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Ultracold Atoms in optical lattice potentialsUltracold Atoms in optical lattice potentials

Markus Greiner

markus.greiner@colorado.edu

most experiments discussed in this lecture have been
performed in the group of Ted Hänsch and I. Bloch at the 

Ludwig-Maximilians-Universität, München and
Max-Planck-Institut für Quantenoptik, Garching.

I am presently at JILA, Boulder, Co, in the group
of D. Jin, working with fermionic condensates.

ICTP SCHOOL ON QUANTUM PHASE TRANSITIONS AND 
NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 2005

Experiments at the interface between atomic physics and condensed matter 
physics, quantum optics, molecular physics and quantum information 



Ultracold Atoms in optical lattice potentials

Tuesday lecture: Basics

1. Typical experimental setup

2. Bose Einstein condensates in optical 
lattice potentials

3. Quantum phase transition from a 
superfluid to a Mott insulator

4. Collapse and revival of a macroscopic 
matter wave field due to cold collisions

5. Quantum gates with neutral atoms

6. Low dimensional systems

Thursday lecture: Advanced topics



Introduction



Superfluid – Mott Insulator Transition

Superfluid

Phase coherence
Macroscopic phase 
well defined in each 
potential well

Atom number 
uncertain in each 
potential well

Mott Insulator

No Phase coherence
Macroscopic phase 
uncertain in each 
potential well

Atom number 
exactly known in
each potential well

atom number
correlations

Theory: M.P.A. Fisher et al, Proposal: D. Jaksch et al.



1. Experimental setup1. Experimental setup
for lattice experimentsfor lattice experiments



Magnetic Transport of Cold Atoms

MOT

BEC



Magnetic Transport of Cold Atoms



Magnetic Transport of Cold Atoms

Magnetic transport of atoms

M. Greiner et al., PRA 63, 031401



Experimental setup

BEC apparatus

MOT

BEC



2. Bose einstein condensates in 2. Bose einstein condensates in 
optical lattice potentials optical lattice potentials 



Trapping Atoms in Light Field -
Optical Dipole Potentials

Energy of a dipole in an electric field: dipU d E

( ) ( )dipU I r

Red detuning:

Atoms are 
trapped in the 
intensity maxima

Blue detuning:

Atoms are 
repelled from the 
intensity maxima

See R. Grimm et al., Adv. At. Mol. Opt. Phys. 42, 95-170 (2000).

An electric field induces a dipole moment: d E



3D periodic optical dipole potential

See eg. Jessen and Deutsch, Adv. At. Mol Opt. Phys. 37, (1996)

R. Grimm et al., Adv. At. Mol. Opt. Phys. 42, 95-170 (2000).

2 2 2( ) sin ( ) sin ( ) sin ( )V x kx ky kz + harmonic confinement

3D:1D:

/ 2

V0 up to 40 Erecoil

r up to 2 50 kHz

n 1-3 atoms on average
per site

•Resulting potential consists of a simple cubic lattice 

•BEC coherently populates more than 100,000 lattice sites



Optical dipole trap also possible with classical particles

2 beam lattice: 4 beam lattice:

“Optical lattice” : 4 m polystyrol particles in water

conservative light force for macroscipic particles optical tweezers



Typical lattice parameters for a 3D lattice

All beams intensity 
stabilized 

Intensity control

425 nmLattice spacing

87RbAtomic Species

Simple cubicLattice geometry

Orthogonal between 
standing wave pairs

Polarization

125 µmWaist (1/e2)

830-850 nmWavelength

Turn on lattice potential 
adiabatically, so that the wave 
function remains in the many 
body ground state of the 
system !

Start with a pure condensate in 
a magnetic trap



Macroscopic Wave Function of a BEC 
in an Optical Lattice

( )
)( () )( j

j

i

j

x

jw x xx x eA

Number of atoms on
jth lattice site

Phase of wave 
function on jth

lattice site

Localized wave function on
Jth lattice site

Lattice potential



Detecting the Atoms in the Lattice

Spacing between neighboring lattice sites  ( 425 nm) is too small to be 
detectable by optical means !

Switch off the lattice light

Observe the multiple matter wave 
interference pattern !

Momentum distribution

Localized wavefunctions expand 
and interfere with each other

(simulation)



Matter Wave Interference Pattern of a BEC in an 
Optical Lattice

Individual condensates in the lattice expand and interfere with 
each other, revealing the momentum distribution of the atoms in 
the lattice.

Time of flight measurement

time of flight

2 ms 6 ms 10 ms 14 ms 18 ms



Interference Pattern of a 3D Lattice

Time of flight images

Momentum distribution



First BEC lattice experiments

Anderson et al., Science

282,1686 (1998)

Kasevich (Yale)

BEC in a vertically oriented lattice

coherent matter waves tunnel out 

of each lattice site, interfere, and 

form “pulsed atom laser”



First BEC lattice experiments

Bragg type lattices:

lattice light is pulsed on for a short moment 

e.g. Bill Phillips group, NIST 

Ovchinnikov et al., PRL 83, 284 (1999)

BEC

laser

laser



First BEC lattice experiments

1D lattice

BEC is adiabatically loaded into 1D standing 

wave, e.g. in Inguscio’s group (Florence)

Studying josephson junction arrays 

(tunneling, dynamical instabilities …)

e.g.

Pedri et al., PRL 87, 220401 (2001)

Cataliotti et al., Science 293, 843 (2001)



Preparing Arbitrary Phase Differences 
Between Neighbouring Lattice Sites

0

' / 2 /j V t

Phase difference between 
neighboring lattice sites

(cp. Bloch-Oscillations)



Mapping the Population of the Energy Bands 
onto the Brillouin Zones

Crystal momentum

Free particle
momentum

Population of nth band is 
mapped onto nth Brillouin
zone !

v

Crytsal momentum is conserved 
while lowering the lattice depth 
adiabatically !

A. Kastberg et al. PRL 74, 1542 (1995)
M. Greiner et al. PRL 87, 160405 (2001)



Imaging the Brillouin zones 

Brillouin Zones in 2D
Momentum distribution of a dephased condensate 
after turning off the lattice potential adiabtically

2D

3D

Populating
higher energy 

bands by 
raman

transitions

M. Greiner et al. PRL 87, 160405 (2001)



Squeezed states in a Bose-Einstein condensate

In deep optical lattices, repulsive 
interaction between atoms can cause 
number squeezing:

•Atom number fluctuations on each 
lattice site get reduced

•Therefore the macroscopic phase, 
as a conjugate variable, becomes 
more uncertain

This number squeezing has been 
observed in the experiment of Mark 
Kasevich for a 1D lattice:

Orzel et al., Science 291, 2386 (2001)



3. Quantum phase transition from 3. Quantum phase transition from 
a superfluid to a Mott insulator a superfluid to a Mott insulator 



Bose-Hubbard Hamiltonian

†

,

ˆ ˆ
1

ˆ ˆ( 1)
2

i j

i j

i i

i

J a a U nH n

MI in opt. latt.: proposed by Dieter Jaksch et al. in the group of Peter Zoller, Innsbruck
M.P.A. Fisher et al, PRB 40, 546 (1989), D. Jaksch et al., PRL 81, 3108 (1998)

Tunneling term:

J: tunneling matrix element

tunneling from site j to site i†ˆ ˆ :i ja a

Interaction term:

U : on-site interaction matrix element

: n atoms collide with
n-1 atoms on same site

ˆ ˆ( 1)i in n

Ratio between tunneling J and interaction U can be widely varied
by changing depth of 3D lattice potential!

U



Superfluid Limit

†

,

ˆ ˆ
1

ˆ ˆ( 1)
2

i j

i j

i i

i

J a a U nH n

Atom number 
distribution after 
a measurement 

†

1

ˆ 0

N
M

SF i

i

a

Atoms are delocalized over the entire lattice !
Macroscopic wave function i describes this state very well.

Coherent state with well defined 
macroscopic phase i and poissonian atom 

number distribution at each lattice site

2| | / 2ˆ ;
!

i

n

i
i i i

n

a e n
n

+ ++



Mott-Insulator ground state in the “Atomic Limit“

†

,

ˆ ˆ
1

ˆ ˆ( 1)
2

i j

i j

i i

i

J a a U nH n

†

1

0
i

M
n

Mott

i

a

0ia

MI ground state: Atoms are completely localized to lattice sites !

Fock states with vanishing atom-
number fluctuation are formed.

+ ++

no macroscopic phase

Proposal: Mott with BEC in 3D lattice:
D. Jaksch et al., PRL 81, 3108 (1998)



++

The Simplest Possible “Lattice“:
2 Atoms in a Double Well

0.5 x

Superfluid State MI State

0.25 x

0.25 x

Average atom
number per site:

Average onsite 
Interaction per site:

<n> = 1 <n> = 1

<Eint> = ½ U <Eint> = 0

1 1

2 2
l r l r

1 1

2 2
l r r l

+

+



Entering the Mott Insulator Regime

0 Erecoil

22 Erecoil

Momentum distribution for
different Potential Depths



Can We Restore Coherence ?

Ramp down for different 
times t and monitor 
momemtum distribution !

Before ramping 
down

0.1 ms 1.4 ms 4 ms 14 ms



Mott insulator in an inhomogeneous system

iloc

For an inhomogeneous system an 
effective local chemical potential 
can be introduced

Jaksch et al. PRL 81, 3108 (1998)



Ground State of an Inhomogeneous System

From Jaksch et al. PRL 81, 3108 (1998)

From M. Niemeyer and H. Monien 
(private communication)



Quantum Phase Transition (QPT)  from a 
Superfluid to a Mott-Insulator

At the critical point gc the
system will undergo a phase 
transition from a superfluid 
to an insulator !

This phase transition occurs even 
at T=0 and is driven by quantum 
fluctuations !

Characteristic for a QPT

•Excitation spectrum is dramatically modified at the critical point.

•U/J < gc (Superfluid regime)
Excitation spectrum is gapless

•U/J > gc (Mott-Insulator regime)
Excitation spectrum is gapped U/J = z 5.8

Critical ratio for:

see Subir Sachdev, Quantum Phase Transitions, 
Cambridge University Press



Creating Excitations in the MI Phase

Energy Scales:

Without gradient potential

ijE U

With gradient potential

Special case:

Mott-Insulator with ni=1 atom per lattice site

n 20 U

U J



Measuring Excitation Probability
vs. Pertubation Gradient

1. Ramp up to a fixed lattice depth V0

2. Apply a gradient for time tperturb

3. Ramp down to a potential depth of 10 Erecoil

4. Apply a p-pulse

5. Measure width of interference peaks

If excitations are created, the 
width of the detected 
interference peaks will 
broaden !



Excitation Probability vs. Gradient

10 Erecoil tperturb = 2 ms 13 Erecoil tperturb = 4 ms

16 Erecoil tperturb = 9 ms 20 Erecoil tperturb = 20 ms



Excitations of bosons in an optical lattice

Schori et al., 

PRL 93:240402 (2004)



Conclusion Lecture 1

Superfluid

Phase coherence
Macroscopic phase 
well defined in each 
potential well

Atom number 
uncertain in each 
potential well

Mott Insulator

No Phase coherence
Macroscopic phase 
uncertain in each 
potential well

Atom number 
exactly known in
each potential well

atom number
correlations

M.P.A. Fisher et al, D. Jaksch et al.



Condensed matter physics with ultracold atoms

Real materials
complicated:
•various interactions
•disorder

?
Condensed
matter models
difficult to calculate,
especially for fermions

Ultracold atoms in 
optical lattices
clean realization of 
condensed matter models

Direct experimental
test of condensed

matter models:



Thanks

Thanks to my Munich collegues:
Olaf Mandel, Immanuel Bloch
(now at Mainz, Germany)
Ted Hänsch (MPQ Munich)

Second lecture: 

• Collapse and revival of a 
macroscopic matter wave

• Quantum gates with neutral 
atoms

• Low dimensional systems
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Ultracold Atoms in optical lattice potentials

Tuesday lecture:

1. Typical experimental setup

2. Bose Einstein condensates in optical 
lattice potentials

3. Quantum phase transition from a 
superfluid to a Mott insulator

4. Collapse and revival of a macroscopic 
matter wave field due to cold collisions

5. Quantum gates with neutral atoms

Thursday lecture:



4. Collapse and revival of a 4. Collapse and revival of a 
macroscopic matter wavemacroscopic matter wave



Collapse and Revival of a Macroscopic Matter Wave Field

Splitting a condensate:

Well defined relative phase

•How does the phase correlation
evolve in time?

•What happens to the individual 
matter wave fields?

Non equilibrium experiment:

Rapidly increase lattice potential to isolate potential wells 
Superfluid state is projected into Mott insulator regime



Dynamical Evolution of a Many Atom State 
due to Cold Collision

How do collisions affect the 
many body state in time ?

Phase evolution of the 
quantum state of two 
interacting atoms:

/2 ( ) 2 Ui tt e

Collisional phase 

•Phase shift is coherent !

•Leads to dramatic effects beyond mean-
field theories !

•Can be used for quantum computation
(see Jaksch, Briegel, Cirac, Zoller schemes)

Collisional phase of n-
atoms in a trap:

1
/ ( 1) /

2
nE t Un n t

1
ˆ ˆ( 1)

2
ˆ

i i

i

H U n n



Time Evolution of a Coherent State due to Cold Collisions

1

1

+

+

+

/iU te

3 /i U te

2| | / 2

!

n

i
n

e n
n

Coherent state in each 
lattice site no eigenstate !

=

1. Here = amplitude 
of the coherent state

2. Here | |2 = average 
number of atoms per 
lattice site

1
ˆ ˆ( 1)

2
ˆ

i i

i

H U n n



Collapse and Revival of the 
Macroscopic Wave Function due to Cold Collisions

2
1

( 1) /
| | / 2 2

!

n
i U n n t

i
n

t e e n
n

Quantum state in each lattice site (e.g. for a coherent state)

Macroscopic wave function in ith lattice site

ˆ( ) ( )i ii i
t t a t

1. Macroscopic wave function 
collapses but revives after
times multiple times of h/U !

2. Collapse time depends on the 
variance s of the atom 
number distribution !

Wright et al. 1997; Imamoglu, Lewenstein & You et al. 1997, 
Castin & Dalibard 1997



Dynamical Evolution of a Coherent State 
due to Cold Collisions

The dynamical evolution  can be 
visualized through the Q-function

2

( )i t
Q

Characterizes overlap of our 
input state with an aribtrary 
coherent state 

Re( )

Im
(

)



Dynamical Evolution of a Coherent State 
due to Cold Collisions

time

Re(a)

Im
(a

)

0

0

-4

4

-4 4



Freezing Out Atom Number Fluctuations

A

B
Ramp up lattice fast from the 
superfluid regime (A) to the MI 
regime (B), such that atoms do 
not have time to tunnel !

Atom number fluctuations at (A) are “frozen“  !

2| | /2
0

!

n

i
n

n
n

e
Coherent state in each 

lattice site with well 
defined macroscopic phase:



Dynamical Evolution of the Interference Pattern

t=600 st=450 st=400 s

t=300 st=200 st=150 st=50 s

After a potential jump from VA=8Er to VB=22Er.



Collapse and Revival (Experiment at V0 = 20 Er)

Frequency of Revival: 1.6(1) kHz
Resonance Gradient: 1.57 (15) kHz
Theory (Wannier functions) U/h: 1.67 kHz 

time



Collapse and Revival Ncoh/Ntot

Up to 5 revivals are visible !

Oscillations after lattice potential jump from 8 Erecoil to 22 Erecoil



SF - MI

Superfluid

Phase coherence
Macroscopic phase 
well defined in each 
potential well

Atom number 
uncertain in each 
potential well

Mott Insulator

No Phase coherence
Macroscopic phase 
uncertain in each 
potential well

Atom number 
exactly known in
each potential well

atom number
correlations

M.P.A. Fisher et al, D. Jaksch et al.



Gutzwiller approximation for finite onsite interaction U

Gutzwiller approximation: Many body state is approximated as a 
product of localized states          on each lattice site

GW i

M

†

,

ˆ ˆ
1

ˆ ˆ( 1)
2

i j

i

i i

ij

J a a U n nH

( )

0

i

i n

n

f n

i

Number squeezing for finite U/J

U/J=0 U/J=7 U/J=22

In the limit of large Boson number:
Orzel et al.: Squeezed states in a Bose-Einstein condensate, Science, 291, 2001



Different number 

squeezing

Time evolution

Full revival:



Measurement of number squeezing

Collapse time depends on variance n
2 of atom number statistics:

/(2 )c rev nt t



Measured atom number squeezing

squeezing parameter g:

potential depth

line: calculated g

( 1) / 2

2

0

n n n

i

n

g n
n

Rokhsar et al.,
PRB 44,10328 (1991)





5. Universal quantum gates5. Universal quantum gates
with ultracold atomswith ultracold atoms



State Selective Lattice Potentials

- +

87Rb Fine-structure Hyperfine structure

|1>

|0>

mF= -2      -1 0      1      2

F=1

F=2

( , )V x

( , )V x

formed by - polarized Light

formed by + polarized light

1

0

( , )    

1 3
( , ( ,)

4
)

( , )

(
4

, )

V x

V

V x

V x Vx x

|1> :

|0> :

State selective lattice potential

D. Jaksch et al., PRL 82,1975(1999), G. Brennen et al., PRL 82, 1060 (1999)
Overview: I. Deutsch & P. Jessen, Optical Lattices, Adv. At. Mol. Phys. 36, 91 (1996).



Moving the Lattice Potential

Lin angle Lin standing wave 
configuration can be decomposed 
into a + and - standing wave ! 

0

2

0

2sin (

sin ( / )

/ 2)

2I

I I k

I kx

x

D. Jaksch et al., PRL 82,1975(1999), G. Brennen et al., PRL 82, 1060 (1999)
Overview: I. Deutsch & P. Jessen, Optical Lattices, Adv. At. Mol. Phys. 36, 91 (1996).



Shift

/2 microwave 
pulse

Delocalization “by Hand”: Trapped Atom Interferometer

Initial state |0>

De
ns

ity

x

TOF

Measured time of 
flight picture

/2 microwave 
pulse

Theory :
D. Jaksch et al., PRL 82,1975(1999)
G. Brennen et al., PRL 82, 1060 (1999)
A. Sorensen et al., PRL 83, 2274 (1999)



Complete Delocalization Sequence

5 Sites

6 Sites

2 Sites

4 Sites

3 Sites

O. Mandel, M. Greiner et al., preprint arXiv: cond-mat/0301169 (2003)



Quantum gates with neutral atoms

U

2 atoms at same site: collisional phase shift

/holdi tie e
U

Collisions between atoms just lead to a coherent collsional phase 

Demonstrated in Collapse and Revival 
experiment,

M. Greiner, O. Mandel et al., 
Nature 419, 51 (2002)



Quantum gates with neutral atoms

D. Jaksch et al., PRL 82,1975(1999)
G. Brennen et al., PRL 82, 1060 (1999)
A. Sorensen et al., PRL 83, 2274 (1999)

U

2 atoms at same site: collisional phase shift

/holdi tie e
U

Fundamental quantum gate:



Quantum gates with neutral atoms

D. Jaksch et al., PRL 82,1975(1999)
G. Brennen et al., PRL 82, 1060 (1999)
A. Sorensen et al., PRL 83, 2274 (1999)

U

2 atoms at same site: collisional phase shift

/holdi tie e
U

Fundamental quantum gate:

1 1

1 1

1 1 1 1

0 0 0 0

0 0

0 0 ie

Input  state Final  state

0 1

ti
m

e

position



12 1

1 0 1 10
i ii i

Engineering a Cluster-state

1

2 1 1 212 1
1 1 1 10 0 0 0
i ii

i

i ii ii
e

i i+1

1 1
2 2 1
(1 ) ( 11 ) 1

i

i i

i
e eBell



Entanglement due to Controlled Cold Collisions

/2-pulse

Entangled state

/2-pulse

Lattice
shift

Lattice
shift

D. Jaksch et al., PRL 82,1975 (1999), H.-J. Briegel et al., J.Mod.Opt. 

H.-J. Briegel & R. Raussendorf PRL 86, 910 (2001) & PRL 86, 5188 (2001).

Collisional phase shift

•With N atoms one obtains maximally entangled “cluster states” !

•Cluster state has maximally “connectedness” and “persistency”



Collapse and Revival of the Ramsey fringe

One atom per site

D. Jaksch, PhD-Thesis, Innsbruck

1 1 100 0

BELL

BELL c

Measured



Ramsey Fringe vs. Collisional Phase

Variation of the phase of 2nd /2 pulse:

•Observation of Ramsey fringes

•Collapse of Ramsey fringe for entangled
state for a Collisional phase 

•Revival of Ramsey fringe for disentangled
state for a Collisional phase 

(for details see: D. Jaksch, PhD-Thesis)

Collisional phase 

R
e
l.
 a

to
m

 n
u
m

. 
F=

2

phase of 2nd /2 pulse entangled disentangled



Conditional Double-Slit

2

1
4 21 1

0 00 0 0 0i

i i iii i
e

After /2-Puls,
detection in      :0



Entanglement Dynamics Sequence

30 µs 90 µs 150 µs 210 µs

270 µs 330 µs 390 µs 420 µs

vi
si

b
ili

ty

0

0.5

0.25

0 1000 2000
thold [µs]

Alternative sequence 
to measure whole 

Ramsey fringe in single 
experimental run

Olaf Mandel, Markus Greiner, Artur Widera, Tim Rom, Theodor W. Hänsch, Immanuel Bloch
Nature  425, 937 (2003)



Applications

H.-J. Briegel & R. Raussendorf PRL 86, 910 (2001) & PRL 86, 5188 (2001).
W. Dür & H.-J. Briegel, PRL 90, 067901 (2003)

• Simulation of solid state hamiltonians (Ising, Heisenberg)

• Quantum Random Walks in optical lattices

• Adding addressability of single lattice sites

• Resource for quantum computing 



Mott insulator state with two atoms per lattice site:
Great environment to form molecules !

Application of MI: Molecule formation by photo 
association



Mott insulator state with two atoms per lattice site:
Great environment to form molecules !

Application of MI: 
Molecule formation by photo association

T. Rom, et al., PRL 93, 073002 (2004)



Tonks-Girardeau Gas

Strongly interacting 1D gas:
Fermionization of bosonic particles

Munich:

•Tubes: red detuned 2D lattice
•Additional lattice along tubes to increase effective mass
•Detection via momentum distribution
B. Paredes et al., Nature 429, 277-281 (2004)

Penn State (D. Weiss):

•Tubes: blue detuned 2D lattice
T. Kinoshita, Science 305, 1125 – 1128 (2004)

Zurich: 1D regime (see lectures Michael Koehl)



A large variety of complex condensed matter and many-body 
Hamiltonians can be realized in a controlled way:

•combining different spin states of atoms

•using both fermionic and bosonic atoms

boson mediated fermion-fermion
interaction

•spin selective potentials

•varying lattice geometries, e.g. Kagome

•Feshbach resonances

•add disorder

•…

Condensed matter physics with ultracold atoms

B

a



Research possibilities

This allows to realize exciting quantum phases:

•magnetic order, e.g. Antiferromagnetic phases
•Frustrated phases in Kagome lattices
•High Tc
•spin waves in lattices
•(fractional) Quantum Hall physics with Bosons
•disorder: Bose-glass phase, Anderson localization
•Quantum information: detection of highly entangled

state, using them for “teleportation”
•…

“Quantum simulator” in the sense of Feynman



Condensed matter physics with ultracold atoms

Real materials
complicated:
•various interactions
•disorder

?
Condensed
matter models
difficult to calculate,
especially for fermions

Ultracold atoms in 
optical lattices
clean realization of 
condensed matter models

Direct experimental
test of condensed

matter models:


