

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR 1666 - 21

SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES

11 - 22 July 2005

Bose-Fermi mixtures: Theory

Presented by:

Mikhail Baranov

University of Amsterdam, Netherlands

UNIVERSITEIT VAN AMSTERDAM FACULTEIT DER NATUURWETENSCHAPPEN, WISKUNDE EN INFORMATICA

Van der Waals - Zeeman Institute for Experimental Physics University of Amsterdam

Bose-Fermi mixtures: Theory

M.A. Baranov

Outline:

I. Fermi-Bose mixtures "in clouds"

II. Fermi-Bose mixtures in optical lattices

I. Fermi-Bose mixtures "in clouds"

$$\begin{split} H &= H_b + H_f + H_{bf} \\ \text{where} \\ H_b &= \phi^+ \left\{ -\frac{\hbar^2 \nabla^2}{2m_b} - \mu_b + V_{trap}^b(\vec{r}) + \frac{g_b}{2} \hat{n}_b \right\} \phi, \quad \hat{n}_b &= \phi^+ \phi \end{split}$$

bosonic Hamiltonian,
$$g_b = 4\pi\hbar^2 a_b / m_b > 0$$

$$H_{f} = \hat{\psi}^{+} \left\{ -\frac{\hbar^{2} \nabla^{2}}{2m_{f}} - \mu_{f} + V_{trap}^{f}(\vec{r}) \right\} \hat{\psi}$$

fermionic Hamiltonian,

$$H_{bf} = g_{bf} \hat{n}_b \hat{\psi}^+ \hat{\psi} \qquad g_{bf} = \frac{2\pi \hbar^2 a_{bf}}{m_{bf}}, \quad m_{bf} = \frac{m_b m_f}{m_b + m_f}$$

Fermi-Bose interaction

Physical examples:

1.
$${}^{3}He - {}^{4}He$$
 solution

- 2. ${}^{6}Li {}^{7}Li$
- 3. ${}^{40}K {}^{87}Rb$
- 4. ${}^{6}Li {}^{87}Rb$

Mean-field analysis

Assumption:
$$|\Psi\rangle = |\Psi_B\rangle \otimes |\Psi_F\rangle$$

Decoupling of the Fermi-Bose interaction:

$$H_{bf} = g_{bf} \hat{n}_b \hat{\psi}^+ \hat{\psi} \rightarrow \frac{1}{2} g_{bf} \left(n_b \hat{\psi}^+ \hat{\psi} + n_f \hat{\phi}^+ \hat{\phi} \right)$$

results in

$$V_{trap}^{b} \rightarrow V_{eff}^{b} = V_{trap}^{b} + g_{bf} n_{f}$$

and
$$V_{trap}^{f} \rightarrow V_{eff}^{f} = V_{trap}^{f} + g_{bf} n_{b}$$

effective (mean-field) potentials

Fermionic part

$$H_{f}^{eff} = \hat{\psi}^{+} \left\{ -\frac{\hbar^{2} \nabla^{2}}{2m_{f}} - \mu_{f} + \underbrace{V_{trap}^{f}(\vec{r}) + g_{bf} n_{b}(\vec{r})}_{V_{eff}^{f}(\vec{r})} \right\} \hat{\psi}$$

For a large number of fermions N_{1} Thomas-Fermi approximation:

 $N_{\scriptscriptstyle F}^{}$ one can use the

$$n_{f}(\vec{r}) = \frac{1}{6\pi^{2}\hbar^{3}} \Big[2m_{f} \Big(\mu_{f} - V_{eff}^{f}(\vec{r}) \Big) \Big]^{3/2}$$

For
$$g_{bf} = 0$$
 in a spherical harmonic trap
 $\mu_f = \varepsilon_F \equiv \frac{\hbar^2 k_F^2}{2m_f} = \hbar \omega (6N_F)^{1/3}$

Bosonic part

$$H_{b}^{eff} = \phi^{+} \left\{ -\frac{\hbar^{2} \nabla^{2}}{2m_{b}} - \mu_{b} + \underbrace{V_{trap}^{b}(\vec{r}) + g_{bf}n_{f}(\vec{r})}_{V_{eff}^{b}(\vec{r})} + \frac{g_{b}}{2} \phi^{+} \phi \right\} \phi$$

Mean-field: $\hat{\varphi}(\vec{r}) \rightarrow \varphi_c(\vec{r})$ - classical field, $n_b(\vec{r}) = \varphi_c^2(\vec{r})$

Minimum energy \rightarrow Gross-Pitaevskii equation on $\varphi_c(\vec{r})$

$$\left\{-\frac{\hbar^2 \nabla^2}{2m_b} - \mu_b + V_{trap}^b(\vec{r}) + g_{bf} n_f(\vec{r}) + g_b \varphi_c^2\right\} \varphi_c = 0$$

Should be combined with

$$n_{f}(\vec{r}) = \left[2m_{f}\left(\mu_{f} - V_{trap}^{f}(\vec{r}) - g_{bf}n_{b}(\vec{r})\right)\right]^{3/2} / 6\pi^{2}\hbar^{3}$$

Results for $g_{bf} > 0$: Mølmer 1999, Nygaard et al. 1999, Roth 2002*

Results for $g_{bf} < 0$: Roth 2002*, Roth et al. 2002, Modugno 2003

Stability of Fermi-Bose mixtures (simple Thomas-Fermi analysis in the homogeneous case)

The energy

$$E(n_{b}, n_{f})/V = \frac{3}{5} \frac{\hbar^{2}}{m_{f}} \frac{n_{f}^{5/3}}{(6\pi^{2})^{2/3}} - \mu_{f}n_{f} + \frac{2\pi\hbar^{2}a_{bf}}{m_{bf}}n_{b}n_{f}$$

$$+ \frac{2\pi\hbar^{2}a_{b}}{m_{b}}n_{b}^{2} - \mu_{b}n_{b}$$
Equilibrium densities:

$$\frac{\partial E}{\partial n_{b}} = \frac{\partial E}{\partial n_{f}} = 0$$
Stability:

$$\delta^{2}E = \sum_{\alpha,\beta=b,f} \frac{\partial^{2}E}{\partial n_{\alpha}\partial n_{\beta}} \delta n_{a} \delta n_{\beta} > 0$$
Matrix

$$\frac{\partial^{2}E}{\partial n_{\alpha}\partial n_{\beta}}$$
must have positive eigenvalues !
ICTP, Trieste, 11-22 July 2005

Explicitly:

$$\frac{1}{V} \frac{\partial^2 E}{\partial n_{\alpha} \partial n_{\beta}} = \begin{pmatrix} 2\hbar^2 / 3(6\pi^2)^{2/3} m_f n_f^{1/3} & 4\pi\hbar^2 a_{bf} / m_{bf} \\ 4\pi\hbar^2 a_{bf} / m_{bf} & 4\pi\hbar^2 a_b / m_b \end{pmatrix}$$

Eigenvalues are positive if

$$a_b - (6\pi^2)^{5/3} \frac{m_b m_f}{m_{bf}^2} \frac{a_{bf}^2 n_f^{1/3}}{\pi} > 0$$

- stability condition

What happens in the region of instability?

1. For
$$a_{bf} > 0$$

 $\delta n_f \sim -\delta n_b$ for negative eigenvalue – phase separation
2. For $a_{bf} < 0$
 $\delta n_f \sim \delta n_b$ for negative eigenvalue – mutual collapse

Note: in more rigorous approaches collapse corresponds to failure of the convergence during the iterative procedure

Consequence for the trap:

$$n_f \rightarrow n_f(0) \sim a_{bf}^{-6}$$

With
$$n_f(0) \sim N_f^{1/2}$$
 in a trap, it results in

$$N_{f,crit} \sim a_{bf}^{-12}$$
 - the critical number of fermions

Experimental results will be given during next talk. Stay in the audience!

Warning!

At the point of instability, interactions are not weak. Therefore, higher order contributions (exchange) have to added (see Albus et al. 2003)

Beyond mean-field

$$\hat{\varphi}(\vec{r}) \rightarrow \varphi_c(\vec{r}) + \hat{\varphi}'(\vec{r})$$
excitations

 $\varphi_c(\vec{r})$ obeys Gross-Pitaevskii equation.

The quadratic in ϕ' part of $H_b^{e\!f\!f}$ can be diagonalized $H_b^{e\!f\!f(2)} = E_0 + \sum_v \varepsilon_v \alpha_v^+ \alpha_v$

by using the Bogoliubov transformation

$$\hat{\varphi}'(\vec{r}) = \sum \left\{ u_{\nu}(\vec{r})\alpha_{\nu} + v_{\nu}(\vec{r})\alpha_{\nu}^{+} \right\}$$

where $\alpha_{v}, \alpha_{v}^{+}$ bosonic creation/annihilation operators and $\int_{\vec{v}} \left(u_{v} |^{2} - |v_{v}|^{2} \right) = 1$

The amplitudes \mathcal{U}_{v} , \mathcal{V}_{v} and eigenvalues \mathcal{E}_{v} (excitation eigenfrequencies) can be found from the

Bogoliubov – de Gennes equations

$$\begin{bmatrix} -\frac{\hbar^2}{2m_b} \nabla^2 + V_b^{eff}(\vec{r}) - \mu_b + 2g_b n_{bc} \end{bmatrix} u_v + g_b n_{bc} v_v = \varepsilon_v u_v$$
$$\begin{bmatrix} -\frac{\hbar^2}{2m_b} \nabla^2 + V_b^{eff}(\vec{r}) - \mu_b + 2g_b n_{bc} \end{bmatrix} v_v + g_b n_{bc} u_v = -\varepsilon_v v_v$$

Can be used, for example, for analysis of temperature effects (Liu et al. 2003)

Consequences: induced fermion-fermion interaction Bijlsma et al. 2000, Capuzzi et al. 2001, ...

BCS pairing (p-wave) Efremov et al. 2002

In a single component Fermi gas the s-wave scattering is forbidden. Therefore, the p-wave channel is dominant at low temperatures.

The p-wave harmonic of the effective interaction for two fermions on the Fermi surface is negative !

$$V_{eff}^{(l=1)} = -\frac{g_{bf}^2}{g_b} R_1 \left(\frac{p_F}{m_b s}\right), \qquad R_1(x) = \frac{2}{x^2} \left[\left(\frac{1}{x^2} + \frac{1}{2}\right) \ln(1+x^2) - 1 \right]$$
$$s = \sqrt{n_b g_b / m_b} \qquad \text{the bosonic sound velocity}$$

Results in Cooper instability: formation of BCS-paired state (Cooper pairs)

The critical temperature

$$T_{c1} \sim \varepsilon_F \exp \left(-\frac{1}{\nu_F \left|V_{eff}^{(l=1)}(\omega=0)\right|}\right)$$

where

$$v_F = mp_F / 2\pi^2 \hbar^3$$

fermionic density of states at the Fermi energy

For typical values of parameters

$$T_{c1} < 10^{-4} \varepsilon_F$$

The order parameter

$$\vec{\Delta} = -V_{eff}^{(l=1)} \langle \hat{\psi} \hat{\psi} \rangle = (\Delta_{-1}, \Delta_0, \Delta_1)$$

complex vector!

Is it possible to achieve the BCS transition?

Problem: required large values of a_{bf} could lead to instability of the mixture.

You will learn more about Fermi-Bose mixtures "in clouds" during next lecture!

II. Fermi-Bose mixtures in optical lattices:

M. Lewenstein et al. 2004

- Bose-Fermi mixture in an optical lattice
- Only the lowest band is occupied (fermionic filling factor $0 < \rho_F < 1$)
- Only short-range interactions

Bose-Fermi Hubbard Hamiltonian

$$J = 0$$
 limit

- If $U_{bf}=0$: MI state for the bosons with $n_0 = [\overline{\mu}]+1$

- If $U_{bf} > 0$ and large enough the fermions push the bosons out

- If $U_{bf} < 0$ the fermions attract bosons to the sites they occupy and composites fermion + boson(s) are formed (Kuklov et al. 2003).

Pairing of a fermion with s bosonic holes (or –s bosons) for

$$\overline{\mu} - n_0 + s < \frac{U_{bf}}{U_{bb}} < \overline{\mu} - n_0 + s + 1, \quad n_0 + s \ge 0$$

Composite fermion operators

 $U_{bf}>0$, s>0 $\$ - pairing of a fermion with s bosonic holes $C_i=\sqrt{(n_0-s)!/\,n_0!}(b_i^+)^s\,f_i$

 $U_{bf} < 0, s < 0$ - pairing of a fermion with -s bosons $C_i = \sqrt{n_0!/(n_0 - s)!} (b_i)^{-s} f_i$

Under the constraint (!): $n_i^b + sn_i^f = n_0$ the operators C_i and C_j^+ obey $C_i C_j^+ + C_j^+ C_i = \delta_{ij}$

Limit of small tunneling $J \ll U_{bf}, U_{bb}$

can be analyzed by considering H_1 as a perturbation.

Effective Fermi-Hubbard Hamiltonian for composite fermions

$$H_{eff} = \sum_{\langle ij \rangle} \left(-J_{eff} \left[C_{i}^{+} C_{j} + h.c. \right] + U_{eff} N_{i} N_{j} \right)$$

where $J_{e\!f\!f}$ is the nearest-neighbors tunneling and

 $U_{\scriptscriptstyle eff}$ the nearest-neighbors interaction

Interaction between composite fermions

$$U_{eff} = 2 \frac{J^2}{U_{bb}} \left[\frac{n_0(n_0 + 1 - s)}{1 + \alpha - s} + \frac{(n_0 + 1)(n_0 - s)}{1 - \alpha + s} + \frac{1}{\alpha s} - n_0(n_0 + 1) - (n_0 - s)(n_0 - s + 1) \right]$$

can be either attractive or repulsive!

How it looks?

- R/A repulsive/attractive interaction
- Roman numbers I, II, etc - number of particles that form composite fermion (I - original fermion)

Bar over roman numbers, I, II, etc

- indicates composite fermion with bosonic holes

Tunneling of composite fermions

$$J_{eff} = J \qquad \text{in I} \quad (0 < \mu < 1)$$
$$J_{eff} = 4J^2 / |\alpha| U_{bb} \qquad \text{in II}$$
$$J_{eff} = 2J^2 / \alpha U_{bb} \qquad \text{in II}$$

Phases of composite fermions

$$H_{eff} = \sum_{\langle ij \rangle} \left(-J_{eff} \left[C_{i}^{+} C_{j} + h.c. \right] + U_{eff} N_{i} N_{j} \right)$$

Important parameter $\Delta = U_{eff} / 2J_{eff}$

I. Repulsive interaction

For $\rho_F << 1$ $(1 - \rho_F << 1)$

Fermi gas of composite fermions (holes)

For $\rho_F \rightarrow 1/2$, $\Delta \sim 1$

Density wave – insulating phase (for $\rho_F = 1/2$ - checkerboard state)

II. Attractive interaction

For
$$\rho_F \ll 1$$
 $(1 - \rho_F \ll 1)$, $|\Delta| \ll 1$ BCS state with p-wave pairing
 $|\Psi\rangle = \prod_{\vec{k}} \left(u_{\vec{k}} | 1_{\vec{k}}, 1_{-\vec{k}} \rangle + v_{\vec{k}} | 0_{\vec{k}}, 0_{-\vec{k}} \rangle \right)$

For $\Delta < -1$ Domains of composite fermions ("domain" isolator)

For $\rho_F - arbitrary$, $|\Delta| \rightarrow 1$ Strongly correlated state with composite triples, quadruples, etc.

ICTP, Trieste, 11-22 July 2005

I_{DW}

Finite tunneling (Landau mean-field theory)

H. Fehrmann et al. 2005

Generalization of

Fisher et al. 1989 or FB mixtures

Finite temperatures

Degenerated interacting gas in the I, II and <u>II</u> phases	Degenerated ideal gas In the I phase Ideal non-degenerated gas in the rest	Ideal non-degenerated gas of composites	No composites
$T < J^2 / U_{BB} \qquad T < J \qquad T < U_{BB}, U_{BF}$			

Conclusion:

Fermi-Bose mixtures show very reach physics and definitely deserve attention!

Thank you for your attention !