Energy Modeling in INPRO
DESAE Integrated model

Mikhail Khoroshev, IAEA
Workshop on Modelling and Quality Control for Advanced and Innovative Fuel Technologies
International Centre for Theoretical Physics, ICTP, Triest, Italy, 14-25 November 2005
Comparative studies of energy supply options in Poland for 1997–2020

Case studies to assess and compare different energy sources in sustainable energy and electricity supply strategies

Final report of a co-ordinated project 1997–2000

Energy and nuclear power planning study for Armenia

Energy and nuclear power planning study for Pakistan (covering the period 1993–2023)

Report prepared by a team of experts from Pakistan with the guidance of the International Atomic Energy Agency

Nuclear power programme planning: An integrated approach
Energy supply options for Lithuania

A detailed multi-sector integrated energy demand, supply and environmental analysis

Comparative assessment of energy options and strategies in Mexico until 2025

Final report of a coordinated research project 2000–2004

October 2006
General objective of INPRO task 4

Analyse **Opportunities and Challenges for Large-scale Global NE** to define responses that have to be done today in institutional and technology development areas:

- to facilitate global NE use in medium term and
- to prepare basis for NE to play an important role for global sustainable development.
Tools for Modelling

- **Codes to be used for modelling energy scenarios and structuring of INS**
 - MESSAGE: Model of energy supply systems and their general environmental impact
 - MAED: model for analysis of energy demand
 - WASP: Wien automatic system planning package
 - ENEP: Energy and power evaluation system
 - FINPLAN: Model for financial analysis of electric sector expansion plans
 - SIMPACTS: simplified approach for estimating impacts of electricity generation
 - DESAE: Dynamic Energy System, Simulation of INS
 - SYRTEX: Competitiveness of INS
Modelling Needs
for
Joint Study on Assessment of
INS based on Closed Nuclear Fuel Cycle
with Fast Reactors
using INPRO Methodology
IAEA-TECDOC-1434

CHAPTER 3 – Method for Assessment

* **Screening assessment**
 - definition of Acceptance Limits
 - evaluation of Indicators

* **Comparative assessment**
 - procedure for aggregating judgments on Criteria

* **RD&D assessment**
 - identification of priorities for R&D

Question: Where do we need modelling?
Answer: At every stage of the Assessment.
Tools for Modelling

• **Codes to be used for modelling energy scenarios and optimizing INS**
 • MESSAGE: Model of energy supply systems and their general environmental impact
 • MAED: model for analysis of energy demand
 • WASP: Wien automatic system planning package
 • ENEP: Energy and power evaluation system
 • FINPLAN: Model for financial analysis of electric sector expansion plans
 • SIMPACTS: simplified approach for estimating impacts of electricity generation
 • DESAE: Dynamic Energy System, Simulation of INS
 • SYRTEX: Competitiveness of INS
The interactive model for quantitative assessment of nuclear energy system key indicators.

(Dynamic of Energy System – Atomic Energy created by unk groups)

Tsibulskiy V.F., Davidenko V.D., Subbotin S.A.
unk@dhtp.kiae.ru
• The DESAE (Dynamic of Energy System) is an interactive model computer code for the quantitative assessment of nuclear energy systems of various countries pursuing nuclear energy program around the world.
• This code is based on MATLAB computing with graphical user interface facility.
 UTILITIES OF THE DESAE CODE

- The user can select a country of interest from the world map that is built in the code.
- Choose reactors from the database (7-types available) in the code. There is also an option for choosing the recycling plants (4-types available).
- The database of each reactor type can be edited as per one’s own option for further calculations.
- It is possible to use the code for analyzing the national, regional and global scenarios.
• With all these input parameters set, the code can be executed to compute 28 output parameters which are very useful for the dynamic and economic assessment of a country’s nuclear energy scenario.
• The output results encompass estimation of the total nuclear power generated during a specified time span to economic specific values.
• There are options to obtain these outputs either in the form of charts or in the form of tables.
BARC evaluation, India: DESAE Code has very good potential for use in the context of INPRO

DESAE is an excellent code to plan and optimize country’s nuclear power programme by studying possible combinations of different types of reactors

- Estimation of nuclear fuel resources and their optimization
- Estimation of infrastructure needed for various aspects of fuel cycle
- Estimation of overall economics
 - Investments required in nuclear plant building, in fuel recycling, in fuel fabrication etc.
- Estimation of amount of important material needed

- Graphical user interface makes execution of the code very easy
- At a glance one can compare nuclear scenario of different countries
DESAE code in INPRO methodology

Expert place

- **Economics**
 - Investments NPP\&NFC, current price, discounting cost

- **Infrastructure**

- **Environment**
 - Uranium consumption, Spent fuel, Isotopes quantity, Waste activity, Minor actinide quantity & activity

- **Waste Management**

- **Proliferation Resistance**
 - Recycling fuel quantity, Pu\&U3 in spent fuel, Pu\&U3 after recycling, SWU quantity

- **Safety**
The main tasks

1) Calculations of material and economic resources for development of NE.
2) Comparison of various reactor types.
3) Studies of various options of closed fuel cycle.
4) Comparison of structure of NE for various regions.
5) Definition of reactor characteristics most important for the system (INS).
6) Definition of various factors of sensitivity (prices, time delay …).
7) Information support for the analysis of current conditions in NE.
INS scenario analysis tool

INPUT DATA

- Reactor Types
- Reactor Power
 (as a function of time)
- Costs of:
 - Fuel;
 - Operating & Maintenance
 Capital, etc.

MAIN OUTPUT DATA

Natural parameters:
- Energy production;
- Consumption of natural Uranium;
- Spent Fuel;
- Quantity of Fissile Isotopes;
- Quantity of Recycled Isotopes;
- Quantity of Minor actinides;
- Activity of Spent Fuel;
- Quantity of Critical materials;
- Quantity of dangerous materials.

Economics:
- Required Investments;
- Current price of energy;
- Net present value of Investment.
Example

Task:

U-Pu-Th closed fuel cycle for World AE.
Scenarios B2:
B2 = {2050 year-2000GW; 2100 year -5000GW};
Reactor data, the main difference

<table>
<thead>
<tr>
<th>DESAE</th>
<th>DESAE-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency (electricity)</td>
<td>Reactor power, GW</td>
</tr>
<tr>
<td>Fuel loading, t/GWe</td>
<td>Efficiency (electricity)</td>
</tr>
<tr>
<td>Burnup, GWdays/t</td>
<td>Efficiency (high temperature)</td>
</tr>
<tr>
<td>Isotopes</td>
<td>Efficiency (low temperature)</td>
</tr>
<tr>
<td>U-233</td>
<td>Efficiency (water production)</td>
</tr>
<tr>
<td>U-235</td>
<td>Fuel loading (core),</td>
</tr>
<tr>
<td>U-236</td>
<td>Fuel loading (top & bottom blanket),</td>
</tr>
<tr>
<td>Pu-238</td>
<td>Fuel loading (side blanket),</td>
</tr>
<tr>
<td>Pu-239</td>
<td>Company core, days</td>
</tr>
<tr>
<td>Pu-240</td>
<td>Company top & bottom blanket, days</td>
</tr>
<tr>
<td>Pu-241</td>
<td>Company side blanket, days</td>
</tr>
<tr>
<td>Am-241</td>
<td>Isotopes</td>
</tr>
<tr>
<td>Cm-244</td>
<td>Th-232</td>
</tr>
<tr>
<td>Pu-238</td>
<td>U-232</td>
</tr>
<tr>
<td>Pu-240</td>
<td>Pu-242</td>
</tr>
<tr>
<td>Pu-241</td>
<td>Am-241</td>
</tr>
<tr>
<td>Pu-242</td>
<td>U-233</td>
</tr>
<tr>
<td>Pu-243</td>
<td>Cm-242</td>
</tr>
<tr>
<td>Pu-244</td>
<td>U-234</td>
</tr>
<tr>
<td>Pu-245</td>
<td>I-129</td>
</tr>
<tr>
<td>Pu-246</td>
<td>U-235</td>
</tr>
<tr>
<td>Pu-247</td>
<td>Tc-99</td>
</tr>
<tr>
<td>Pu-248</td>
<td>U-236</td>
</tr>
<tr>
<td>Pu-249</td>
<td>Np-237</td>
</tr>
<tr>
<td>Pu-250</td>
<td>U-238</td>
</tr>
<tr>
<td>Pu-251</td>
<td>xp1</td>
</tr>
<tr>
<td>Pu-252</td>
<td>Pu-238</td>
</tr>
<tr>
<td>Pu-253</td>
<td>Pu-239</td>
</tr>
<tr>
<td>Pu-254</td>
<td>Pu-240</td>
</tr>
<tr>
<td>Pu-255</td>
<td>Pu-241</td>
</tr>
</tbody>
</table>
Fuel Cycle, the main difference
DESAE & DESAE-2

DESAE

DESAE-2

Reactor

Reprocessing plant

Pu,
U-233

Pu, U-235,
U-233,
Am,
Tc, I
Multi-product INS allows to achieve 10000 GWe installed NE capacity, total U-consumption 14 mln t
Small capacity reactors integrated in global INS, Scenarios B2
Outcomes of INPRO Case Studies

• An interactive computer model DESAE (Dynamic of Energy System – Atomic Energy) has a potential to become a useful TOOL to perform energy planning studies. i.e:
 - building of future energy scenarios, in particular in NE area
 - predictive analysis of resource consumption and waste management of nuclear energy systems.
 - estimation of investments in nuclear energy systems

This Tool, when perfected, could be made available to the participants in INPRO related INS evaluation activities:
 • First, to serve as a learning tool
 • later, for providing a rational and quantitative basis for evaluations under several INPRO UR and Criteria.
• Complementary codes in the areas not covered by DESAE, such as safety, proliferation resistance, uncertainty management, assessment of potential of innovation need to be developed to enable comprehensive and quantitative assessment of INPRO methodology
Integrated computer models for the analysis of energy development

DESPE and MESSAGE

Review of input and output data in context of INPRO Methodology

March 2005
Model of **Open fuel cycle** (MESSAGE)
Energy demand for a nuclear energy system: DESAE and MESSAGE.

\[N[GWe] \Rightarrow 1 \cdot N \cdot \varphi \cdot 10^3 [MW \cdot yr] \]
Natural Uranium and SWU

Graph 1

producers of fuel U235 on fuel resources
Region: Argentina, Scenario: 10
Unit: ton

Natural U & SWU (t/year)

Natural uranium consumption (t, thou.)
Production of fissile Pu and U233
MESSAGE Model

Russian nuclear energy system network
Russian Federation Nuclear Energy Strategy up to 2050 on the basis of innovative technologies.

Natural U consumption - 360,000 tonne, Investments 97 billions $
Reference energy system