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1 Physics of one vortex line in harmonic trap

Assume general axisymmetrtic trap potential

Vtr(r) = Vtr(r, z) = 1
2M
(
ω2
⊥r2 + ω2

zz
2
)

Basic idea (Bogoliubov): for weak interparticle potentials,
nearly all particles remain in condensate for T � Tc

• dilute: s-wave scattering length as � interparticle
spacing n−1/3

• equivalently, require na3
s � 1

• assume self-consistent condensate wave function Ψ(r)

• gives nonuniform condensate density n(r) = |Ψ(r)|2

• for T � Tc, normalization requires N =
∫

dV |Ψ(r)|2
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• assume an energy functional

E[Ψ] =

∫
dV

⎡
⎣Ψ∗ (T + Vtr) Ψ︸ ︷︷ ︸

harmonic oscillator

+ 1
2g|Ψ|4︸ ︷︷ ︸

2−body term

⎤
⎦ ,

where T = −�
2∇2/2M is kinetic energy operator

and g = 4πas�
2/M is interaction coupling parameter

• balance of kinetic energy 〈T 〉 and trap energy 〈Vtr〉
gives mean oscillator length d0 =

√
�/Mω0 where

ω0 =
(
ω2
⊥ωz

)1/3
is geometric mean

• balance of kinetic energy 〈T 〉 and interaction energy
〈gn〉 gives healing length

ξ =
�√

2Mgn
=

1√
8πasn

• with fixed normalization and µ the chemical potential,
variation of E[Ψ] gives Gross-Pitaevskii (GP) eqn(

T + Vtr + g|Ψ|2
)

Ψ = µΨ

• can interpret nonlinear term as a Hartree potential
VH(r) = gn(r), giving interaction with nonuniform
condensate density
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• generalize to time-dependent GP equation

i�
∂Ψ

∂t
= (T + Vtr + VH) Ψ

• this result implies that stationary solutions have time
dependence exp(−iµt/�)

Introduce hydrodynamic variables

• write Ψ(r, t) = |Ψ(r, t)| exp [iS(r, t)] with phase S

• condensate density is n(r, t) = |Ψ(r, t)|2

• current is

j =
�

2Mi
[Ψ∗

∇Ψ − Ψ∇Ψ∗] = |Ψ|2�∇S

M

• identify last factor as velocity v = �∇S/M

• note that v is irrotational so ∇ ∧ v = 0
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• general property: circulation around contour C is∮
C
dl · v =

�

M

∮
C
dl · ∇S =

�

M
∆S|C

since v = �∇S/M

• change of phase ∆S|C must be integer times 2π since
Ψ is single-valued

• hence circulation in BEC is quantized in units of κ ≡
2π�/M

• rewrite time-dependent GP equation in terms of |Ψ|
and S

– imaginary part gives conservation of particles

∂n

∂t
+ ∇ · (nv) = 0

– real part gives generalized Bernoulli equation
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Introduction of harmonic trap yields much richer system
than a uniform interacting Bose gas [5]

• trap gives new energy scale �ω0 and new length scale
d0 =
√

�/Mω0

• assume repulsive interactions with as > 0

• trap leads to new dimensionless parameter Nas/d0

• typical value of ratio: as/d0 ∼ 10−3

• Nas/d0 is large for typical N ∼ 106

• repulsive interactions expand the condensate to mean
radius R0 that exceeds d0

• neglect radial gradient of Ψ when Nas/d0 � 1

• GP equation simplifies and gives local density

4πas�
2

M
|Ψ(r, z)|2 = µ − Vtr(r, z)

• harmonic trap gives quadratic density variation with
condensate dimensions R2

j = 2µ/(Mω2
j ) [called Thomas-

Fermi (TF) limit]
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One vortex line in trapped BEC

First assume bulk condensate with uniform density n
and a single straight vortex line along z axis

• Gross and Pitaevskii [6, 7]: take condensate wave
function

Ψ(r) =
√

n eiφf

(
r

ξ

)
where r and φ are two-dimensional polar coordinates

• speed of sound is s =
√

gn/M

• assume f(0) = 0 and f(x) → 1 for x � 1

• velocity has circular streamlines with v = (�/Mr) φ̂

• this is a quantized vortex line with
∮

dl ·v = 2π�/M

• v ∼ s when r ∼ ξ, so vortex core forms by cavitation

• equivalently, centrifugal barrier gives vortex core of
radius ξ
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Static behavior of straight vortex line in a trap

Axisymmetric trap with Vtr(r, z) = 1
2
M
(
ω2
⊥r2 + ω2

zz
2
)

• If ωz/ω⊥ � 1, strong axial confinement gives disk-
shaped condensate

• If ωz/ω⊥ � 1, strong radial confinement gives cigar-
shaped condensate

• for vortex on axis, condensate wave function is

Ψ(r, z) = eiφ|Ψ(r, z)|

• velocity is v = (�/Mr)φ̂, like uniform condensate

• centrifugal energy again forces wave function to vanish
for r � ξ

• density is now toroidal; hole along symmetry axis

• TF limit: separated length scales with

ξ (vortex core) � d0 (mean oscillator length)

d0 (mean oscillator length) � R0 (mean condensate radius)

• hence TF density is essentially unchanged by vortex
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Energy of rotating TF condensate with one vortex

• use density of vortex-free TF condensate; cut off the
logarithmic divergence at core radius ξ

• if condensate is in rotational equilibrium at angular
velocity Ω, the appropriate energy functional is [8]
E ′[Ψ] = E[Ψ] − Ω · L[Ψ] where L is the angular
momentum

• let E ′
0 be energy of rotating vortex-free condensate

• let E ′
1(r0, Ω) be energy of a rotating condensate with

straight vortex that is displaced laterally by distance
r0 from symmetry axis

• approximation of straight vortex works best for disk-
shaped condensate (ωz � ω⊥)

• Difference of these two energies is energy associated
with formation of vortex ∆E ′(r0, Ω) = E ′

1(r0, Ω)−E ′
0

• ∆E ′(r0, Ω) depends on position r0 of vortex and on Ω
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Plot ∆E ′(r0, Ω) as function of ζ0 for various fixed Ω [9],
where ζ0 = r0/R0 is scaled displacement from center
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curve (a) is ∆E ′(r0, Ω) for Ω = 0

• ∆E ′(r0, 0) decreases monotonically with increasing ζ0

• curvature is negative at ζ0 = 0

• for no dissipation, fixed energy means constant ζ0

• only allowed motion is uniform precession at fixed r0

• angular velocity is given by variational Lagrangian
method [10, 11, 3] φ̇0 ∝ −∂E(r0)/∂r0

• precession arises from nonuniform trap potential (not
image vortex) and nonuniform condensate density

• in presence of weak dissipation, vortex moves to lower
energy and slowly spirals outward
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As Ω increases, curvature near ζ0 = 0 decreases

• curve (b) is when curvature near ζ0 = 0 vanishes

• it corresponds to angular velocity

Ωm =
3

2

�

MR2
⊥

ln

(
R⊥
ξ

)
• for Ω � Ωm, energy ∆E ′(ζ0, Ω) has local minimum

near ζ0 = 0

• dissipation would now drive vortex back toward the
symmetry axis

• Ωm is angular velocity for onset of metastability

• vortex at center is locally stable for Ω > Ωm, but not
globally stable, since ∆E ′(0, Ωm) is positive
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Vortex density in rotating superfluid

• solid-body rotation has vsb = Ω ∧ r

• vsb has constant vorticity ∇ ∧ vsb = 2Ω

• each quantized vortex at rj has localized vorticity

∇ ∧ v =
2π�

M
δ(2)(r − rj) ẑ

• assume Nv vortices uniformly distributed in area A
bounded by contour C

• circulation around C is Nv × 2π�/M

• but circulation in A is also 2ΩA
• hence vortex density is nv = Nv/A = MΩ/π�

• area per vortex 1/nv is π�/MΩ ≡ πl2 which defines
radius l =

√
�/MΩ of circular cell

• intervortex spacing ∼ 2l decreases like 1/
√

Ω

• analogous to quantized flux lines (charged vortices) in
type-II superconductors
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2 Experimental creation/detection of vortices
in dilute trapped BEC

• first vortex made at JILA (1999) [12]

• used nearly spherical 87Rb condensate containing two
different hyperfine components

• use coherent (Rabi) process to control interconversion
obetween two components

• spin up condensate by coupling the two components
with a stirring perturbation

• turn off coupling, leaving one component with trapped
quantized vortex surrounding nonrotating core of other
component

• use selective tuning to make nondestructive image of
either component
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• study precession of this vortex with filled core around
trap center

• can also create vortex with empty core [13]

– theory predicts φ̇/2π ≈ 1.58 ± 0.16 Hz, and

– experiment finds φ̇/2π ≈ 1.8 ± 0.1 Hz

• see no outward radial motion for ∼ 1 s, so dissipation
is small on this time scale
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École Normale Supérieure (ENS) in Paris studied vortex
creation in elongated rotating cigar-shaped condensate
with one component [14, 15]

• used off-center toggled rotating laser beam to deform
the transverse trap potential and stir the condensate
at an applied frequency Ω/2π � 200 Hz

• find vortex appears at a critical frequency Ωc ≈ 0.7ω⊥
(detected by expanding the condensate, which now
has a disk shape, with vortex core as expanded hole)

• vortex nucleation is dynamical process associated with
surface instability (quadrupole oscillation)
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• ENS group observed small vortex arrays of up to 11
vortices (arranged in two concentric rings)

• like patterns predicted and seen in superfluid 4He [16]
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• MIT group has prepared considerably larger rotating
condensates in less elongated trap

• they have observed triangular vortex lattices with up
to 130 vortices [17]

• like Abrikosov lattice of quantized flux lines (which
are charged vortices) in type-II superconductors

• JILA group has now made large rotating condensates
with several hundred vortices and angular velocity
Ω/ω⊥ ≈ 0.995 [18]

• these rapidly rotating systems open many exciting
new possibilities (discussed below)
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Very recently, Zwierlein et al. (MIT) have studied 6Li
atoms (fermions) in optical dipole trap [19]

• by tuning an external magnetic field, can change the
scattering length (Feshbach resonance)

• regime of bound molecules of fermions (as > 0): these
“bosonic” molecules can undergo BEC

• then rotate using ENS laser-beam technique

• find vortex lattice that slowly decays
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• move from BEC region (1/kFas > 0) across resonant
region to BCS region (1/kFas < 0) of unbound but
attracting fermion pairs

• vortex lattice persists and survives across resonance
into fermionic regime (not yet into BCS regime of
weakly bound overlapping Cooper pairs)
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3 Vortex arrays in mean-field (GP) regime (these
are coherent states)

As Ω increases, the mean vortex density nv = MΩ/π�

increases linearly following the Feynman relation

• in addition, centrifugal forces expand the condensate
radially, so that the area πR2

⊥ also increases

• hence the number of vorticesNv = nvπR2
⊥ = MΩR2

⊥/�

increases faster than linearly with Ω

• conservation of particles implies that the condensate
also shrinks axially

• TF approximation assumes that interaction energy
〈g|Ψ|4〉 and trap energy 〈Vtr|Ψ|2〉 are large relative to
kinetic energy for density variations (�2/M)〈(∇|Ψ|)2〉

• expansion of condensate means that central density
eventually becomes small and TF picture fails
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(a) Mean-field Thomas-Fermi regime

Quantitative description of rotating TF condensate

Kinetic energy of condensate involves

�
2

2M

∫
dV |∇Ψ|2 =

∫
dV

1

2
Mv2|Ψ|2︸ ︷︷ ︸

superflow energy

+
�

2

2M

∫
dV (∇|Ψ|)2︸ ︷︷ ︸

density variation

where Ψ = exp(iS)|Ψ| and v = �∇S/M is flow velocity

• generalized TF approximation: retain the energy of
superflow but ignore the energy from density variation

• this approximation will fail eventually when vortex
lattice becomes dense and cores start to overlap

• in rotating frame, generalized TF energy functional is

E ′[Ψ] =

∫
dV
[(

1
2
Mv2 + Vtr − MΩ · r ∧ v

)
|Ψ|2

+1
2
g|Ψ|4
]

• here, v is flow velocity generated by all the vortices
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For Ω along z, can rewrite E ′[Ψ] as

E ′[Ψ] =

∫
dV

[
1

2
M (v − Ω ∧ r)2 |Ψ|2 +

1

2
Mω2

zz
2|Ψ|2

+
1

2

(
ω2
⊥ − Ω2

)
r2|Ψ|2 +

1

2
g|Ψ|4
]

• in the rotating frame, the dominant effect of the dense
vortex array is that spatially averaged flow velocity
〈v〉 is close to Ω ∧ r = vsb

• hence can ignore first term in E ′[Ψ], giving

E ′[Ψ] ≈
∫

dV

[
1

2
Mω2

zz
2|Ψ|2 +

1

2

(
ω2
⊥ − Ω2

)
r2|Ψ|2

+
1

2
g|Ψ|4
]

• E ′ now looks exactly like TF energy for nonrotating
condensate but with a reduced radial trap frequency
ω2
⊥ → ω2

⊥ − Ω2
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Now have TF wave function that depends explicitly on Ω
through the altered radial trap frequency ω2

⊥ → ω2
⊥−Ω2

|Ψ(r, z)|2 = n(0)

(
1 − r2

R2
⊥
− z2

R2
z

)
where R2

⊥ = 2µ/[M(ω2
⊥ − Ω2)] and R2

z = 2µ/Mω2
z

• must have Ω < ω⊥ to retain radial confinement

• normalization
∫

dV |Ψ|2 = N shows that

µ(Ω)

µ(0)
=

(
1 − Ω2

ω2
⊥

)2/5

in three dimensions

• central density given by n(0) = µ(Ω)/g

• n(0) decreases with increasing Ω because of reduced
radial confinement
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• TF formulas for condensate radii show that

Rz(Ω)

Rz(0)
=

(
1 − Ω2

ω2
⊥

)1/5

,
R⊥(Ω)

R⊥(0)
=

(
1 − Ω2

ω2
⊥

)−3/10

confirming axial shrinkage and radial expansion

• aspect ratio changes

Rz(Ω)

R⊥(Ω)
=

Rz(0)

R⊥(0)

(
1 − Ω2

ω2
⊥

)1/2

• this last effect provides an important diagnostic tool
to determine actual angular velocity Ω [20, 18]

• measured aspect ratio [18] indicates that Ω/ω⊥ can
become as large as ≈ 0.993
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How uniform is the vortex array?

The analysis of the TF density profile |ΨTF |2 = nTF in
the rotating condensate assumed that the flow velocity v

was precisely the solid-body value vsb = Ω ∧ r

• this led to the cancellation of the contribution∫
dV (v − Ω ∧ r)2 nTF

in the TF energy functional

• a more careful study [21] shows that there is a small
nonuniformity in the vortex lattice

• specifically, each regular vortex lattice position vector
rj experiences a small displacement field u(r), so that
rj → rj + u(rj)

• as a result, the two-dimensional vortex density changes
to

nv(r) ≈ nv (1 − ∇ · u)

where nv = MΩ/π� is the uniform Feynman value
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• near the jth vortex core, the flow velocity is a singular
part

vsing =
�

M

ẑ ∧ (r − rj)

|r − rj|2
plus a smooth background v(r) ≈ Ω ∧ [r − 2u (r)]

• the first term of v(r) is the usual solid-body rotation
Ω∧ r, and the second term shows how the distortion
in the vortex lattice affects the mean induced velocity

• the new term in the energy is nonzero contribution
from the local integral inside the jth unit cell∑

j

∫
j

dVj
M

2
(vsing + v − Ω ∧ rj)

2 nTF (rj)

and then summed over the vortex lattice

• the additional kinetic energy becomes approximately∫
dV nTF

[
π�

2

2M
nv (1 − ∇ · u) ln

(
1

πnvξ2

)
+ 2MΩ2u2

]
with no other dependence on u to leading logarithmic
order
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• vary this energy with respect to u and obtain the
Euler-Lagrange equation, which can be solved to give

u(r) ≈ l̄2

4R2
⊥

ln

(
l̄2

ξ2

)
r

1 − r2/R2
⊥

where l̄2 = 1/πnv can be taken as the mean circular
cell radius inside the slowly varying logarithm

• the deformation of the regular vortex lattice is purely
radial (as expected from symmetry)

• R2
⊥/l̄2 is the number of vortices Nv in the rotating

condensate, so that the nonuniform distortion is small,
of order 1/Nv (at most a few %), even though the TF
number density nTF changes dramatically near edge

• correspondingly, the vortex density becomes

nv(r) ≈ nv −
1

2πR2
⊥

ln

(
l̄2

ξ2

)
1

(1 − r2/R2
⊥)

2

(the correction is again of order 1/Nv)
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• recent JILA experiments [22] confirm these predicted
small distortions for relatively dense vortex lattices
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Tkachenko oscillations of the vortex lattice

Tkachenko (1966) [23] studied equilibrium arrangement
of a rotating vortex array as model for superfluid 4He

• assumed two-dim incompressible fluid with straight
vortices

• showed that a triangular lattice has lowest energy in
rotating frame

• small perturbations about equilibrium positions had
unusual collective motion in which vortices undergo
nearly transverse wave of lattice distortions (like two-
dimensional transverse “phonons” in vortex lattice,
but with no change in fluid density)

• for long wavelengths (small k), Tkachenko found a
linear dispersion relation ωk ≈ cTk

• speed of Tkachenko wave cT =
√

1
4�Ω/M = 1

2�/Ml̄,

where l̄ =
√

�/MΩ is radius of circular vortex cell
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In a rotating gas, the compressibility becomes important,
as shown by Sonin [24, 25] and Baym [26]

• let the speed of sound in the compressible gas be cs

• coupling between the vortices and the compressible
fluid leads to generalized dispersion relation

ω2 = c2
T

c2
sk

4

4Ω2 + c2
sk

2

• if k � Ω/cs, recover Tkachenko’s result ω = cTk
(short-wavelength incompressible limit)

• but if k � Ω/cs (long wavelength), mode becomes
soft with ω ∝ k2

• Sonin [25] obtains dynamical equations for waves in a
nonuniform condensate, along with appropriate bound-
ary conditions at the outer surface

• Baym [26] uses theory for uniform condensate plus
approximate boundary conditions from Anglin and
Crescimanno [27]
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• rough agreement with JILA experiments [28] on low-
lying Tkachenko modes in rapidly rotating BEC (up
to Ω/ω⊥ ≈ 0.975)
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Addition of quartic potential

One way to avoid singularity when Ω → ω⊥ is to add a
quartic confining potential [29, 30, 31]

• now have a total potential with quadratic and quartic
terms

Vtr =
1

2
Mω2

⊥

(
r2 + λ

r4

d2
⊥

)
where the dimensionless constant λ fixes the quartic
admixture

• allows access to regime Ω/ω⊥ ≥ 1
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• studied experimentally at ENS, Paris [32], where a
blue-detuned axial laser provided the weak quartic
confinement (λ ∼ 10−3 and ω⊥/2π ≈ 64.8 Hz)

• find regular vortex lattice for Ω � ω⊥

• find disordered vortex lattice for Ω � ω⊥

• near Ω ≈ 1.05 ω⊥, the system seems to break up

• TF theory predicts a reduced density at center, which
is observed
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What is happening?

• ENS condensate is nearly spherical for Ω ∼ ω⊥, so
three-dimensional effects are important

• they suggest repeating the experiment with strong
axial confinement to see if three-dimensional effects
dominate and cause instability

• GP analysis in two dimensions finds nothing like the
observed break up [30, 31, 33]

• is there some sort of transition from a GP state to a
highly correlated state in the regime Ω � ω⊥?

• this issue remains very uncertain
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(b) Vortex arrays in mean-field quantum-Hall
regime

Lowest-Landau-Level (quantum-Hall) behavior

When the vortex cores overlap, kinetic energy associated
with density variation around each vortex core becomes
important

• hence the TF approximation breaks down (it ignores
this kinetic energy from density variations)

• return to full GP energy E ′[Ψ] in the rotating frame.

• in this limit of rapid rotations (Ω � ω⊥), Ho [34]
incorporated kinetic energy exactly

• condensate expands and is effectively two dimensional

• for simplicity, treat a two-dimensional condensate that
is uniform in the z direction over a length Z

• condensate wave function Ψ(r, z) can be written as√
N/Z ψ(r), where ψ(r) is a two-dimensional wave

function with unit normalization
∫

d2r |ψ|2 = 1
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General two-dimensional energy functional in rotating frame
becomes

E ′[ψ] =

∫
d2r ψ∗

⎛
⎜⎜⎝ p2

2M
+

1

2
Mω2

⊥r2 − ΩLz︸ ︷︷ ︸
one−body oscillator H0

+
1

2
g2D|ψ|2︸ ︷︷ ︸

interaction

⎞
⎟⎟⎠ψ,

where p = −i�∇, Lz = ẑ · r × p, and g2D = Ng/Z

One-body oscillator hamiltonian in rotating frame H0 is
exactly soluble and has eigenvalues [35]

εnm = � [ω⊥ + n (ω⊥ + Ω) + m (ω⊥ − Ω)]

where n and m are non-negative integers

• in limit Ω → ω⊥, these eigenvalues are essentially
independent of m (massive degeneracy)

• n becomes the Landau level index

• lowest Landau level with n = 0 is separated from
higher states by gap ∼ 2�ω⊥
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Large radial expansion means small central density n(0),
so that interaction energy gn(0) eventually becomes small
compared to gap 2�ω⊥

Hence focus on “lowest Landau level” (LLL), with n = 0
and general non-negative m ≥ 0

• LLL eigenfunctions have a very simple form

ψ0m (r) ∝ rmeimφ e−r2/2d2
⊥

• here, d⊥ =
√

�/Mω⊥ is analogous to the “magnetic
length” in the Landau problem

• in terms of a complex variable ζ ≡ x + iy, these LLL
eigenfunctions have an extremely simple form

ψ0m ∝ ζm e−r2/2d2
⊥

with m ≥ 0 (note that ζ = r eiφ when expressed in
two-dimensional polar coordinates)
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• assume that the GP wave function is a finite linear
combination of these LLL eigenfunctions

ψLLL(r) =
∑
m≥0

cmψ0m(r) = f(ζ) e−r2/2d2
⊥

where f(ζ) =
∑

m≥0 cmζm is an analytic function of
the complex variable ζ

• specifically, f(ζ) is a complex polynomial and thus
can be factorized as f(ζ) =

∏
j (ζ − ζj) apart from

overall constant

• f(ζ) vanishes at each of the points {ζj}, which are
the positions of the nodes of ψLLL

• in addition, phase of wave function increases by 2π
whenever ζ moves around any of these zeros {ζj}

• we conclude that the LLL trial solution has singly
quantized vortices located at positions of zeros {ζj}
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• spatial variation of number density n(r) = |ψLLL(r)|2
is determined by spacing of the vortices, so that core
size is comparable with the intervortex spacing l̄ =√

�/MΩ which is simply d⊥ in the limit Ω ≈ ω⊥

• unlike TF approximation at lower Ω, wave function
ψLLL automatically includes all the kinetic energy

• since LLL wave functions play a crucial role in the
quantum Hall effect (two-dimensional electrons in a
strong magnetic field), this LLL regime has been called
“mean-field quantum-Hall” limit [36]

• note that we are still in the regime governed by GP
equation, so there is still a BEC

• corresponding many-body ground state is simply a
Hartree product with each particle in same one-body
solution ψLLL(r), namely

ΨGP (r1, r2, · · · , rN) ∝
N∏

n=1

ψLLL(rn)

• this is coherent (superfluid) state, since a single GP
state ψLLL has macroscopic occupation
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Take this LLL trial function seriously

• for any LLL state ψLLL, can show that (use oscillator
units with ω⊥ and d⊥ for energy and length) [34, 36,
37] ∫

d2r r2 |ψLLL|2 = 1 +

∫
d2r ψ∗

LLLLzψLLL

• allows exact rewriting of energy functional

E ′[ψLLL] = Ω+

∫
d2r
[
(1 − Ω) r2|ψLLL|2 + 1

2
g2D|ψLLL|4

]
• unrestricted variation would lead to inverted parabola

|ψ|2 = n(r) =
2

πR2
0

(
1 − r2

R2
0

)
where πR4

0 = 2g2D/(1 − Ω) fixes condensate radius

• looks like earlier TF profile, but here include all kinetic
energy explicitly

• these results ignore vortices and violate form of ψLLL
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• to include effect of vortices, study logarithm of the
particle density for any LLL state

• use ψLLL to find

ln nLLL(r) = − r2

d2
⊥

+ 2
∑

j

ln |r − rj|

• apply two-dimensional Laplacian: use standard result
∇2 ln |r − rj| = 2πδ(2) (r − rj) to obtain

∇2 ln nLLL(r) = − 4

d2
⊥

+ 4π
∑

j

δ(2) (r − rj)

• here, sum over delta functions is precisely the vortex
density nv(r)

• this result relates particle density nLLL(r) in LLL
approximation to vortex density nv(r) [34, 36, 37]

1

4
∇2 ln nLLL(r) = − 1

d2
⊥

+ πnv(r)
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• if vortex lattice is exactly uniform (so nv is constant),
then density profile is strictly Gaussian, with nLLL(r) ∝
exp(−r2/σ2) and σ−2 = d−2

⊥ − πnv ∝ ω⊥ − Ω

• note that σ2 � d2
⊥

• to better minimize the energy, mean density profile
nLLL should approximate inverted parabolic shape
nLLL(r) ∝ 1 − r2/R2

⊥

• then find nonuniform vortex density with

nv(r) ≈ 1

πd2
⊥
− 1

πR2
⊥

1

(1 − r2/R2
⊥)

2

similar to result at lower Ω [21] (in both cases, small
correction term is of order ∼ N−1

v )

• independently, numerical work by Cooper et al. [38]
shows that allowing the vortices in the LLL to deviate
from the triangular array near the outer edge lowers
the energy
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4 Behavior for Ω → ω⊥

What happens beyond the “mean-field quantum Hall”
regime is still subject to vigorous debate

Predict quantum phase transition from coherent BEC
states to correlated many-body states

• define the ratio ν ≡ N/Nv of the number of atoms
per vortex

• because of similarities to a two-dimensional electron
gas in a strong magnetic field, ν is called the “filling
fraction” [39, 40]

• current experiments [18] have N ∼ 105 and Nv ∼
several hundred, so ν ∼ a few hundred

• numerical studies [40] for small number of vortices
(Nv � 8) and variable N indicate that the coherent
GP state is favored for ν � 6
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• for smaller ν there is a sequence of highly correlated
states similar to some known from the quantum Hall
effect, in particular a bosonic version of the Laughlin
state [40] (here zn = xn + iyn refers to nth particle)

ΨLau(r1, r2, · · · , rN) ∝
N∏

n<n′
(zn − zn′)

2 exp

(
−

N∑
n=1

|zn|2
2d2

⊥

)

• these correlated many-body states are qualitatively
different from coherent GP form

– ΨGP (r1, r2, · · · , rN) ∝ ∏n ψ(rn) is the Hartree
product of N factors of same one-body function
ψ(r)

– the product
∏

n<n′(zn−zn′)
2 in ΨLau(r1, r2, · · · , rN)

involves N(N−1)/2 factors for all possible pairs of
particles and vanishes whenever two particles are
close together

– this is the source of the correlations

– for large N , correlated form ΨLau is much more
difficult to use
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How to reach correlated regime?

• need to reduce the ratio ν = N/Nv (number of atoms
per vortex)

• one possibility is to use array of small condensates
trapped in optical lattice

• need to rotate each condensate to a relatively high
angular velocity

• several experimental groups working on this option
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