(M) =
n∑

i=1

〈Φi|M|Φi〉, (23)

where {|Φi〉} is an orthonormal basis of the vector-space. Note that the
definition of the trace, equation (23), implies that its value does not depend
on the choice of the (orthonormal) base. In particular, if the matrix elements
of M are denoted by mij ,

tr(M) =
n∑

i=1

mii, (24)

Now, if our vector space is the Hilbert space of a composite system, the
trace over an operator M is

tr(M) =
n∑

i=1

(A〈Φi|B〈Φi|) M (|Φi〉A |Φi〉B ) . (25)

Written in this form, it appears quite natural to define the partial trace as
the trace over a partial system. Hence, we write the trace over subsystem
A as

trA(M) =
n∑

i=1

A〈Φi|M|Φi〉A =
n∑

i=1

A〈Φ
′
i|M|Φ′

i〉A , (26)

because we can chose any orthonormal basis of HA. Equivalently, the trace
over subsystem B is

trB(M) =
n∑

i=1

B〈Φi|M|Φi〉B =
n∑

i=1

B〈Φ
′
i|M|Φ′

i〉B . (27)
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Note that while the (total) trace as defined in equation (23) is a scalar, the
partial trace is, in general, a matrix. In particular, the partial trace over a all
but one subsystem of the density matrix of a composite system corresponds
to the density matrix of that subsystem alone. Therefore, the physical in-
terpretation of the partial trace corresponds to incomplete knowledge of the
system. For example, imagine that the density matrix in equation (22) cor-
responds to a system of two particles that are in different labs. In this case,
ρA = trB(ρ) describes the state as the experimentalist in lab A would see
the system and ρB = trA(ρ) describes the particle in lab B. From this point
of view, we will always trace out the parts of the system that we cannot
access.

Apart from its physical significance, the partial trace can also be a powerful
tool for computing Schmidt decompositions. Consider, again, equation (22).
Because of the orthonormality of the bases, the density matrices correspond-
ing to particles A and B are

ρA = trB(ρ)
(22)
=

(26)

∑
i

λ2
i |Φ′

i〉A〈Φ
′
i|, (28)

ρB = trA(ρ)
(22)
=

(27)

∑
i

λ2
i |Φ′

i〉B〈Φ
′
i|. (29)

These two expressions tell us how to compute either one of the basis re-
quired for the Schmidt decomposition of an arbitrary composed system of
the form (20): all we have to do is to compute the partial trace of the den-
sity matrix and then find the eigensystem of the reduced density matrix.
After all, we know that any matrix can be written in the form of its spectral
representation, i.e. in terms of its eigensystem,

M|Φ′
i〉 = ei|Φ′

i〉 ⇐⇒ M = M

(∑
i

|Φ′
i〉〈Φ′

i|

)
︸ ︷︷ ︸

=1

=
∑

i

ei|Φ′
i〉〈Φ′

i|. (30)

For this reason, the set of the Schmidt coefficients {λi} coincides with the
set of the square roots of the eigenvalues of either of the reduced density
matrices. The requirement for real Schmidt coefficients is fulfilled because
of the fact that ρ is a hermitian matrix. Moreover, we know that the eigen-
values of ρ correspond to the probabilities to measure the system in state
described by the corresponding eigenvector. Hence, it is enough to order the
eigenvalues according to their amplitude to find the Schmidt coefficients

e1 ≥ e2 ≥ · · · ≥ eN ≥ 0
(28),(29)

=⇒
(30)

λi =
√
ei , with

N∑
i=1

λ2
i = 1. (31)
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When computing the Schmidt vectors, note that one cannot compute the
Schmidt basis of both subsystems with this method. Through equations (26)
and (27), the basis vectors {|Φ′

i〉} are only defined up to a complex phase
factor. Usually, the global phase of a state does not play any role in quantum
mechanics, |ψ〉 ≡ eiθ|ψ〉. Here, on the contrary, the global state will be
formed by the (tensor) product of two basis states. Hence8,

|ψ〉 ≡ eiθ|ψ〉 = eiθ
N∑

j=1

λj |Φ′
j〉A |Φ

′
j〉B 6≡

N∑
j=1

λj

(
eiαj |Φ′

j〉A
) (
eiβj |Φ′

j〉
)
, (32)

because, in general, eiθ 6= eiαjeiβj ∀i, j. With this in mind, we see the
importance to compute the other Schmidt basis in another way – in a way
that preserves the complex phase factor. A straightforward possibility is the
projection onto the other basis,

λj |Φ′
j〉B =A〈Φ

′
j |ψ〉 or λj |Φ′

j〉A =B 〈Φ
′
j |ψ〉. (33)

5 Simulation algorithm (Vidal)

The algorithms we would like to discuss is based on the idea, that we can
try to approximate a composite state by a state that has an upper bound of
entanglement. In practice, this is done by only considering a certain number
χε ≤ χ terms of the Schmidt decomposition. This way, the computational
resources needed for numerical simulation no-longer grow exponentially. For
this reason, we can thus try to simulate larger systems using the same (lim-
ited) computational equipment. Numerical experiments that have already
been performed in different groups seem to indicate that this kind of ap-
proach is best suited for linear systems (e.g. spin chains) that are submitted
to next-neighbours interactions9.

Intuitively, the algorithm proposed by Guifré Vidal consists of consider-
ing every possible Schmidt decomposition of a chain of particles and then
connecting them via some tensors. One-qubit gates are then implemented
by considering only the tensor representing the specific gate. Two-qubit
next-neighbours gates affect the two corresponding tensors as well as the
corresponding Schmidt coefficient. Hence, this construction allows for a
considerable reduction of the number of variables needed to describe the

8We use i to denote the complex unit, i.e. i2 = −1. As a consequence, we sum over j
to avoid confusion.

9Recall that a one-qubit gate is just a unitary operation that can be performed onto
a single qubit (for example rotation) and does not change the value of any other qubit.
Two-qubit next-neighbours gates are unitary operation that involve two qubits that are
nearest neighbours on the chain of particles. In the case of a spin chain, for example, it
might involve spin number 5 and spin number 6, leaving all other spins unaffected.
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system while preserving a good manipulability in terms of one-qubit and
two-qubit next-neighbours gates.

So much for the intuition. Mathematically, we consider a one-dimensional
spin-chain of n spin-1

2 particles. We label them from 1 to n and define the
computational basis as being the basis states according to state |0〉 and |1〉 of
each particle. Hence, writing |i〉 for a given state, i can either be 0 or 1. The
algorithm then starts by performing all possible Schmidt decompositions of
the linear system: subsystem A contains the first l particles and subsystem
B the rest of them. For every partition A : B we then have

|Ψ〉 =
χA∑
α=1

λα|Φ[A]
α 〉|Φ[B]

α 〉. (34)

After having performed this Schmidt decomposition for all possible bipartite
splittings A : B, we can unify our notation by introducing χ as the maximal
value of all χA. That is

χ = max
A

χA. (35)

Now, consider the most general configuration of the state of the complete
spin chain,

|Ψ〉 =
1∑

i1=0

1∑
i2=0

· · ·
1∑

in=0

ci1,i2,...,in |i1〉|i2〉 · · · |in〉. (36)

This description includes O(2n) independent parameters10 ci1,i2,...,in . The
first idea in this algorithm is that it is always possible to write the coef-
ficients ci1,i2,...,in as something like a generalised Schmidt decomposition.
This description uses n tensors, {Γ[1],Γ[2], . . . ,Γ[n]}, and n − 1 vectors,
{λ[1], λ[2], . . . , λ[n−1]} and reads

ci1,i2,...,in =
∑

α1,α2,...,αn−1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2
· · ·Γ[l]il

αl−1αl
λ[l]

αl
· · ·Γ[n]in

αn−1
. (37)

The indices i and α take values in {0, 1} and {1, 2, . . . , χ}, respectively.
Hence, the O(2n) coefficients, {ci1,i2,...,in}, are now reexpressed in terms of
O
(
(2χ2 + χ)n

)
new variables.

This is where the second idea – the key ingredient – of this algorithm comes
into play. As we have seen in section 4, the number χ is directly related to
the entanglement present in the system. A system that requires a large χ
includes strong correlation between (at least some of) its particles. Thus,

10In fact, there are 2n complex coefficients ci1,i2,...,in that are, however, not all inde-
pendent. Normalisation and the freedom to chose any global phase slightly reduce the
number of parameters.
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fixing (the maximal) value of χ to a rather small value χε corresponds to
limiting the (maximal) entanglement of our system. This way, the state de-
scribed by equations (36) and (37) is approximated by (potentially) far less
variables, O

(
(2χ2

ε + χε)n
)
. For example, the dimension of the Hilbert space

of a one-dimensional spin-chain of n = 50 particles is O(2n) ≈ O(1015). In a
computer, a real floating point variable is usually described by (at least) four
bytes11. Hence, storing all these variables in a computer would require ap-
proximately 40’000 GBytes of memory. And that is just for the description
of the state! If we restrict ourselves to slightly entangled systems, we can
simulate the same system with a lot less variables. Taking χε = 20, we would
need O

(
(2χ2

ε + χε)n
)

= O(4.1 · 104) variables. In our example, this would
correspond to about 165 kBytes, or as little as 0.000165 GBytes12! Further-
more, as this approach scales linearly with the length of the spin-chain, we
can even go beyond 50 particles without unreasonably great expenditure.

So what exactly does our approximation consist of? Intuitively, we are
approximating a certain state by the first χε < χ (potentially even χε � χ)
terms of its Schmidt decomposition,

|Ψ〉 (34)
=

(35)

χ∑
α=1

λα|Φ[A]
α 〉|Φ[B]

α 〉 ≈ |ψ〉 =
χε∑

α=1

λα|Φ[A]
α 〉|Φ[B]

α 〉. (38)

Now consider the fact that the basis vectors {|Φ[·]
α 〉} are normalised. Hence,

for example, if the last χ − χε terms that we neglect all have λα = 0, then
the approximated state |ψ〉 is equal to |Ψ〉. In fact, since we have ordered
{λα} according to their amplitude, i.e. λ1 ≥ λ2 ≥ · · · ≥ λχε ≥ · · · ≥ λχ ≥ 0,
we have

|Ψ〉 = |ψ〉 ⇔ λα = 0, ∀α∈{(χε+1), . . . , χ} ⇔ λ(χε+1) = 0. (39)

Refining our argument, recall that the norm of a state is equal to the sum
of the square of its schmidt coefficients. Therefore, we will say that our
algorithm is a good approximation whenever its norm is close to one. In
mathematical terms,

|Ψ〉 ≈ |ψ〉 ⇔ |〈ψ|ψ〉|2 ≈ 1 ⇔
χ∑

α=χε+1

|λα|2 � 1 (40)

11Note that 4 bytes = 32 bits is used to represent a single-precision floating-point to
keep the argument as simple as possible. Usually, however, we implement our algorithms
with double-precision complex floating point variables that employ 16 bytes.

12In actual implementations, it will be, of course, a lot more because of the double-
precision complex variables. However, even if, on top of that, we have to store intermediate
results and other variables in our memory, we are within the scope of today’s hardware
(i.e. < 1 GByte). In fact, we do not even need extremely sophisticated supercomputers
to do these computations.
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In fact, in real implementations of this loss of norm is often used to quantify
(or at least to guess) the accuracy of the simulation13.

Of course, this whole algorithm is not of much help as long as we do not
know how to compute the {Γ[·]} tensors and the {λ[·]} vectors. So here
is how to compute them. Start at one end of the one-dimensional system
and compute the Schmidt decomposition of the partition A : B for which
subsystem A is only the first particle while subsystem B is the rest of the
chain. Indexing the basis vectors by the particles instead of the subsystem
instead of by their symbol we have

|Ψ〉 =
∑
α1

λ[1]
α1
|Φ[1]

α1
〉|Φ[2···n]

α1
〉. (41)

Expanding the left Schmidt vectors in the computational basis we have

|Φ[1]
α1〉 =

1∑
i1=0

Γ[1]i1
α1

|i1〉, (42)

which then leads to

|Ψ〉 =
∑
α1,i1

Γ[1]i1
α1

λ[1]
α1
|i1〉|Φ[2···n]

α1
〉. (43)

Now, we can proceed by repeating the following three steps (start with l = 2)

1. Expand each Schmidt vector |Φ[l···n]
α1 〉 in a local basis for qubit l.

|Φ[l···n]
αl−1

〉 =
1∑

il=0

|il〉|τ
[(l+1)...n]
αl−1il

〉, (44)

where the
{
|τ [(l+1)...n]

αl−1il
〉
}

are not necessarily normalised.

2. Now write each of these |τ [(l+1)...n]
αl−1il

〉 vectors in terms of at most χ

Schmidt vectors
{
|Φ[(l+1)···n]

αl 〉
}χ

αl=1
(i.e., the eigenvectors of ρ[(l+1)...n])

and the corresponding Schmidt coefficients λ[l]
αl ,

|τ [(l+1)...n]
αl−1il

〉 =
∑
αl

Γ[l]il
αl−1αl

λ[l]
αl
|Φ[(l+1)···n]

αl
〉. (45)

13To be precise: usually, one has to re-normalise during the computations (for numerical
reasons amongst other things). Therefore, the control-parameter that is checked is the
fraction of the loss in norm.
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3. Finally, substitute equation (45) in equation (44) and the whole in
equation (43). We then obtain

|Ψ〉 =
∑

α1,i1,...,αl,il

Γ[1]i1
α1

λ[1]
α1
· · ·Γ[l]il

αl−1αl
λ[l]

αl
|i1, . . . , il〉|Φ[(l+1)···n]

α(l)
〉 (46)

After the steps are completed for all l = 2, . . . , n we are able to express the
state |Ψ〉 as in equation 37).

6 Computations

As we have seen, the main advantages of the algorithm introduced in sec-
tion 5 is, that it is very efficient in terms of memory space. On top of that, it
is highly efficient in terms of the number of operations required to perform
hamiltonian evolutions of the system. In particular, we are often interested
in imaginary time evolution as well as in real time evolution. Denoting the
hamiltonian by H, the latter evolution is

|ψt〉 = eiHt/~ |ψ0〉, (47)

where |ψt〉 is the state at time t and |ψ0〉 is the initial state at t = 0.
Imaginary time evolution, as opposed to real time evolution, is used to
compute the ground state of a system. In fact, consider the expansion of our
state |ψ〉 into the eigenvectors, {|φn〉}, of the hamiltonian that correspond
to energy En,

|ψ〉 =
∑

n

cn|φn〉. (48)

Introducing an imaginary time i · t, the state will evolve as

|ψit〉 = e−Ht/~ |ψ0〉 =
∑

n

cn e
−Ent/~ |φn〉

n→∞−→ |φ0〉, (49)

which is the ground state of the system14.

But how do we apply any kind of operator to our state? First of all, we need
to understand that the structure of the decomposition is thus that one-qubit
gates and two-qubit next-neighbours gates can easily be implemented. Gates
that are not just between next-neighbours require a lot more operations.

One-qubit operations, represented by a matrix U i
j , are performed by simply

updating the corresponding Γ[l] tensor. In fact, it can be proven that

Γ′[l]iαβ =
1∑

j=0

U i
j Γ[l]j

αβ ∀α, β = 1, . . . , χ. (50)

14This evolution is, of course, not unitary. Therefore, re-normalisation in the algorithm
is central.
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The computational cost of such an operation is O(χ2).

Updating the decomposition of a state after application of a two-qubit next-
neighbours gate V ij

kl can be done with an overall computational cost of
O(χ3). It includes Γ[l], λ[l] and Γ[l+1]. From a general point of view, it
is performed decomposing the spin-chain into four parts: the left side of the
two particles involved in the operation, the left particle, the right particle
and the right part of the chain. Then, the updated Γ′[l], λ′[l] and Γ′[l+1] are
computed by performing a Schmidt decomposition between {left side + left
particle} and {right particle + right side}.

Since we are only considering hamiltonians involving next-neighbours inter-
actions, we can also describe evolution of a state in a constructive manner.
Generally speaking, a hamiltonian evolutioin (both real and imaginary) can
be performed by decomposing the hamilton operator into two subsets of mu-
tually commuting operators. Mathematically speaking, we can decompose
the hamiltonian into

H =
∑

even l

F [l] +
∑
odd l

G[l], (51)

where F [l] and G[l] are two-qubit operators acting on qubits l and l + 1.
This way, we can be sure that all F operators commute amongst themselves
and that the same holds for all G operators. Note, however, that it is
possible that [F,G] 6= 0. In this case, the evolution is computed iteratively
via the Trotter expansion of exp(aH). For real time evolution, we would
then set a = it/~ whereas imaginary time evolution would be represented by
a = −t/~. Often, already second order expansion reproduces produces very
good results. Therefore, this whole approach appears to be very powerful.
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