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In this lecture I will discuss experiments with interacting and non-interacting fermions in 3D
optical lattices.

I. INTRODUCTION

Fermions in optical lattices give access to few-body and many-body quantum physics.

FIG. 1 Principal physics in an optical lattice.

In a single lattice well the atoms constitute a few body
system which can be described by the Hamiltonian (1)
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ω quantifies the strength of the harmonic confining poten-
tial, m is the mass, and a is the s-wave scattering length.
We assume a contact interaction since typically the range
of the interatomic potential is smaller than the scattering
length.

The filled lattice as a whole is a quantum
many body system which can be described by
the Hubbard Hamiltonian (2)

H = −J
∑

{i,j},σ
c†i,σcj,σ + U

∑

i

ni,↓ni,↑.

c†i,σ and ci,σ are the creation and annihilation
operators for an atom with spin σ = {↑, ↓} on
lattice site i, ni,σ is the occupation number, J
is the tunnelling matrix element and U is the
on-site interaction strength.

Which tuning knobs do we have in the lattice?

• Interaction strength. There exist Feshbach resonances for both s-wave and p-wave interactions. For s-wave
interactions the on-site interaction strength can be expressed by U = 4πh̄2a/m

∫ |ψ(x)|4d3x, with a being the
s-wave scattering length and ψ(x) the wave function of the localized atom.

• Density/Filling. Atom number and strength of the external confinement can be (almost) freely chosen.

• Tunnelling. The tunnelling rate J = 4√
π
ERs3/4e−2

√
s depends directly on the potential depth V = sĖR of the

optical lattice. ER = h̄2k2/2m is the recoil energy with k = 2π/λ being the wave number of the lattice laser.

• Dimensionality. The tunnel coupling can be chosen independently in all three directions of space. Suppressed
tunnelling along one axis creates two-dimensional quantum systems, suppressed tunnelling along two axes creates
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one-dimensional quantum systems. To reach a low-dimensional configuration the tunnelling matrix element J
should be chosen such that the time scale for tunnelling h/(4J) is larger than the experimental time scales.

• Periodicity/Superlattices/Disorder. The periodicity of the lattice is determined by the wavelength of the
laser and the geometry of the laser beams. Superlattice structures can be generated by overlapping lattices
derived from lasers with different wavelengths or adding randomly generated potentials.

II. LOADING FERMIONS INTO AN OPTICAL LATTICE

We create a three-dimensional optical lattice by overlapping three pairs of counter-propagating laser beams.

far detuned lasers

λ=826 nm

quantum degenerate

Fermi gas T/TF=0.2

FIG. 2 How to create an optical lattice filled with fermionic atoms (3). For a realization using a single standing wave see (4; 5).

The procedure to prepare fermions in an optical lattice consists of several steps:

1. Prepare a quantum degenerate Fermi gas (40K) t a temperature of T/TF = 0.2 by sympathetic cooling with a
bosonic atom cloud (87Rb) in a magnetic trap. After degeneracy is reached, we remove the bosonic atoms.

2. Transfer the Fermi gas into an optical dipole trap and prepare the desired spin states/spin mixture.

3. Turn on the optical lattice. The lasers are far-detuned from the atomic resonance (the lattice lasers operate at
λ = 826 nm whereas the potassium resonance ist at λ = 767 nm). Therefore we can regard the optical lattice as
a conservative potential and neglect off-resonant excitation of the atoms by the laser light.

III. IMAGING THE FERMI SURFACE

The potential created by the optical lattice results in a simple cubic crystal structure and the gaussian intensity
profiles of the lattice beams give rise to an additional confining potential which varies with the laser intensity. As
compared to solid state systems, this gives rise to a harmonic confining potential in addition to the standard Hubbard
model:

H = −J
∑

{i,j},σ
c†i,σcj,σ + U

∑

i

ni,↓ni,↑ +
∑

i,σ

ni,σ
m

2
ω2

α(id)2 (1)

where ωα (α = x, y, z) denotes the curvature of the harmonic potential and d = λ/2 is the lattice spacing. As a result,
the sharp edges characterizing the T = 0 distribution function for the quasi momentum in the homogeneous case (6)
are expected to be rounded off. A quantitative picture can be obtained by considering a tight-binding Hamiltonian
to describe non-interacting fermions in an optical lattice with an additional harmonic confinement (7). At T = 0 the
inhomogeneous system is characterized by the total atom number N and by the characteristic length ζ over which the
potential shift due to the harmonic confinement equals the tunnel coupling matrix element J (7): ζα =

√
2J/mω2

α.
The density distribution scaled by ζα and the momentum distribution of the atoms in the lattice only depend on the
characteristic density ρc = Nd3

ζxζyζz
(8).

To observe the Fermi surface of the atoms in the lattice we have measured the quasi-momentum distribution of the
atoms. We use adiabatic switch-off of the lattice to convert the quasi-momentum into momentum (see fig.3) which
we then observe in time-of-flight imaging (9).
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FIG. 3 Detecting the quasi-momentum distribution.

The images show the quasi-momentum distribution of the atoms in the lattice (see fig. 4). Depending on the density
of the atoms we realize either a conducting or a band-insulating state. When we increase the characteristic density we
observe that the first Brillouin zone gets more and more filled transforming from a conducting into a band-insulating
state.
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FIG. 4 Transforming the gas from a conducting to a band-insulating state when changing the characteristic density (images
taken from (3)). The top row shows absorption images while the bottom row represents horizontal density profiles together
with a numerical simulation of the quasi-momentum distribution in the lattice.

In the band insulator tunnelling is prevented by Pauli’s exclusion principle since particles have to tunnel into the
excited state in the next lattice well (see fig. 5). Therefore the energy gap which prevents the tunnelling is on the
order of the trapping frequency inside the individual wells, which is ≈ 2π×60 kHz. This about 1-2 orders of magnitude
larger than the energy gap of a bosonic Mott insulator and the fermions are consequently much better localized.

FIG. 5 Conducting (top) vs. band-insulating (bottom) state in the lattice.
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IV. DYNAMICS IN THE LATTICE

With ultracold atoms in optical lattices a rapid change of density/filling is possible. We have first created a band
insulating state and then lowered the atomic density over a varying time scale (see fig. 6). Thereby the band insulating
state develops into a conducting state which we have observed by monitoring the delocalization of the atoms in the
lattice. In a conducting state every atom may be delocalized of a few lattice sites and thus after a rapid switch-off of
the lattice one observes matter wave interference of these atoms. We determine the coherence length by determining
the width of the central momentum peak, or equivalently the width of the quasi-momentum distribution in the first
Brillouin zone. In contrast, localized atoms show no interference pattern but the momentum distribution corresponds
to the Fourier transform of the localized wave packet.

FIG. 6 Transforming a band-insulating into a conducting state
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FIG. 7 We determine experimentally whether the state is conducting or band-insulating by measuring the delocalization of
atoms in the lattice (figure taken from (3)).

The observed timescale corresponds to approximately 10h̄/(2zJ), i.e. ten times the time scale for tunnelling in the
lattice. This about one order of magnitude slower than for bosonic atoms when returning from a Mott insulator into
a superfluid state (10).

V. INTERACTING FERMIONS

In the following we will consider interacting fermions in an optical lattice, specifically two fermions with different
spins (see fig.8). Two particles interacting via s-wave interactions (modelled by a δ-functional interaction) in a
harmonic trap with trapping frequency ω have been studied by Busch et al. (1). Note, that only s-wave (` = 0) states
of the relative coordinates contribute to this interaction. The energy spectrum (see fig. 9) is related to the scattering
length a by

√
2
Γ(−E/2h̄ω + 3/4)
Γ(−E/2h̄ω + 1/4)

=
aho

a
, (2)

where aho =
√

h̄/mω denotes harmonic oscillator ground state extension. For a = 0 one recovers the energy eigenvalues
of the relative motion of two particles in a three-dimensional harmonic oscillator E = (2n+`+3/2)h̄ω = (2n+3/2)h̄ω.

What happens when we sweep the magnetic field across the Feshbach resonance from the repulsive towards the
attractive side? When using this direction of the sweep there is no adiabatic conversion to molecules but we transfer
atoms from the ground state into the excited state (see fig. 10).
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focus on a single well

FIG. 8 A band insulator with two species can be considered as many copies of two atoms in a harmonic potential well.

FIG. 9 Energy spectrum of two interacting particles in a harmonic potential well (figure taken from (1)).

After turning off the optical lattice adiabatically and switching off the magnetic field we measure the momentum
distribution. To see the effect of the interactions we determine the fraction of atoms transferred into higher bands.
For final magnetic field values well above the Feshbach resonance we observe a significant increase in the number of
atoms in higher bands along the weak axis of the lattice, demonstrating an interaction-induced coupling between the
lowest bands. Since the s-wave interaction is changed on a time scale short compared to the tunnelling time between
adjacent potential minima we may regard the band insulator as an array of harmonic potential wells. It has been
shown that increasing the s-wave scattering length for two particles in a harmonic oscillator shifts the energy of the
two-particle state upwards until the next oscillator level is reached (1). In our case this leads to a population of
higher energy bands. The fraction of atoms transferred could be limited by the number of doubly occupied lattice
sites and tunnelling in the higher bands. The number of doubly occupied sites could be measured by studying the
formation of molecules in the lattice. In addition, we observe a shift of the position of the Feshbach resonance from
its value in free space to larger values of the magnetic field (see Fig. 4a), which has been predicted for tightly confined
atoms in an optical lattice (11). This mechanism for a confinement induced resonance is related to the phenomenon
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FIG. 10 Coupling of different Bloch bands by sweeping the magnetic field across a Feshbach resonance from the low-field to the
high-field side. a Sweep direction. b Evolution of the energy eigenvalues when the scattering length is changed. c Observation
of atom in higher bands. d Fraction of atoms transferred into higher band depending on the final value of the magnetic field
sweep (figure c and d are taken from (3)).

predicted (12; 13) and observed (14) for one-dimensional quantum gases. For a quantitative description of this strongly
interacting Fermi gas on a lattice a multi-band Hubbard model could be considered but these are even in the static
case notoriously difficult or even impossible to solve with present methods (15).

VI. MOLECULES IN A 3D OPTICAL LATTICE

Reversing the direction of the sweep produces molecules in the optical lattice. Two atoms residing at a given lattice
site are adiabatically converted into a bound pair of atoms. We probe the molecules by RF spectroscopy (16). We
drive an RF transition between the |F = 9/2,mF = −7/2〉 and the |F = 9/2,mF = −5/2〉 states. If a bound state
between an atom in the |F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 exists, the transition frequency is altered
by the binding energy.

We observe the binding energy of the molecules inside the optical lattice to differ from the free space situation. In
particular we find bound states even for a negative scattering length. This effect is characteristic for low dimensional
systems:

• 2D: Predicted by Petrov et al. (17) and Wouters et al. (18).

• 1D: Predicted by Maxim Olshanii and co-workers (12; 13), observed with fermions in an optical lattice (14) (see
below).

• ”0”D (atoms localized in a three-dimensional lattice): The theory by Busch et al. (1) fits well to our data.

The shift is due to the confining potential, which lifts the continuum to the ground state of the external potential.
Therefore a quasi-bound state with negative scattering length which initially was above the free-space continuum is
now below the new ”continuum” set the confining potential.
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FIG. 11 Generation of molecules in the optical lattice by sweeping the magnetic field across a Feshbach resonance from the
high-field to the low-field side. a Sweep direction. b Evolution of the energy eigenvalues when the scattering length is changed.
c Principle of the spectroscopy to measure the binding energy of the atoms. d Sample spectrum.

FIG. 12 Confinement induced bound states.

VII. CONFINEMENT INDUCED MOLECULES IN A 1D FERMI GAS

The study of two particles forming a bound state has a long history both in physics and chemistry because it
constitutes the most elementary chemical reaction. In most situations, such as atoms in the gas phase or in a liquid,
the two particles can be considered as being in free space and their collisions can be described by standard quantum
mechanical scattering theory. For ultracold atoms undergoing s-wave interaction a bound molecular state is only
supported when the scattering length between the atoms is positive whereas for negative scattering length the bound
state is absent (19).

Tight transverse confinement alters the scattering properties of two colliding atoms fundamentally and a bound
state exists irrespective of the sign of the scattering length. This peculiar behaviour in a one-dimensional system arises
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from the additional radial confinement which raises the continuum energy to the zero point energy of the confining
potential, e.g. the two-dimensional harmonic oscillator ground state energy h̄ωr. The energy of a bound or quasi-
bound state remains nearly unaffected by the external confinement as long as the effective range of the interaction
is small compared to the extension of the confined ground state. Therefore, a quasi-bound state, which for negative
scattering length a lies above the continuum in free space, is below the new continuum in the confined system.

The binding energy EB of dimers in a one-dimensional gas is given by (13)

a

ar
= −

√
2

ζ(1/2,−EB/2h̄ωr)
, (3)

where ar =
√

h̄/mωr is the extension of the transverse ground state (with m being the atomic mass) and ζ denotes
the Hurwitz zeta function. For negative a and |a| ¿ ar a weakly bound state with EB ≈ mω2

ra2 exists which has a
very anisotropic shape (20). In the limit |a| À ar the binding energy takes the universal form EB ≈ 0.6 h̄ωr and for
positive a and a ¿ ar the usual 3D expression for the binding energy EB = h̄2/ma2 is recovered.

A trapped gas is kinematically one-dimensional if both the chemical potential and the temperature are smaller
than the level spacing due to the transverse confinement. For a harmonically trapped Fermi gas the Fermi energy
EF = N · h̄ωz must be smaller than the energy gap to the first excited state in the transverse direction h̄ωr. N
denotes the number of particles and ωz is the trapping frequency along the weakly confining axis. In our experiment
we employ a two-dimensional optical lattice in order to create 1D Fermi gases. For atoms trapped in the intensity
maxima of the two perpendicular standing wave laser fields the radial confinement is only a fraction of the optical
lattice period (9). The much weaker axial trapping is a consequence of the gaussian intensity envelope of the lattice
laser beams. The resulting aspect ratio ωr

ωz
= πw

λ is determined by the waist w and the wavelength λ of the beams.
The two-dimensional optical lattice creates an array of 1D tubes of which approximately 70 × 70 are occupied (21).
This array fulfills the 1D condition N < ωr/ωz ≈ 270 in each tube while simultaneously providing a good imaging
quality.

FIG. 13 One-dimensional Fermi gases in a three-dimensional optical lattice (left). Illustration of the one-dimensional scattering
process where strongly interacting atoms cannot pass each other, whereas in two dimensions they can (right).

We have measured the binding energy of the molecules by RF spectroscopy and have investigated the dependence
of the binding energy of the 1D dimers on the magnetic field (Fig.14). We observed bound states for every examined
magnetic field strength. The dimers at magnetic fields above the Feshbach resonance are induced by the confinement.
The data is in good agreement with the theoretical expectation calculated from Eq. 3 (solid line) with no free parame-
ters. For this calculation we compute the effective harmonic oscillator length ar and the ground state energy h̄ωr by
minimizing the energy of a gaussian trial wave function in a single well of the lattice to account for the anharmonicity
of the potential. To calculate the scattering length we use a width of the Feshbach resonance of ∆B = 7.8G (22) and
background scattering length abg = 174 a0 (23).

For a comparison with the situation in free space we created molecules in a crossed beam optical dipole trap without
optical lattice where confinement effects are not relevant. The binding energy in 3D is measured with the same rf
spectroscopy technique as for the 1D gas and we find molecules only for scattering lengths a > 0. The binding energy is
calculated according to (24) as EB,3D = h̄2

m(a−ā)2 with ā = (mC6/h̄2)1/4 Γ(3/4)

2
√

2Γ(5/4)
being the effective scattering length

and C6 = 3897 (in atomic units) (25). The deviation of the theory from the measured data for more deeply bound
molecules is probably due to limitations of this single channel theory. A multi-channel calculation would determine
the binding energy more accurately.

Exactly on the Feshbach resonance where the scattering length diverges, the binding energy takes the universal
form EB ≈ 0.6h̄ωr and is solely dependent on the external confinement. We have varied the potential depth of the
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FIG. 14 1D and 3D molecules. Confinement induced molecules in the 1D geometry exist for arbitrary sign of the scattering
length. The solid lines show the theoretical prediction of the binding energy with no free parameters (see text). In the 3D case
we observed no bound states at magnetic fields above the Feshbach resonance (vertical dashed line). The error bars reflect the
uncertainty in determining the position of the dissociation threshold (figure taken from (14)).

optical lattice and thereby the transverse confinement and measured the binding energy. We find good agreement of
our data with the theoretical prediction (see Fig. 15). For a very low depth of the optical lattice the measured data
deviate from the 1D theory due to the fact that the gas is not one-dimensional anymore.
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FIG. 15 Changing the confinement. The plot shows the binding energy very close to the Feshbach resonance at a magnetic
field of B = 202.0G. The error bars reflect the uncertainty in determining the position of the dissociation threshold. The solid
line shows the theoretically expected value EB = 0.6 h̄ωr (figure taken from (14)).

VIII. CONCLUSIONS

Fermions in an optical lattice offer a versatile tool to study few- and many-body physics. Our recent results about
fermions in an optical lattice can be found in the references (3; 14).
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