

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

Workshop on "Physics for Renewable Energy" October 17 - 29, 2005

301/1679-5

"Current Progress in Future Opportunities for Thin Film Solar Cells"

> S. Deb Director, Basic Sciences Center NREL USA

Innovation for Our Energy Future

Current Progress in Future Opportunities for Thin Film Solar Cells

Satyen K. Deb

Director, Basic Sciences Center National Renewable Energy Laboratory Golden, CO 80401

Presented at the Workshop on Physics for Energy Sources International Center for Theoretical Physics (ICTP) Trieste, Italy October 17–29, 2005

NREL is operated by Midwest Research Institute • Battelle

Photovoltaics is Solar Electricity

World PV Cell/Module Production (MW)

PV Module Production Experience (or Learning) Curve

Why Thin Films ?

- Substantial Cost Advantage
- Lower Consumption of Materials
- Ease of Manufacturing Large Area Devices
- Fewer Processing Steps
- Wider Selection of Materials
- Easier integration of Monolithic Devices
- Greater Tolerance on Materials Quality

Calculated AM1.5 efficiencies (dashed line) and AM0 efficiencies (solid line), comparing achieved cell efficiencies (laboratory-best, confirmed) for various technologies

Absorption Coefficient of Chalcopyrite Compounds Together with Other Semiconductors Applied in PV

Thin Film Solar Cells - Present & Future

(1) First Generation Thin Film Solar Cells

- Amorphous Silicon Alloys
- CdS/CdTe Thin Films
- CIGS/CdS Thin Films

(2) Next Generation Thin Film Solar Cells

- Dye-sensitized TiO₂ Thin Film
- Crystalline Si Thin Films
- Microcrystalline Si
- GaAs Thin Film
- Organic Solar Cells
- Novel Ternary and Multinary Compound
- (3) Novel Concepts for High Efficiency Devices

Amorphous Si:H Solar Cell

Triple-Junction a-Si:H Solar Cell: (a) Substrate and (b) Superstrate Configuration

Triple-Junction Cell Structure

03250204

Deposition Recipes for MW-PCVD and RF-PCVD

Recipe for the low pressure MW-PCVD MW power: $100 \sim 1000$ W Pressure: $0.1 \sim 30$ mTorr T_S : $200 \sim 400$ °C Deposition rate: >4.0 nm/s Source gases: SiH₄, GeH₄, and H₂

Recipe for the RF-PCVD

RF power: 0.1~10 Torr Pressure: 0.1~30 mTorr T_S : 100~400°C Deposition rate: >0.1 nm/s Source gases: SiH₄, H₂, PH₃, and BF₃

Thin-Film Solar Cells, Y. Hamakawa, Springer

Stabilized Efficiency of a Few Representative a-Si:H-Based Solar Cells and Modules

Device structure	Stabilized efficiency (%)	Area	Organization
		(cm²)	
Single-junction a-Si:H	9.3	0.25	United Solar
	9.0	1.0	Tokyo Inst. of Tech.
	8.9	1.0	Sanyo
Double-junction a-Si:Ge:H	12.4	0.25	United Solar
a-Si:H/a-SiGe:H	10.6	1.0	Sanyo
	9.1	842	BP Solar
	9.5	1200	Sanyo
	9.3	5000	Sanyo
Triple-junction	13.0	0.25	United Solar
	10.5	905	United Solar
	12.5 (initial)	922	United Solar

Thin-Film Amorphous Silicon PV— Progress and Status

Key companies: BP Solar, United Solar/ ECD, EPV, Iowa Thin Films; Sanyo, Kaneka; Phototronics, DunaSolar

- Glass, stainless steel, plastic substrates
- Multi-MW/year in consumer products
- 5 and 10 MW factories for power products operational; many tens of MW in near term
- Unique products for building integration (e.g., roofing, cladding, semi-transparent canopies)

Efficiency statu	13.0	
(stabilized)	Submodule	10.4
	Module	7–8
	Commercial	5–7

- Engineered "solution" for degradation: thin absorber layers and multijunctions
- Extensive fundamental research, leveraged by many other applications

Thin-Film Amorphous Silicon PV— Research Issues and Directions

Advantages of HW-CVD

- Extremely high deposition rates
- High gas utilization
- Better control of [H] in films
- More stable films
- Lower H₂:SiH₄ to get µc-Si inclusions
- Wide parameter window for quality films

- Manufacturing throughput and yield impact on equipment cost
- Novel growth techniques
 - e.g., hot-wire deposition, VHF plasma
 - Gas-phase chemistry and control
 - Nucleation and growth
 - High-rate deposition (10–100 vs. 1–3 Å/s)
 - Amorphous to microcrystalline structures
 - Low-bandgap (~1 eV) materials

- Improved fundamental understanding:
 - Metastability (e.g., hydrogen collision model
 - and kinetics)
 - Role of hydrogen
 - Alloys with Ge, C, ...
 - Characterization techniques
- Improved cell/module efficiencies; new device structures

NREL National Renewable Energy Laboratory

· Long-term field performance

Key Issues for Efficiency Improvement of a-Si Solar Cells

Physical Process	Technical Solution
Efficient guidance of optical energy	Antireflection coating (ARC)Multi-energy-gap stacked juntion
Efficiently guided photon confinement	 Textured surface treatment Use of back-surface-reflection (BSR) effect Refractive index arrangement
Carrier confinement	• Minority carrier mirror effect by heterojunction • Increase of $\mu\tau\text{-}product$ in the PV active layer
Reduction of photogenerated carrier recombination	 Film quality improvement by controlling the deposition condition such as RH, T_s, RF-frequency Drift-type effect with p-i-n junction Graded-gap PV active layer (bandgap profiling) Graded impurity-doping involving back surface field (BSF) effect
Reduction of voltage factor losses	 Band profile control of the PV active layer Insertion of proper buffer layer in the interface of the p-i and i-n junction
Reduction of series resistance losses	 Optimum design of electrode pattern Decrease of transparent conductive oxide (TCO) resistance Use of superlattice tunneling junction
Thin	-Film Solar Cells, Y. Hamakawa, Springer

Hydrogen Collision Model

Problem: No experimental evidence for long-range hydrogen motion.

Solution

Difference Raman Spectra

Evidence for Hydrogen insertion from a-Si:H to a- WO_{3}

Deb et al. Appl. Phys. Lett. 77, 2686 (2000)

REL National Renewable Energy Laboratory

Comparative Stability of a-Si:H and µc-Si:H Solar Cells

UniSolar Roll-to-roll triple-junction a-Si deposition plant of 30 MW annual capacity

Cadmium Telluride

Typical CdTe Device Structure: (a) Conventional and (b) Modified Version

CdTe Thin Film Deposition Technologies

- Sublimation-condensation
- Close-spaced sublimation (CSS)
- Chemical spraying
- Electrodeposition
- Screen printing
- Chemical vapor deposition
- Atomic layer epitaxy
- Sputtering

Apparatus Used for the Deposition of CdTe by the CSS Technique

Thin-Film Cadmium Telluride PV— Progress and Status

• **Key companies:** BP Solar, First Solar; Matsushita; Antec Solar

- ~1 MW/year in consumer products for years
- Successful first-time manufacturing underway:
 - High-rate vapor transport (vacuum)
 - Electrodeposition (non-vacuum)
 - Few tens of MW in near term
- Field testing of large power modules (50–90 W) shows promise

- Efficiency status: Cell
- 16.5
- Module 11.0
- Commercial 7-9
- Many deposition approaches for >10% efficiency
- Early fundamental scientific and engineering base for materials and devices
- ES&H issues studied and under control (e.g., recycling)—Cd perception issue?

Thin-Film Cadmium Telluride PV— Research Issues and Directions

- · Film deposition development:
 - Nucleation and growth
 - Gas-phase and surface chemistries
 - Annealing and heat treatment (CdCl₂)
 - Grain growth, native defects, dopants
 - CdS/CdTe interdiffusion
 - Alternate transparent conductors and impacts film growth

- $\cdot\,$ Front and back contacts
 - Alternate transparent conductors
 - Low resistance, stable back contacts
 - Role of Cu; Cu-free contact strategies?
- · Close efficiency gap (cell to module)
- Compatibility of manufacturing process steps
- Low-cost module packaging for long-term reliability
- (>20 years); edge sealants and moisture ingress
- · Accelerated module test procedures

CdTe Research Issues

- Improved contacts to p-CdTe
- Effective p-type doping of CdTe to improve Voc
- CdTe-alloys that allow device design gradients
- Investigation of materials and device properties allowing ultra-thin CdTe layers (to 0.25 micron) while maintaining high efficiencies
- Reducing tellurium usage by replacement of tellurium with other elements while maintaining performance
- Materials Availability, Safety, and Environmental Issues
- Closing Gap Between Small and Large Area Devices

Module Structure and Processing Sequence Used by Solar Cells, Inc.

034016367

Thin Film CdTe Solar Cell Back Contacts

Metals	C	Others
– Cu	– Graphite	– Sb ₂ Te ₃ /Metal
– Au	– Graphite (Cu, HgTe	e, Ni ₂ P)– ZnTe: Cu/Metal
– Cu/Au	– As ₂ Te ₃ /Metal	– ZnTe: N/Metal
– Ni	– Cu ₂ Te/Metal	
– Ni/Al	– Ni ₂ P/Metal	
– Sb/Al	– NiTe ₂ /Metal	
– Sb/Au	– Te/As ₂ Te ₃ /Metal	
		A NOT NOT NATIONAL Panowable Energy Laboratory

SCI Module Structure

Insulation

In-line Manufacturing of Thin-Film CdTe Photovoltaic Modules

REL National Renewable Energy Laboratory

First Solar CdTe 25 MWp Vapor Transport Manufacturing Line

CIGS Solar Cell

Thin Film CIS Solar Cell Structure

I-V Curve for a 19.3% Thin Film CIGS Solar Cell

18.8%-Efficient CIGS/CdS/ZnO Solar Cell: (a) Device Structure and (b) Elemental Fluxes and Substrate Temperature vs Deposition Time

SEM-Thin Film CIGS Solar Cell

03540717

Thin-Film Copper Indium Diselenide (CIS) PV—Progress and Status

 0.05/ 3 μm
 Ni/Al

 0.1 μm
 MgF2

 0.5 - 1.5 μm
 ITO/ZnO

 0.03 - 0.05 μm
 CdS

 1.5 - 2.0 μm
 CulnGaSe2

 0.5 - 1.5 μm
 Mo

 Glass/SS/Polymer

Key companies: Siemens/Shell Solar, Global Solar/ITN, ISET, EPV; Wurth Solar; Showa/Shell

- Prototype production started in 1998:
- First commercial products (5-40 W)
- Efficient, large modules (>12%)
- Expansion to multi-MW in near term
- Field testing of modules shows promise;
 >10 years outdoors, no degradation

Efficiency status:	Cell	19.3			
	Module	12.1			
	Commercial	>10			
Others:	Stainless steel substrate	17.5			
	Electrodeposition	15.4			
	With ZnO (no CdS buffer)	15.7			
	Concentrator (14X)	21.5			
 Understanding of film growth, microstructures, 					
	defects and device physic	s			

Reproducible high-efficiency processes

Thin-Film Copper Indium Diselenide (CIS) PV—Research Issues and Directions

- Scalability of current processes
 - Predictive models of materials growth, devices, and processes
 - Real-time process controls
 - Yield and throughput
- New techniques and materials
 - Non-vacuum approaches
 - Low-temperature depositions

- Device research and development
 - Heterojunction vs. homojunction
 - Role of window materials;
 - improvements in blue response
 - Alternate front and back contacts
 - Higher bandgaps and multijunctions
 - Device models and characterization
- Theory: Band structures, optoelectronic properties, defect physics, doping

CulnSe₂-alloys Research Issues

- Understanding materials science of complex compositions, alloys and gradients
- Understanding the complex properties and interactions of key interfaces
- Investigation of materials and device properties allowing ultra-thin CIS layers (to 0.25 micron) while maintaining high efficiencies
- Reducing indium usage by replacement of indium with other elements while maintaining performance
- Investigating low-cost processes, and the science of such processes to establish the control and flexibility needed to reach high performance and high yield

Efficiency vs. CIGS Bandgap

Efficiencies of Cd-Free Buffer Layers in CIGS Solar Cells

Structure	Efficiency	V _{oc} mV	Organization	Process
CIGS/In(OH,S)/ZnO	15.4	594	Uppsala/Stuttgart	CBD
DIGS/Zn(OH,S)/ZnO	14.0	560	Showa Shell	CBD
CIGS/Zn(S,OH)/ZnO	15.1	632	Aoya Univ.	CBD
CIS/In(O,OH)/ZnO	9.7	420	Showa Shell	CBD
$CIGS/In_xSe_y/ZnO$	11.4	735	Stuttgart	CBD
$CIGS/In_xSe_y/ZnO$	13.0	595	Tokyo Inst. Tech.	Coevaporation
$CIGS/ZnIn_xSe_y/ZnO$	12.7	579	Tokyo Inst. Tech.	Coevaporation
CIGS/ZnSe/ZnO	11.6	502	Tokyo Inst. Tech	ALD
CIGS Se/Zn(Se,OH)/ZnO	13.7	535	HMI/GSI	
CIS/ZnSe/Ar	14.1	506	Wash. St. Univ.	
CIGS/ZnO	15.1		NREL	

Stability of Thin Film CIS-Based Modules Fabricated by Siemens Solar, Inc.

034016371

Polycrystalline Thin Film Photovoltaic Modules

Organization	Material	Area (cm ²)	Eff (%)	Power (W)	Date
BP Solar	CdTe	8390	11.0*	92.5*	09/01
Wurth Solar	CIGS	6507	12.2	79.2	05/02
First Solar	CdTe	6612	10.1*	67.1*	12/01
Shell Solar - GmbH	CIGSS	4938	13.1	64.8	05/03
Matsushita Battery	CdTe	5413	11.0	59.0	05/00
Global Solar	CIGS	7714	7.3*	56.8*	03/02
Antec Solar	CdTe	6633	7.0	46.7	11/01
Shell Solar	CIGSS	3626	12.8*	46.5*	03/03
Showa Shell	CIGS	3600	12.8	44.15	05/03

* NREL Confirmed; All aperture-area efficiency

REL National Renewable Energy Laboratory

Dye-Sensitized TiO2 Solar Cell

Dye Sensitized TiO₂ Solar Cell

Dye-sensitized Nano-structure TiO₂ Solar Cells

Advantages

- Relatively simple and inexpensive fabrication processes with production cost potential of ~50¢/Wp
- Demonstrated cell efficiency (h≥10%) comparable to conventional amorphous silicon solar cell
- Device constituents (TiO₂, dye,electrolyte) are abundant and environmentally benign
- Optional color and device transparency leads to multiplicity of products and applications

Disadvantages

- Use of liquid electrolyte is not an optimum solution
- Very long-term stability of dyes questionable
- Significantly higher efficiency difficult to achieve

The First U.S. Patents on Dye-Sentised TiO₂ Solar Cells Issued to Deb etal in 1978

Initod	States	Patont	5101
Onneu	States	ratent	119

[11] 4,080,488
[45] Mar. 21, 1978

Chen et al.

[54]	DYE-TI PHOTO	TANI DGAL	UM DIOXIDE VANIC CELL				
[75]	Invento	rs: So So H	choen-Nan Chen, North Brunswick; atyendra K. Deb, East Brunswick; orst Witzke, Princeton, all of N.J.				
[73]	Assigned	es: O G Be	ptel Corporation, Princeton, N.J.; rumman Aerospace Corporation, ethpage, N.Y.; part interest to each				
[21]	Appl. N	o.: 74	10,876				
[22]	Filed:	ied: Nov. 11, 1976					
[51] [52] [58]	Int. Cl. ² U.S. Cl. Field of	Search					
[56]		R	leferences Cited				
	U.S	S. PAT	TENT DOCUMENTS				
3.989.542 11/197 4.037.029 7/197		/1976 /1977	Clark				

OTHER PUBLICATIONS

H. Gerischer et al. "Photoelektrochemische Prozesse und Photokatalyse an Zinkoxid-Suspensionen und Zinkoxid-Deckschichten" *Ber. Bunsen Gesell*, vol. 76, pp. 385-388 (1972).

J. R. Bolton, "Photochemical Storage of Solar Energy by the Dye Sensitized Photolysis of Water", Proc. VIII Int'l Conf. on Photochem, Edmonton, Canada, Aug 1975.

A. J. Nozik "Photoelectrolysis of Water Using Semconducting TiO_2 Crystals", Nature, vol. 257, p. 383-386, Oct. 1975.

R. Gomer, "Photogalvanic Cells", Electrochimica A. ia. ol. 20, pp. 13-70, (1975).

Primary Examiner-John H. Mack Assistant Examiner-Aaron Weisstuch Attorney, Agent, or Firm-Morris Liss

ABSTRACT

A photogalvanic cell has a glass substrate through which irradiating light passes. A light transparent conductive thin film serves as an electrode, the film being deposited upon the glass substrate. Another layer is an electrolyte and includes an aqueous medium having TiO₂ suspended therein, the TiO₂ forming photoactive sites with the remaining ingredients of the electrolyte. The electrolyte layer further includes N-methylphenazine methosulfate dye which has photoconversion and electrical storage properties. During irradiation the cell may drive a load, or stored energy resulting from irradiation is removed.

6 Claims, 2 Drawing Figures

NREL National Renewable Energy Laboratory

03250215

Spectral Sensitization of TiO₂ PEC Cell

Action Spectra of a Bare Cell and the Same Cell with NMP⁺

Research Issues and Directions for Dye-TiO₂ Solar Cells

- Dynamics of electron transfer processes
- Surface and interface properties
- Charge transport in TiO₂ film and electrolytes
- Role of crystal structure and film morphology
- Electrolyte properties and solid electrolytes
- New Dyes and novel approaches to sensitization
- Efficiency enhancement- multi-junction devices
- Degradation mechanisms

Quantum Dot Sensitized TiO₂ Solar Cell

-Advantages of QD's as sensitizers:

- -possibility of slowed hot e⁻ cooling
 -possibility of impact ionization
 - -tunable absorption

Schematic diagrams of a dye-sensitized electrochromic smart window.

B.A. Gregg, Endeavour Vol. 21(2) 1997.

Bleached

Transmittance spectra of an experimental solid-state electrochromic cell in both the bleached and colored states.

REL National Renewable Energy Laboratory

03425937

Dye-sensitized Solar Cells (DSC)

attractive application light weight colorful sharp cut in production cost environmentally benign points

REL National Renewable Energy Laboratory

Thin Film Si Solar Cell

Calculated Efficiency of Solar Cells with Base Diffusion Length, L_n, and Base Thickness d, Having Very Good Emitters (Cell B [thin, with back surface field BSF and optical confinement OC] is better than cell A [thick, no BSF, no OC], though its diffusion length is lower.)

Calculated MACD for Si Solar Cells with Different Texture Shapes

Various Surface Structures (a) Random Pyramids (b) Textured Pyramids (c) Inverted Pyramids (d) Perpendicular Slats

Approaches to Thin-Film Polycrystalline Si Solar Cells on Different Substrates

Objective: To fabricate 10-20 μ Si film of sufficient electronic quality with high throughput (>1 μ /min) on low-cost substrates at relatively low processing temperature.

Approaches

- (1) Single-crystal substrates (Cz or Fz growth)
 - Epitaxial growth on porous silicon followed by separation by chemical etching
 - Hydrogen implantation in subsurface Si-wafer followed by separation (demonstrated for 1µ Si layer)
 - "Epilift" process consisting of deposition of epilayer on patterned single-crystal substrate
- (2) Multicrystalline Si-substrate metallurgical-grade Si-substrate
- (3) Low-cost, non-silicon substrates glass, ceramic, metals

STAR Structure

0325022

μc-SiC/Poly-Si Heterojunction Solar Cell and Its Output Characteristics (Presented by Osaka Univ.)

Thin-Film Solar Cells, Y. Hamakawa, Springer

03401635

NREL National Renewable Energy Laboratory

Current Status of Thin-Film Si Solar Cell Efficiency*

Substrates	Efficiency (%)	Thickness range (µ)
 (1) Single-crystal substrates processing temperature 300° - 1000°C 	6 - 21.5	6 - 50
 (2) Metallurgical-grade Si zone melt recrystallization at > 1300°C 	14 - 16	50 - 60
(3) Glass, ceramicsgas-phase growthtechniques 100° - 600° C	8 - 13	2 - 50

* **Ref.** S.K. Deb and B. Sopori, Recent Advances in Thin Film Solar Cells - Handbook of Thin Film Devices, Vol. 2, ed. by M.H. Francombe, 311-362, Academic Press, 2000.

Summary of Various TF-Si Solar Cells

Technique	Institution	Temperature °C	Substrate	Processing	Efficiency	Remarks
Chemical Vapor Deposition (CVD)	Univ. de Neuchatel	200	Textured TCO/glass	3.6-μm, μc-Si by PECVD at 100 MHz (SiH4), doping by PH3 and B2H6, ZnO/Ag backcontact	8.5%, 1 cm ² (1999) 13.1% a- Si:Η/μc-Si 10.7% (1999)	Deposition rate < 2 A/s, unstabilized, Stabilized (other substrates possible)
	IMEC	>1000	P+ SILSO	20-μm film by thermal CVD, DARC, no texture, SiN passivation, evaporated contacts	13.7%, 4 cm ² (1997)	No H passivation 11.6%, 7.6% on SSP, 10.3% on RGS, 13.2% on EFG
ž	FhG-ISE	>1000	Silicon Sheets from Powder (SSP)	First deposition BSF, 30 micron by thermal CVD, no texture, no H passivation, SiN coating	8.00%, 4cm ² (1997)	Dep. Rate > 10 µm/min., 11.1%on SiLSO, 17.4% on FZ (inverted pyramids, local emitter, thermal oxide)
	Ecole Polytechnique	150	Textured TCO/glass	Polymorphous standard P- I-N, 0.4-0.8 micron I- layer.	9.30%, 0. 1 cm ²	Mixed a- Si:H/ µc-Si matrix
	Canon Co	200-400	Unknown	Standard N-I-P structures, Ag/ZnO back-contact, > 1 micron thick I-layer, VHF used.	7.4%, 0.25 cm² (1999) 11.5% a- Si:Η/μc-Si	Stabilized results
Excimer laser crystallization	Kaneka Co.	600	Glass	Laser crystallization of 100-nm a-Si by PECVD (B ₂ H ₆ /SiH ₄), followed by N- and P-type µc-Si and 6 micron intrinsic poly-Si (all PECVD), ITO front contact and Ag fingers.	10.1% 0.25 cm ² (JQA 1997) 12.8% a- Si:H/μc-Si (1997)	Efficiency >14% expected

Summary of Various TF-Si Solar Cells

Technique	Institution	Temperature °C	Substrate	Processing	Efficiency	Remarks
Zone Melt <u>Recrystallisation</u> (ZMR)	Mitsubishi Elect r ic Co.	>1300	SiO2 on MG- Si	LPCVD 50-60 micron active layer, alkaline wet etching, P indiffusion, H passivation by ion implantation, DARC, backside etching for rear electrode	4.2%, 100 cm ² (JQA 1993) 16.4 %, 4 cm ²	Recrystallization speed = 1 mm/s
	FhG-ISE	>1300	Perforated SiO ₂ on Si	No seeding, no texture, no defect passivation, interdigitated grid, 30 micron by thermal CVD	6.1%, 4 cm ² (1996)	9.3% by Large- Area Recrystallisation (LAR)
		>1300	Graphite	Interdigitated grid, reactive ion etching	11.0% , 4 cm ² (1997)	9.3% on ceramic, >17% expected for screenprinting
Solid Phase Crystallization (SPC)	Sanyo Electric Co.	600	Metal	PECVD p-type a-Si:H (SiH4), ITO sputtering, evaporation of Ag finger contacts	9.2%, 1 cm ² (1994)	10-um a-Si, 10- 600 min annealing
<u>Liquid-Phase</u> Epitaxy (LPE)	Astropower Inc.	~1000	Graphite cloth	Gas phase P indiffusion, PECVD H passivation, photolithographic contacts, DARC	13.4%, 1 cm ² (NREL 1994)	Si directly deposited on substrate, active layer =80 µm
			Unknown	POCl ₃ , Al gettering, H passivation, PECVD SiO ₂ as ARC	14.6%, 1 cm ² (NREL 1996)	Film thickness unknown
		2	Unknown	Unknown	16.6%, 1 cm ² (NREL 1997)	Record thin film Si on foreign substrate, no vacuum process

Future Developments of Thin-Film Si (polycrystalline) Solar Cells

- New approaches to improvements in materials quality (grain size, electron transport, grain-boundary passivation, etc.) on low-cost substrates
- Breakthroughs in high-throughput growth rates
- Surface morphology and roughness control to achieve optimum light-trapping
- Novel approaches to converting indirect-bandgap Si to direct bandgap (co-doping, quantum confinement, Si:Ge superlattice structure, etc.)

GaAs Thin-Film Solar Cells

Current Status and Potential Advantages

- Material with optimum energy gap and light absorption characteristics
- High efficienty (~25%) achieved on epitaxially grown GaAs on Ge-coated

GaAs single crystal substrate

- High efficiency GaAs thin solar cells fabricated on reusabel substrate (CLEFT Process)
- Polycrystalline thin film GaAs solar cells (h = 11%) fabricated in early 1980s using low-cost w-coated graphite substrate

Current-Voltage Characteristics of p⁺/n/n⁺ Polycrystalline GaAs Thin Film Homojunction Solar Cells*

(1) Cell fabricated on substrate with graphite (2-3 μ GaAs), 1 cm²

 $V_{OC} = 0.57 \text{ V}$ $I_{SC} = 24.5 \text{ mA/cm}^2 \text{ FF} = 63\% \eta = 8.8\%$

(2) On large-grain Ge-substrate (6-7 μ GaAs), 1 cm²

 $V_{OC} = 0.69 \text{ V}$ $I_{SC} = 18.8 \text{ mA/cm}^2 \text{ FF} = 0.72 \quad \eta = 9.3\%$

(3) On large-grain Ge-slices, 1 cm²

 $V_{OC} = 0.84 \text{ V}$ $I_{SC} = 17.7 \text{ mA/cm}^2 \text{ FF} = 0.69 \quad \eta = 10.3\%$

(4) On Ge-coated single-crystal Si substrate, 25 mm²

 $V_{OC} = 0.8 V$ $I_{SC} = 21.0 \text{ mA/cm}^2$ FF = 0.708 $\eta = 11.9\%$

* SERI subcontract # XL-4-04018 and SERI/STR 211-2471, S. Chu et al. 1983-1985.

Organic Thin Film Solar Cell

Progress in LED efficiencies.

Sheats et al., H.P. Lab, Science 273, 884 (1996).

Absorption Coefficients of Films of Commonly Used Materials are Depicted in Comparison with the Standard AM 1.5 Terrestrial Solar Spectrum (the overlap is generally small)

Single Layer Device with a Schottky Contact at the Aluminum Contact

Bilayer Heterojunction Device

(The donor [D] contacts the higher and the acceptor [A] the lower work function metal, to achieve good hole and electron, respectively.)

1340163
Bulk Heterojunction Device

(The donor [D] is blended with the acceptor [A] throughout the whole film.)

Calculated Photocurrent of a MDMO-PPV:PCBM-Based Solar Cell under the Ideal Assumption of an Internal Quantum Efficiency of Unity

Structure (left) and the Energetic Description at Closed Circuit Conditions (right) of an Organic p-i-n Solar Cell

Reported Efficiencies of Some Recent Organic Solar Cells at AM1.5

Device Structure	η(%)	Ref.
ITO/CuP _c /PV/Ag	1.0	59
ITO/MEH-PPV-C ₆₀ /Al or Ca	2.9	60
ITO/POPT + MEH - CN - PPV (5%)/top layer	1.9	61
MEH-CN-PPV + POPT) 5%/Al or Ca/bottom layer		
Ag/ITO/Pentacene/Al or Mg	2.4	62
ITO/CuPc/PTCBI/BDP:PTCBI/Ag	2.4	63
ITO/PEDOT/MDMO-PPV: PCBM/LiF/Al	2.5	64
ITO/PEDOT: PSS/CuP _c /C ₆₀ /BCP/A1	3.6	65
ITO/PEDOT:PSS/MDMO-PPV: PCBM/A1	4.3	66
CuP _c : Copper Phthalocyanine; PEDOT: Polyethylenedioxythiopher Polystyrenesulfonate;C ₆₀ : Fullerene; BCP: Bathocuproine; PTCBI: Perylenetetracarboxylic-bis-benzimidazole; MEH: Methoxyethoxy Polyphenylenevinylene; POPT: derivative of Polythiophene	ne; PSS: hexyloxy; F	PPV:

Global Views of Semiconductor Materials for PV Applications

Elemental, Binary, and Ternary Semiconductors

034016111

Best Research-Cell Efficiencies

Science Topics Needed by All Thin Films

- Science Base
- Degradation and Metastable Mechanisms
- Device Characterization and Modeling
- In situ process diagnostics and controls
- Device protection from water vapor
- Innovative module design, including cell interconnects, device protections, lower-cost substrate, less-costly replacement packaging

Conclusions

- Future of thin-film solar cells looks very promising
- Major improvements in efficiency, stability, and reduction in cost are being made continuously
- Multiple options are available
- Industries are gearing-up for large-scale production
- Performance gap between laboratory scale devices and commercial modules needs to be narrowed
- Opportunities are enormous for new innovation in terms of materials and device technologies

