SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES

11-22 July 2005

Strongly correlated bosons in 1D

Presented by:

Dimitri Gangardt

Laboratoire de Physique Théorique
et Modèles Statistiques
Université Paris Sud, France

Strongly correlated bosons in 1D

Dimitri Gangardt

Laboratoire de Physique Théorique et Modèles Statistiques

Université Paris Sud, Orsay

Outline

- One dimensional bosons with delta interactions. Bethe Ansatz solution.
- Quantum regimes at zero temperature. Tonks-Girardeau limit.
- Local correlation functions. Suppression of three body recombination.
- Tonks-Girardeau gas vs. free fermions in harmonic potential.
- Exact time evolution of the Tonks-Girardeau bosons.
- Conclusions and prospects
- Enhanced interactions in 1D \rightarrow strongly correlated regimes
- Toy models for studying physics beyond mean field
- Interesting collective behaviour
- Exactly solvable
- Realizable in experiments with cold atoms (bosons, fermions). Tunable interactions

One dimensional bosons with delta interactions: 2 particles

$$
H=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right)+g \delta\left(x_{1}-x_{2}\right)
$$

$$
A(21)=S\left(k_{1}-k_{2}\right) A(12)
$$

2-body scatterring matrix: $S(k)=-e^{-i \theta(k)}=\frac{k-i c}{k+i c}$ Phase shift: $\theta(k)=-2 \arctan (k / c) \quad 1 / c=\hbar^{2} / m g$

... 3 particles

$$
\Phi \begin{gathered}
x_{1}<x_{2}<x_{3} \quad k_{1}>k_{2}>k_{3} \\
+A(123) e^{i k_{1} x_{1}+i k_{2} x_{2}+i k_{3} x_{3}}+A(213) e^{i k_{2} x_{1}+i k_{1} x_{2}+i k_{3} x_{3}} \\
A(231)=S\left(k_{1}-k_{2}\right) S\left(k_{1}-k_{3}\right) A(123) \\
i k_{2} x_{1}+i k_{3} x_{2}+i k_{1} x_{3} \\
=A
\end{gathered}
$$

Bethe Ansatz Solution

(Lieb, Linger, '63):

$$
H=-\sum_{i} \frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{g}{2} \sum_{i \neq j} \delta\left(x_{i}-x_{j}\right)
$$

$$
\begin{aligned}
& x_{1}<x_{2}<x_{3}<\ldots x_{N} \quad k_{1}>k_{2}>k_{3}>\ldots>k_{N} \\
& \Phi\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\sum_{P} A(P) e^{i k_{P_{1}} x_{1}+i k_{P_{2}} x_{2}+\ldots+i k_{P_{N}} x_{N}} \\
& A(P)=\prod_{i<j} S\left(k_{P_{i}}-k_{P_{j}}\right)
\end{aligned}
$$

Periodic $B C \Rightarrow$ Bethe Ansatz equations $\hbar=2 m=1$

$$
L k_{j}=2 \pi I_{j}+\sum_{l} \theta\left(k_{l}-k_{j}\right) ; \quad E=\sum_{j} k_{j}^{2}
$$

Physical regimes at zero temperature

$$
\begin{aligned}
& \text { Dimensionless interaction parameter } \\
& \qquad \gamma=\frac{c}{n}=\frac{m g}{n \hbar^{2}}
\end{aligned}
$$

Weak interactions $\gamma \rightarrow 0$

Mean-field (Gross-Pitaevskii) limit

Quasi-condensate

$$
\frac{E_{0}}{N}=\frac{g n}{2}
$$

Tonks-Girardeau regime

Strong interactions $\gamma \rightarrow \infty$
$1 / \gamma=0$ Free fermions
Girardeau, '61

$$
\Phi_{0}\left(x_{1}, \ldots, x_{N}\right)=\left|\Phi_{0}^{\text {fermi }}\left(x_{1}, \ldots, x_{N}\right)\right|
$$

$$
L k_{j}=2 \pi I_{j}+O(1 / \gamma)
$$

Fermi momentum
$k_{F}=\pi N / L=\pi n$
$\frac{E_{0}}{N}=\frac{E_{F}}{3}$

Experimental realization of Tonks-Girardeau regime

$$
\frac{1}{c}=\frac{l_{\perp}^{2}}{2 a}
$$

- Tight confinement $n \ll 1 / l_{\perp}$
- Strong interactions
- Number of particles $N \sim 100$
- Optical lattices $(\gamma \sim 200)$

Losses due to the three-body recombination ($\tau \simeq 1 \mathrm{~ms}$) ?

Need for three body local correlations

Local correlations

Local m - body correlation function

$$
g_{m}=\left\langle\left(\psi^{\dagger}(0)\right)^{m}(\psi(0))^{m}\right\rangle
$$

Strong coupling $\gamma \gg 1 \quad$ 2-body Probability $\sim 1 / \gamma^{2}$

Number of pairs: $\frac{m(m-1)}{2}$

$$
g_{2} \sim \frac{1}{\gamma^{2}} \quad g_{3} \sim \frac{1}{\gamma^{6}}
$$

Three body recombination suppression

DG and G.V. Shlyapnikov PRL 03, NJP 03

$$
g_{3} / n^{3}=\left\langle\psi^{\dagger} \psi^{\dagger} \psi^{\dagger} \psi \psi \psi\right\rangle= \begin{cases}1-\frac{6}{\pi} \sqrt{\gamma}, & \gamma \rightarrow 0 \\ 16 \pi^{6} / 15 \gamma^{6}, & \gamma \rightarrow \infty\end{cases}
$$

B. Laburthe Tolra et al., NIST group, PRL 04

Experiments

T. Kinoshita, T. R. Wenger and D. S. Weiss, "Observation of a onedimensional Tonks-Girardeau gas," Science 305, 1125 (2004)

B. Paredes, A. Wildera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch and I. Bloch, "Tonks-Girardeau gas of ultracold atoms in an optical lattice", Nature 429, 277 (2004)

Tonks-Girardeau gas vs free Fermions in harmonic potential $V=\frac{1}{2} m \omega_{0}^{2} x^{2}$

$$
\Phi\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\left|\operatorname{det}_{k, l} \phi_{k}\left(x_{l}\right)\right|
$$

$\phi_{l}(x)$ - Hermite polynomials

- Density $\rho(x)$

- Collective excitation spectrum

One-body density matrix and momentum distribution

- One-body density matrix
(P.J. Forrester et al., PRA 02; DG, JPA 04)
$g_{1}(x, y ; t)=N \int d x_{2} . . d x_{N} \Phi^{*}\left(x, x_{2} . ., x_{N} ; t\right) \Phi\left(y, x_{2}, . ., x_{N} ; t\right)$
quasi long-range order:

$$
g_{1}(x, y ; 0) \sim \frac{[n(x) n(y)]^{1 / 4}}{|x-y|^{\frac{1}{2}}}
$$

- Momentum distribution $n(p, t)=\int d x d y e^{i p(x-y)} g_{1}(x, y ; t)$

Important: fermions in harmonic potential $n(p) \sim \rho\left(x=p l_{0}^{2}\right)$

Dynamical evolution under arbitrary time-dependent frequency $\omega(t)$

- 1D expansion
- Large-amplitude oscillations

Methods

- We use the time-dependent Bose-Fermi mapping
- We use a scaling transformation $X=x / b(t), \tau=\tau(t)$ on the single-particle orbitals

$$
\phi_{j}(x, t)=\frac{1}{\sqrt{b}} \phi_{j}(X, 0) \exp \left[i \frac{m x^{2} \dot{b}}{2 \hbar} \frac{b}{b}-i E_{j} \tau(t)\right]
$$

with

$$
\ddot{b}+\omega^{2}(t) b=\omega_{0}^{2} / b^{3} \text { and } \tau(t)=\int_{0}^{t} d t^{\prime} / b^{2}\left(t^{\prime}\right)
$$

General results

(A. Minguzzi and DG, PRL 05)

- The density profile obeys a simple scaling law

$$
\rho(x, t)=\frac{1}{b} \rho\left(\frac{x}{b} ; 0\right)
$$

- One-body density matrix

$$
g_{1}(x, y ; t)=\frac{1}{b} g_{1}\left(\frac{x}{b}, \frac{y}{b} ; 0\right) \exp \left(-\frac{i}{b} \frac{\dot{b}}{\omega_{0}} \frac{x^{2}-y^{2}}{2 l_{0}^{2}}\right)
$$

- Time-dependent momentum distribution

$$
n(p, t)=b \int d x d y g_{1}(x, y ; 0) e^{-i b\left[\frac{\dot{b}}{\omega_{0}} \frac{x^{2}-y^{2}}{2 l_{0}^{2}}-p(x-y)\right]}
$$

For large expansion $b \gg 1$: dynamical phase is stationary for $x=y=x^{*}=\left(\omega_{0} / \dot{b}\right) p l_{0}^{2}$ and

$$
n(p, t) \sim \rho\left(x=x^{*}(p) ; 0\right)
$$

Expansion

Scaling parameter

$$
b(t)=\sqrt{1+\omega_{0}^{2} t^{2}}
$$

Momentum distribution for $N=7$ particles

"fermionization time" $t_{F}=1 / N \omega_{0}=\hbar / E_{F}$

Velocity (momentum) distribution

- Velocity field $v=v_{0}+v_{\text {hydr }}$
- Hydrodynamical velocity for a harmonically confined gas

$$
v_{\text {hydr }} \sim x
$$

- For sufficiently long times $v_{\text {hydr }} \gg v_{0}$ and velocity (momentum) distribution becomes distribution of positions, i.e. density profile

Large-amplitude oscillations

Sudden change of the trap frequency from ω_{0} to ω_{1}
scaling parameter $b(t)=\sqrt{1+\frac{\omega_{0}^{2}-\omega_{1}^{2}}{\omega_{1}^{2}} \sin ^{2} \omega_{1} t}$
Reversible dynamical fermionization

$$
N=9, \omega_{0} / \omega_{1}=10
$$

Conclusions and prospects

- Exact solution for equilibrium and out of equilibrium properties.
- Explicit dependence on microscopic parameters
- Theoretical results in the strongly correlated (Tonks) limit
- Effects of finite γ.

Perturbation theory around free fermionic limit.

- Effects of different external potentials. Semiclassical approximation.
- Approach to equilibrium in exactly solvable models
"...However, my personal reason for working on one-dimensional problems is merely that they are fun. A man grows stale if he works all the time on the insoluble, and a trip to the beautiful world of one dimension will refresh his imagination better than a dose of LSD. If Hans Bethe in his youth had not wasted his time solving the one-dimensional Heisenberg model of an antiferromagnet, I doubt whether he would have created the theory of energy production in stars any sooner..."

F.J. Dyson, Physics Today 9, 83 (1967)

