

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR 1666 - 22

SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES

11 - 22 July 2005

Collective modes and pairing gaps of a strongly Interacting Fermi Gas

Presented by:

Cheng Chin

University of Chicago

School on Quantum Phase Transitions and Non-Equilibrium Phenomena in Cold Atomic Gases Trieste, 15 July 2005

Collective modes and pairing gaps of a strongly Interacting Fermi Gas

Cheng Chin

Experimentalphysik, Innsbruck University, Austria James Franck Institute, Physics Dept., Univ. of Chicago

A surprising merge of two interesting fields

Interacting Fermi gas

(Duke, JILA, Innsbruck...)

Ultracold molecules

(Innsbruck, JILA, MIT...)

BEC-BCS crossover (Science 04)

Molecule Stueckelberg oscillation (Innsbruck)

Phase diagram of a two-component Fermi gas

Fermi gas experiments in Innsbruck

• Bose-Einstein condensation of Li₂

atoms \rightarrow molecules \rightarrow mol. BEC

- Adiabatic BEC-BCS crossover mol. BEC \rightarrow BCS
- Surprises in collective modes
- Observation of pairing gap
- A bosonic mean-field model
- Recent experiment

Li broad resonance: theory and experiment

Li Experimental Setup

• Resonator set up at Brewster's angle. Opt. Lett 26, 1837 (2001)

• Efficient loading into the optical trap: ~ 10^7 thermal atoms

From atoms to molecules to molecular condensate

Jochim et al., Science (2003), Bartenstein et al., PRL (2004)

Explore the BEC-BCS crossover

BEC regime

Converting a BEC into a Fermi gas! What characterize the BEC-BCS crossover?

Collective modes in a Fermi gas

- Equation of hydrodynamics
 - Equation of state

- Collective mode measurement?
 - Axial quadrupole mode
 - Radial compression mode
 - Radial surface mode (ongoing)

Results

– Surprises in the observation (are they resolved?)

Cooperation: Stringari

Collective Mode Excitations

Excitation of the lowest quadrupole mode

Determination of collective mode frequency and damping

Experiment: Inpulse response Reference: Bartenstein, PRL 92, 203201 (2004)

axial quadrupole mode

M. Bartenstein et al., PRL 92, 203201 (2004), PhD thesis M. Bartenstein

axial mode: resonance region

M. Bartenstein et al., PRL 92, 203201 (2004), updated data analysis: PhD thesis M. Bartenstein

Comparison with theory

Pairing of fermionic ⁶Li atoms

- Molecular pairing and Cooper pairing
 - Two-body pairing and many-body pairing
- How do we measure the pairing energy??
 - Molecule picture and BCS picture

Comparison with theory

 Paivi Torma (Finland), Kathy Levin (USA), Allan Griffin (Canada), Giancarlo Strinati (Italy).

Enhanced pairing: Four-body picture Petrov et al.

Molecular wave function $\frac{1}{r}e^{-r/a}$ Molecular interaction $U_{eff} \sim +\frac{1}{R}e^{-2R/a}$ (for R > a)High density enhances pairingStrinati '00BCS limit: Even weak attraction can pair Fermion.

RF excitation: Molecule picture

RF excitation: many-body picture

Pairing gap in the crossover

Pairing gaps vs. Fermi energy (density)

Very close to resonance (837G) Theory (Päivi Törma)

The absence of narrow peak suggests all atoms are paired.

A mean-field model

Construction: CM motion : bosonic GP equation Relative motion: pair correlation.

Generalized mean-field model

 $\left(-\frac{\hbar^{2}}{4m}\nabla_{R}^{2}-\frac{\hbar^{2}}{m}\partial_{r}^{2}+V_{\text{int}}+g|\Psi(R)|^{2}\right)\Psi(R)\psi(r)=2\mu\Psi(R)\psi(r)$

In the dilute gas limit: LDA $|\Psi(\mathbf{R})|^2 = n$ and $V_{int} \sim \delta(\mathbf{r})$, we get

$$(-\frac{\hbar^2}{4m}\partial_r^2 + gn)\psi(r) = 2\mu\psi(r)$$
$$-a\psi'(0) = \psi(0)$$

Determination of the mean-field term g

Molecular mean-field is determined by atomic interaction. (*Petrov et al. 04*) We assume g=g(r).

chemical potential:
$$\frac{k_F a}{\sqrt{\alpha}} \operatorname{Ai'}(\frac{\alpha \mu}{E_F}) = -\operatorname{Ai}(\frac{\alpha \mu}{E_F})$$

Chemical potential

O QMC calculation from Giorgini et al., 2004

• QMC calculation from Carlson et al., 2003

Calculation in the crossover regime

- BCS mean-field theory
- * Quantum Monte Carlo calculations
- Experiments

Results: Polytropic exponent of the equation of states $<U> \sim <nr>> \sim n^{\gamma}$

Puzzles

Collective modes: (both axial and radial)

BCS mean-field equation fits better than QMC? Does trap geometry induce the sharp transition? Pairing gap:

The gap is smaller than prediction? Can rf profile determine the pair wave function? Gap vanishes and collective mode changes?

Ongoing experiment

Radial surface mode excitation and the creation of vortex...

⁶Li team in the University of Innsbruck

J. Denschlag, C.C., R. Grimm, M. Bartenstein, A. Altmeyer S. Jochim S. Riedl

