AUTUMN COLLEGE ON PLASMA PHYSICS
5 - 30 September 2005

Cold gas plasma in medicine and biology

Eva Stoffels
Eindhoven University of Technology, the Netherlands
Cold gas plasma
in medicine and biology

Eva Stoffels

With many thanks to the team: Ingrid Kieft, Raymond Sladek, Tom Baede, Robin v. Gastel, Evert Ridderhof, Maarten Steinbuch, Dick Slaaf

Eindhoven University of Technology

www.bmt.tue.nl/plasma
Cold plasma

• Ionised gas, non-equilibrium
• Electrons > 1 eV, gas < 400 K
• When does it happen?
 – Low power
 – Low pressure
 – High-frequency electric excitation
 – Small plasma size
 – Short power pulses
 – Convective/other cooling
What can one do with it?

- Almost everything
- Material processing
 - Etching
 - Deposition
 - Cleaning
 - Sterilisation
- Light production

- Semiconductor components
- Solar cells
- Lamps
Plasma can “clean” delicate objects
What is more delicate than living organism?
Problems…
 – High voltage
 – Temperature (must be below 40°C !!!)
 – Radiation (UV damage)
 – Chemical damage
… are solvable, but…
... a special source is needed!
Plasma needle

• RF-driven atmospheric source
• Fixed prototype: skin & dental applications

• Catheter: blood vessels

• Under liquid operation
Specifications

- Voltage < 400 V
 - RF does not disturb nerves/muscles
- Temperature < 60° C (controllable)
- Very little UV radiation
- Charge density < 10^{17} m^{-3}
- Chemical species (radicals) < 10^{19} m^{-3}
- Resembles low-pressure plasma, but...
- Is atmospheric!
Medical applications

• Plasma treatment is:
 – Non-contact
 – Painless
 – Non-destructive (minimum damage)
 – Versatile!

• Killing bacteria *in vivo*:
 – Wound disinfection
 – Cleaning of dental cavities

• Cell and tissue modification
 – Cell removal (cancer)
 – Cell *inactivation* (cancer, stenoses, scars, etc.)
 – Cell *activation* (wound healing)
In vivo disinfection

- Gaseous medium: penetrates small fissures/cavities
- Tissue-saving treatment of caries
- Improvement of oral hygiene
Various bacterial tests

- Thin biofilms < 0.1 mm: fast inactivation (seconds)
- Suspensions or thick biofilms 0.1-0.5 mm: slower (minutes)
- Very gentle conditions are sufficient (< 0.2 W)
- Safe & efficient
Study objects

- Cells in culture
- Reproducible “2D tissue”
- fibroblasts (tissue repair!), arterial cells (cardiovascular obstructions!)
Cells in culture

- Attached to the scaffold & to each other by cell adhesion molecules (CAMs)
Cell & tissue treatment

• In conventional surgery:
 – Necrosis (acute cell death)
 – Inflammation
 – Scars
• “Operating without incision”
 – No necrosis
 – Tissue removal by means of programmed cell death (apoptosis)
 – No complications & scars
Apoptosis & necrosis

- **Necrosis**: membrane damage (leakage), tissue poisoning
- **Apoptosis**: (Programmed Cell Death)

 - Normal cell
 - Cell shrinkage Chromatin Condensation
 - Membrane Blebbing
 - Lysis of Apoptotic Bodies
 - Apoptotic Body Formation
 - Nuclear Collapse Continued Blebbing
How to assay apoptosis?

• Many assays available (Annexin V, Caspase, M30 antibody), but…
• Visual observation works as well!
• Signs of apoptosis:
 – Early: DNA in nucleus condensed, membrane blebbing
 – Late: formation of apoptotic bodies, secondary necrosis
Arterial cells

- Endothelial (intima, inside cell lining)
- Smooth muscle cells (media, intermediate layer)
- Stenosis (leads to heart infarct): overgrowth of media
Motivation in cardiovascular research

- Bring muscle cells (SMC) into apoptosis, or…
- Prevent them from proliferation
- With minimum damage to endothelial cells (EC)
• Apoptosis in SMC works!
• Percentages > 50%
• Area of reach 0.5 mm to 1 cm
• Endothelial cells: no apoptosis, no necrosis
• Proliferation stop
• At 0.3-0.5 W
• SMC is more sensitive to plasma
• EC needs 2 x longer treatment
• Necrosis limited
• Dependent on dose
 – Apoptosis (SMC only)
 – Proliferation stop (both EC and SMC)
• Both effects OK!
• *In vivo* treatment feasible
Apoptosis in fibroblasts

- Apoptosis can be induced in many cell types
- Apoptotic bodies are “cleaned up” by remaining cells
Other (sub-lethal) effects

- Cell detachment at 0.1-0.2 W
- Reversible cell extraction without damage!
- Making grafts?

15 min 1 hour 4 hour
Cell activation

- Cells are treated in a suspension (plenty of liquid)
- Improved attachment and growth observed
- Liquid filters out damage factors, but a beneficial plasma species are still there!

(control) 0.2, 30 s
Wound repair

- Great advantage in wound healing: disinfection and cell stimulation to repair the tissue!

![Graph showing % cells vs. treatment time (s) for 300 mW, 1 mm; 0 s = control sample.](image)
No magic: time for explanation!

• Reactive plasma species:
 – Ions – probably do not reach cells
 – Unstable, short living – radicals, helium metastables
 – Long living – singlet oxygen ($O_2(a)$)

• Effects:
 – Message of danger: detachment
 – Moderate damage: apoptosis
 – $O_2(a)$: increased metabolism?
Unstable radicals

- Reactive oxygen species (O, OH, etc.)
- Aggressive damage factors, but…
- Densities are very low (physiological range) and controllable
- Plasma supplies radicals to the sick section
- The work is done in a natural way!

![Graph showing the relationship between time and radicals](image)

\[y = 0.9739x \]

\[R^2 = 0.9894 \]
Singlet oxygen

- 1 eV more energy than ground state
- All reactions are faster, thus also glucose production
- Can be used in energy (ATP) production
- Gives cells “energy boost”
Summarising:

- Some problems had to be solved,
- … but it works!
- Cold plasma technology is versatile…
- … from external disinfections to catheter operations
- Will appear in dentistry, skin surgery, cardiology, cell manipulation, etc.
- … and motivate & stimulate fundamental plasma & biology research.