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1. Physics of one vortex line in harmonic trap
2. Experimental creation and detection of vortices

3. Vortex arrays in mean-field (GP) regime (coherent
states)

(a) Mean-field Thomas-Fermi regime

(b) Mean-field quantum Hall regime

4. Beyond GP regime (correlated states) as 2 — w

“for general references, see [1, 2, 3, 4]
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1 Physics of one vortex line in harmonic trap

Assume general axisymmetrtic trap potential
Vie(r) = Vir(r, 2) = 1M (wﬂ“ + w2z2)

Basic idea (Bogoliubov): for weak interparticle potentials,
nearly all particles remain in condensate for 7' < T

e dilute: s-wave scattering length as; << interparticle
spacing n~ /3

e cquivalently, require na? < 1
e assume self-consistent condensate wave function W(r)
e gives nonuniform condensate density n(r) = [¥(r)|?

o for T < T, normalization requires N = [ dV |¥(r)|?



e assume an energy functional

E[\IJ]:/CZV T V) U4 Lot |
V(T +Ve) Ut gglV!

| harmonic oscillator  2—body term |

where 7 = —h?V?/2M is kinetic energy operator
and g = 4mazh? /M is interaction coupling parameter

e balance of kinetic energy (7)) and trap energy (Vi)
gives mean oscillator length dy = +/h/Mw, where

)1/3 .

Wy = (wiwz 1S geometric mean

e balance of kinetic energy (7°) and interaction energy
(gn) gives healing length
‘- h 1
B V2Mgn - /Brasn

e with fixed normalization and u the chemical potential,
variation of E|V] gives Gross-Pitaevskii (GP) eqn

(T 4 Vi + g|¥|°) ¥ = p¥

e can interpret nonlinear term as a Hartree potential
Vi(r) = gn(r), giving interaction with nonuniform
condensate density



e generalize to time-dependent GP equation

\
Zh%—<7+%r+VH>\IJ

e this result implies that stationary solutions have time
dependence exp(—iut/h)

Introduce hydrodynamic variables

o write U(r, t) = |U(r,t)|exp [2.5(r, t)] with phase S
e condensate density is n(r,t) = |U(r, t)[*

e current 1s

h VS
oM M

e identify last factor as velocity v = AV.S/M

j = VU — UV = |\p\2h

e note that v is irrotational so VA v =0



e ceneral property: circulation around contour C is

h h
l-v=—0¢dl-VS=— A
jgd v Mjéd S i Sle

since v = hV.S/M

e change of phase AS|e must be integer times 27 since
V¥ is single-valued

e hence circulation in BEC is quantized in units of k =
2mh/M

e rewrite time-dependent GP equation in terms of |V

and S

— imaginary part gives conservation of particles

on
EJrV-(n’v)—O

— real part gives generalized Bernoulli equation



Introduction of harmonic trap yields much richer system
than a uniform interacting Bose gas [5]

e trap gives new energy scale Awy and new length scale
do = //Muwy

e assume repulsive interactions with a; > 0

e trap leads to new dimensionless parameter Na,/d

e typical value of ratio: a/dy ~ 1073

e Na,/dy is large for typical N ~ 109

e repulsive interactions expand the condensate to mean
radius Ry that exceeds d

e neglect radial gradient of ¥ when Na,/dy > 1

e GP equation simplifies and gives local density

drah?

M

e harmonic trap gives quadratic density variation with

condensate dimensions R; = 24/(Mw?) [called Thomas-
Fermi (TF) limit]

’@(T, Z>|2 — W= Vcr<rv Z)



One vortex line in trapped BEC

First assume bulk condensate with uniform density n
and a single stratght vortex line along z axis

e Gross and Pitaevskii [6, 7]: take condensate wave
function

U(r) = Ve @

where r and ¢ are two-dimensional polar coordinates

e speed of sound is s = \/gn/M

e assume f(0) =0and f(z) — 1 for x> 1

e velocity has circular streamlines with v = (h/M7) ¢
e this is a quantized vortex line with ¢ dl-v = 2nh/M

e v ~ s when r ~ &, so vortex core forms by cavitation

e cquivalently, centrifugal barrier gives vortex core of
radius &



Static behavior of straight vortex line in a trap
Axisymmetric trap with Vi,(r, z) = 2 M (w2 r? + w?2?)
o If w./w, > 1, strong axial confinement gives disk-

shaped condensate

o If w,/w, <K 1, strong radial confinement gives cigar-
shaped condensate

e for vortex on axis, condensate wave function is
U(r, z) = €| W(r, 2)

o velocity is v = (h/Mr)e, like uniform condensate

e centrifugal energy again forces wave function to vanish
for r < €

e density is now toroidal; hole along symmetry axis

e TF limit: separated length scales with

¢ (vortex core) < dy (mean oscillator length)
dy (mean oscillator length) < Ry (mean condensate radius)

e hence TF density is essentially unchanged by vortex



Energy of rotating TF condensate with one vortex

e use density of vortex-free TF condensate; cut off the
logarithmic divergence at core radius &

e if condensate is in rotational equilibrium at angular

velocity €2, the appropriate energy functional is [§]
E'V] = E\V] — Q - L|V| where L is the angular

momentum
e let E| be energy of rotating vortex-free condensate

e let E(rg, 2) be energy of a rotating condensate with
straight vortex that is displaced laterally by distance
ro from symmetry axis

e approximation of straight vortex works best for disk-
shaped condensate (w, = w )

e Difference of these two energies is energy associated
with formation of vortex AE'(rg, Q) = E{(ro, ) — E}

e AFE'(ry,2) depends on position 7 of vortex and on 2
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Plot AE'(rg, ) as function of {j for various fixed € |9],
where (y = 19/ Ry is scaled displacement from center
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curve (a) is AE'(rg, §2) for Q =0

e AFE'(ry,0) decreases monotonically with increasing ¢
e curvature is negative at (y = 0

e for no dissipation, fixed energy means constant (

e only allowed motion is uniform precession at fixed r

e angular velocity is given by variational Lagrangian
method [10, 11, 3] ¢pg x —OFE(rg)/0rg

e precession arises from nonuniform trap potential (not
image vortex) and nonuniform condensate density

e in presence of weak dissipation, vortex moves to lower
energy and slowly spirals outward
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As () increases, curvature near (; = 0 decreases

e curve (b) is when curvature near (5 = 0 vanishes

e it corresponds to angular velocity

3 h RL)
Q== In| —
2MR* ( 3

o for 2 2 Q. energy AE'((y,2) has local minimum
near ¢y = 0

e dissipation would now drive vortex back toward the
symmetry axis

e (), is angular velocity for onset of metastability

e vortex at center is locally stable for {2 > €2,,,, but not
globally stable, since AE’(0,€,,) is positive

12



Vortex density in rotating superfluid

e solid-body rotation has vy, = QL A r
e vy, has constant vorticity V A vy, = 2€2

e cach quantized vortex at r; has localized vorticity

2mh
V/\v:%é(z)(r—rj)ﬁ

e assume N, vortices uniformly distributed in area A
bounded by contour C

e circulation around C is N, x 2nh/M

e but circulation in A is also 2Q.4

e hence vortex density is n, = N,/ A= MQ/7h

e arca per vortex 1/n, is 7h/MQ = wl? which defines
radius [ = /h/MS2 of circular cell

e intervortex spacing ~ 2I decreases like 1/v/

e analogous to quantized flux lines (charged vortices) in
type-11 superconductors

13



2 Experimental creation/detection of vortices
in dilute trapped BEC

e first vortex made at JILA (1999) [12]

e used nearly spherical 8"Rb condensate containing two
different hyperfine components

e use coherent (Rabi) process to control interconversion
obetween two components

e spin up condensate by coupling the two components
with a stirring perturbation

e turn off coupling, leaving one component with trapped
quantized vortex surrounding nonrotating core of other
component

e use selective tuning to make nondestructive image of
either component

14
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e study precession of this vortex with filled core around
trap center

e can also create vortex with empty core [13]

— theory predicts ¢/27 ~ 1.58 £ 0.16 Hz, and
— experiment finds ¢/27 ~ 1.8 & 0.1 Hz

e sce no outward radial motion for ~ 1 s, so dissipation
is small on this time scale
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Ecole Normale Supérieure (ENS) in Paris studied vortex
creation in elongated rotating cigar-shaped condensate
with one component [14, 15]

e used off-center toggled rotating laser beam to deform
the transverse trap potential and stir the condensate
at an applied frequency §2/271 < 200 Hz

X

Y Laser

e find vortex appears at a critical frequency €2, =~ 0.7w |
(detected by expanding the condensate, which now
has a disk shape, with vortex core as expanded hole)

e vortex nucleation is dynamical process associated with
surface instability (quadrupole oscillation)

16



e ENS group observed small vortex arrays of up to 11
vortices (arranged in two concentric rings)

e like patterns predicted and seen in superfluid *He [16]

17



e MIT group has prepared considerably larger rotating
condensates in less elongated trap

e they have observed triangular vortex lattices with up
to 130 vortices [17]

e like Abrikosov lattice of quantized flux lines (which
are charged vortices) in type-II superconductors

e JILA group has now made large rotating condensates

with several hundred vortices and angular velocity
Q/w, ~ 0.995 [18]

e these rapidly rotating systems open many exciting
new possibilities (discussed below)

18



Very recently, Zwierlein et al. (MIT) have studied °Li
atoms (fermions) in optical dipole trap [19]

e by tuning an external magnetic field, can change the
scattering length (Feshbach resonance)

e regime of bound molecules of fermions (as > 0): these
“bosonic” molecules can undergo BEC

e then rotate using ENS laser-beam technique

e find vortex lattice that slowly decays

340 ms 390 ms IMe 1240 ms 2940 ms
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e move from BEC region (1/kpas > 0) across resonant
region to BCS region (1/kpas < 0) of unbound but
attracting fermion pairs

Magnetic field [G]
??i‘ B33 3?2

]
0.7 0 -0.25
<«— BEC Interaction parameter 1/k.a BCS —

e vortex lattice persists and survives across resonance
into fermionic regime (not yet into BCS regime of
weakly bound overlapping Cooper pairs)

20



3 Vortex arrays in mean-field (GP) regime (these
are coherent states)

As () increases, the mean vortex density n, = MQ/7h
increases linearly following the Feynman relation

e in addition, centrifugal forces expand the condensate
radially, so that the area m R also increases

e hence the number of vortices N,, = nqﬂrRi =M QRi /h
increases faster than linearly with €2

e conservation of particles implies that the condensate
also shrinks axially

o TEF approximation assumes that interaction energy
(g|¥|*) and trap energy (V;,|W¥|?) are large relative to
kinetic energy for density variations (h2/M)((V|¥])%)

e expansion of condensate means that central density
eventually becomes small and TF picture fails

21



(a) Mean-field Thomas-Fermi regime
Quantitative description of rotating TF' condensate

Kinetic energy of condensate involves
h2
oM

h2
dV |V |? = /dV Mv2|\11|2+2M dV (V|U])?

N 7
Ve Ve

superflow energy density variation

where U = exp(iS)|V¥| and v = AV S/M is flow velocity

e ceneralized TF approximation: retain the energy of
superflow but ignore the energy from density variation

e this approximation will fail eventually when vortex
lattice becomes dense and cores start to overlap

e in rotating frame, generalized TF energy functional is
E'0] = /dV (GMV* + Vi, — MY -7 Aw) |U]?
+391V]"]

e here, v is flow velocity generated by all the vortices

22



For € along z, can rewrite E'[V] as
1 1
E'[V] = /dV [§M (v— QAT U + §Mw§z2\xp|2

1

1
45 (W8 = 0F) P+ Sglu!

e in the rotating frame, the dominant effect of the dense
vortex array is that spatially averaged flow velocity
(v) is close to QAT = vy,

e hence can ignore first term in E'[V]; giving

1 1
E'T0] ~ /dV [§Mw§z2|xp|2 +5 (wi — Q%) r?|v)?

1
+=g|¥|*
591V
e £’ now looks exactly like TF energy for nonrotating

condensate but with a reduced radial trap frequency
w? — Wt —O?

23



Now have TF wave function that depends explicitly on )
through the altered radial trap frequency wf — w? —Q?

2 2
\IJ 2 _ 0 1 — T B <
W2 = n(0) (1= 3~ 75)
where R = 2u/[M (w5 — Q%)] and R? = 2u/Mw?

e must have () < w, to retain radial confinement

e normalization [ dV|V|? = N shows that

in three dimensions
e central density given by n(0) = u(Q2)/g

e n(0) decreases with increasing {2 because of reduced
radial confinement

24



e T'F formulas for condensate radii show that

R.(Q) _ (1 - W)”"” RI(Q) (1 _Qz)s/m

R.(0) w? R, (0)

confirming axial shrinkage and radial expansion

e aspect ratio changes

R.(Q)  R.(0) (1 B Q_) 2

— D)

RL(Q) RL(()) wL

e this last effect provides an important diagnostic tool
to determine actual angular velocity €2 [20, 18]

e measured aspect ratio [18] indicates that €2/w, can
become as large as =~ 0.993
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How uniform is the vortex array?

The analysis of the TF density profile |Urr|* = nyp in
the rotating condensate assumed that the flow velocity v
was precisely the solid-body value vy, = Q A 7

e this led to the cancellation of the contribution
/dV('U — 0 /\'r)2nTF

in the TF energy tfunctional

e a more careful study [21] shows that there is a small
nonuniformity in the vortex lattice

e specifically, each regular vortex lattice position vector
r; experiences a small displacement field w(r), so that

r, —T + U<Tj>
e as aresult, the two-dimensional vortex density changes

to
n,(r)~m,(1 -V - u)

where 7, = M$)/mh is the uniform Feynman value

26



e near the jth vortex core, the flow velocity is a singular

part
hzA(r—r)

Vging =
TEM e —ry)?

plus a smooth background o(r) ~ Q A [r — 2u (7))

e the first term of ©(7r) is the usual solid-body rotation
Q2 A r, and the second term shows how the distortion
in the vortex lattice affects the mean induced velocity

e the new term in the energy is nonzero contribution
from the local integral inside the jth unit cell

M
Z /d‘/} 7 <vsing + v — QA ’I"j>2 nTF(rj)
j J

and then summed over the vortex lattice
e the additional kinetic energy becomes approximately

dV W—hz—u—v )1 1 + 2M O
nrr Qan u)in (!

&2

with no other dependence on u to leading logarithmic
order
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e vary this energy with respect to w and obtain the
Euler-Lagrange equation, which can be solved to give

() 2 ! 2 7
~——In( =
R M\e) 1o R

where [2 = 1/77, can be taken as the mean circular
cell radius inside the slowly varying logarithm

e the deformation of the regular vortex lattice is purely
radial (as expected from symmetry)

e 1?2 /I? is the number of vortices NV, in the rotating
condensate, so that the nonuniform distortion is small,

of order 1/N, (at most a few %), even though the TF
number density nrr changes dramatically near edge

e correspondingly, the vortex density becomes

) T 1 | (12) 1
2rR - \&/) (1—r2/R2)

(the correction is again of order 1/N,)

28



e recent JILA experiments [22] confirm these predicted
small distortions for relatively dense vortex lattices
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Tkachenko oscillations of the vortex lattice

Tkachenko (1966) [23] studied equilibrium arrangement
of a rotating vortex array as model for superfluid *He

e assumed two-dim incompressible fluid with straight
vortices

e showed that a triangular lattice has lowest energy in
rotating frame

e small perturbations about equilibrium positions had
unusual collective motion in which vortices undergo
nearly transverse wave of lattice distortions (like two-
dimensional transverse “phonons” in vortex lattice,
but with no change in fluid density)

e for long wavelengths (small k), Tkachenko found a
linear dispersion relation wy, =~ crk

e speed of Tkachenko wave cp = /1hQ/M = 1h/MI,
where [ = /h/MYS) is radius of circular vortex cell

30



In a rotating gas, the compressibility becomes important,
as shown by Sonin [24, 25| and Baym [26]

e let the speed of sound in the compressible gas be ¢,

e coupling between the vortices and the compressible
fluid leads to generalized dispersion relation

4

9 9 Cgk
Wo=Cr e 210
480 + czk

o if k£ > (/c,, recover Tkachenko’s result w = cpk
(short-wavelength incompressible limit)

e but if £ < /¢y (long wavelength), mode becomes
soft with w o< k?

e Sonin 25| obtains dynamical equations for waves in a
nonuniform condensate, along with appropriate bound-
ary conditions at the outer surface

e Baym [26] uses theory for uniform condensate plus
approximate boundary conditions from Anglin and
Crescimanno [27]
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e rough agreement with JILA experiments [28] on low-
lying Tkachenko modes in rapidly rotating BEC (up
to 2/w, ~ 0.975)

32



Addition of quartic potential

One way to avoid singularity when {2 — w is to add a
quartic confining potential [29, 30, 31]

e now have a total potential with quadratic and quartic
terms

Vi = lei (ﬂ -+ AT—4)
b2 a2
where the dimensionless constant A fixes the quartic
admixture

e allows access to regime 2/w; > 1

33



e studied experimentally at ENS, Paris [32], where a
blue-detuned axial laser provided the weak quartic
confinement (A ~ 1072 and w, /27 ~ 64.8 Hz)

FIG. 1. Pictures of the rotating gas taken along the rotation axis after 18 ms time of Aight. We indicate in each picture the stirring
frequency ﬂ:’;], during the second stirring phase (w, /27 = 64.8 Hz). The vertical size of each image is 306 wm.

e find regular vortex lattice for 2 S w
e find disordered vortex lattice for 0 2 w
e near {) =~ 1.05w, the system seems to break up

e TF theory predicts a reduced density at center, which
is observed

0.4 ; ; ; . —
@{L ®
g > ] I 0.6
g 2
S 02 .
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5 '
;Ei- 0.1 1 i 1 0.2
(@] 1 .
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FIG. 2. Optical thickness of the atom cloud after time of
flight for Q5! /27 = 66 Hz. (a) Radial distribution in the xy
plane of Fig. 1{e). Continuous line: fit using the Thomas-Fermi
distribution (3). (b) Distribution along the z axis averaged over
|x] < 20 pm (imaging beam propagating along ).
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What is happening?

e NS condensate is nearly spherical for 2 ~ w,, so
three-dimensional effects are important

e they suggest repeating the experiment with strong
axial confinement to see if three-dimensional effects
dominate and cause instability

e GP analysis in two dimensions finds nothing like the
observed break up [30, 31, 33]

e is there some sort of transition from a GP state to a
highly correlated state in the regime Q0 2> w7

e this issue remains very uncertain
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(b) Vortex arrays in mean-field quantum-Hall
regime

Lowest-Landau-Level (quantum-Hall) behavior

When the vortex cores overlap, kinetic energy associated
with density variation around each vortex core becomes
important

e hence the TF approximation breaks down (it ignores
this kinetic energy from density variations)

e return to full GP energy E'[U] in the rotating frame.

e in this limit of rapid rotations (2 < w,), Ho [34]
incorporated kinetic energy ezxactly

e condensate expands and is effectively two dimensional

e for simplicity, treat a two-dimensional condensate that
is uniform in the z direction over a length Z

e condensate wave function W(r, z) can be written as
V' N/Z (1), where 1(r) is a two-dimensional wave

function with unit normalization [ d*r [¢]? =1
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General two-dimensional energy functional in rotating frame
becomes

2
N Y | 1
El[¢] — ‘/dzrw m—i—éMwi?“z — QLZ+592D|¢|2 w,
one—body oscillator Ho interaction

where p = —ihV, L, =2 -7r x p, and gop = Ng/Z

One-body oscillator hamiltonian in rotating frame H, is
exactly soluble and has eigenvalues [35]

€nm = hlwi +n(w +Q)+m(w, — Q)]

where n and m are non-negative integers

e in limit {2 — w,, these eigenvalues are essentially
independent of m (massive degeneracy)

e 1 becomes the Landau level index

e lowest Landau level with n = 0 is separated from
higher states by gap ~ 2hw
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Large radial expansion means small central density n(0),
so that interaction energy gn(0) eventually becomes small
compared to gap 2hw |

Hence focus on “lowest Landau level” (LLL), with n = 0
and general non-negative m > 0

e LLL eigenfunctions have a very simple form

; 2 2
¢Om <’I") x 7amezmgb e /2d%

e here, d; = \/h/Mw, is analogous to the “magnetic
length” in the Landau problem

e in terms of a complex variable ( = x + 1y, these LLL
eigenfunctions have an extremely simple form

_ 2 2
o o< ¢ e /A

with m > 0 (note that ¢ = 7 e’® when expressed in
two-dimensional polar coordinates)
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e assume that the GP wave function is a finite linear
combination of these LLL eigenfunctions

Yroe(r) = Z Cothom(r) = F(¢) e
m=>0

where f(C) = 2,0 cmC™ is an analytic function of
the complex variable ¢

e specifically, f(() is a complex polynomial and thus
can be factorized as f(¢) = ][, (¢ —¢;) apart from

overall constant

e f(() vanishes at each of the points {(;}, which are
the positions of the nodes of 111

e in addition, phase of wave function increases by 2w
whenever ¢ moves around any of these zeros {(;}

e we conclude that the LLL trial solution has singly
quantized vortices located at positions of zeros {(;}
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e spatial variation of number density n(r) = |41 1.(7)|*
is determined by spacing of the vortices, so that core
size is comparable with the intervortex spacing [ =

v/ h/MS which is simply d; in the limit Q ~ w,

e unlike TFEF approximation at lower ), wave function
Y11, automatically includes all the kinetic energy

e since LLL wave functions play a crucial role in the
quantum Hall effect (two-dimensional electrons in a
strong magnetic field), this LLL regime has been called
“mean-field quantum-Hall” limit [36]

e note that we are still in the regime governed by GP
equation, so there is still a BEC

e corresponding many-body ground state is simply a
Hartree product with each particle in same one-body
solution ¢y (7), namely

N
\IJGP<T17 ro, - - 7TN> X H wLLL<rn>
n=1

e this is coherent (superfluid) state, since a single GP
state ¥ 11, has macroscopic occupation
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Take this LLL trial function seriously

e for any LLL state ¢, can show that (use oscillator
units with w, and d for energy and length) [34, 36,
37]

/dzr r* | Wrpp)? =1+ /dQT‘ Vil

e allows exact rewriting of energy functional
E'lrrr) = Q+/ d’r [(1 =) r?[Yreol” + 2gop|rrr]’]

e unrestricted variation would lead to inverted parabola

2 2
W =) = 7 (1~ 1)

where TR = 2g2p/(1 — Q) fixes condensate radius

e looks like earlier TF profile, but here include all kinetic
energy explicitly

e these results ignore vortices and violate form of 171,
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e to include effect of vortices, study logarithm of the
particle density for any LLL state

e use Yy, to find

e apply two-dimensional Laplacian: use standard result
Viin|r — ;| = 276® (r — ;) to obtain

V’In nn(r) = —— + 4%2 5 (r — 7))

e here, sum over delta functions is precisely the vortex
density n,(r)

e this result relates particle density nppp(r) in LLL
approximation to vortex density n,(r) [34, 36, 37]

1
EVQ Innprr(r) = —— + mny(r)
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e if vortex lattice is exactly uniform (so n, is constant),
then density profile is strictly Gaussian, with nppr(r)
exp(—r?/0o?) and 072 =d[* — mn, x w; — €

e note that o2 > d?

e to better minimize the energy, mean density profile
nrrr, should approximate inverted parabolic shape
ﬁLLL('r) x 11— TQ/R%_

e then find nonuniform vortex density with
1 1 1

rd®.  7R? (1—1r2/R2)

similar to result at lower €2 [21] (in both cases, small
correction term is of order ~ N 1)

ny(r) =

e independently, numerical work by Cooper et al. [38]
shows that allowing the vortices in the LLL to deviate
from the triangular array near the outer edge lowers
the energy
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4 Behavior for () — w,

What happens beyond the “mean-field quantum Hall”
regime is still subject to vigorous debate

Predict quantum phase transition from coherent BEC
states to correlated many-body states

e define the ratio v = N/N, of the number of atoms
per vortex

e because of similarities to a two-dimensional electron

gas in a strong magnetic field, v is called the “filling
fraction” [39, 40]

e current experiments [18] have N ~ 10° and N, ~
several hundred, so v ~ a few hundred

e numerical studies [40] for small number of vortices
(N, < 8) and variable N indicate that the coherent
GP state is favored for v 2 6
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e for smaller v there is a sequence of highly correlated
states similar to some known from the quantum Hall
effect, in particular a bosonic version of the Laughlin
state [40] (here z, = x, + iy, refers to nth particle)

2
Z
\PLau<r17r27 e, T OC | | o Zn eXp ( z : |2;2| )
L

n<n

e these correlated many-body states are qualitatively
different from coherent GP form

—VUap(ry,ro, -+ ,ry) < |, ¥(r,) is the Hartree
product of N factors of same one-body function

()

— the product [], _,/(zn—2w)* 0 Wpau(r1, 7o, -+, 7N)
involves N (N —1) /2 factors for all possible pairs of
particles and vanishes whenever two particles are

close together
— this is the source of the correlations

— for large N, correlated form Wp,, is much more
difficult to use
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How to reach correlated regime?

e need to reduce the ratio v = N/N, (number of atoms
per vortex)

e one possibility is to use array of small condensates
trapped in optical lattice

e need to rotate each condensate to a relatively high
angular velocity

e several experimental groups working on this option
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