Crystalline Silicon Solar Cells

A. Goetzberger
Fraunhofer Institut for Solar Energy Systems
Germany
Crystalline Silicon Solar Cells

Adolf Goetzberger
Fraunhofer-Institut für Solare Energiesysteme ISE

Workshop on Physics for "RENEWABLE ENERGY"
October 17 - 29, 2005
Miramare-Trieste, Italy

Contents
1. History
2. Physics of silicon solar cell
3. Characteristics and equivalent circuit
4. Materials
5. Solar cell structures, loss mechanisms
6. High efficiency cells
7. Importance of efficiency
8. Future developments
History of silicon solar cells

- 1839 first photovoltaic effect discovered by Edmond Becquerel
- 1904 physical explanation by Albert Einstein
- 1954 First silicon solar cell at Bell Laboratories by Chapin, Fuller and Pearson. 6% efficiency which was soon increased to 10%
- 1961 first fundamental theory by Shockley and Queisser based on detailed balance.
- 1991 first high efficiency silicon cell (~20%) by M. Green.

Properties of silicon as a solar cell material

- Advantages
 - Unlimited supply of raw material
 - Well developed materials and device technology
 - Well developed understanding of physics
 - High solar cell efficiency
 - Well established long term solar cell stability

- Disadvantages
 - Low light absorption coefficient because of indirect band structure
 - Large thickness of material required
 - High cost of silicon wafers
 - At present shortage of solar grade silicon
Carrier distribution at pn junction

Diffusion gradients of minority carriers
Solar cell characteristics

[Diagram showing the structure of a solar cell with labels for Front Contact, Anti Reflection Layer, Emitter, Base, Back Surface Field, and Back Contact.]
Fundamental relations

\[
I = I_0 (\exp \left(\frac{V_A}{V_T} \right) - 1) \\
I = I_0 (\exp \left(\frac{V_A}{V_T} \right) - 1) - I_L \\
V_{oc} = V_T \ln \left(\frac{I_L}{I_0} + 1 \right)
\]

Efficiency \(\eta = \frac{I_m V_{m}}{P_{light}} = \frac{FFI_{sc} V_{oc}}{P_{light}} \)

- \(I_0 \): Diode saturation current
- \(V_A \): Applied voltage
- \(V_T \): Therm. Voltage (const)
- \(I_L \): Light induced current

Equivalent circuit of solar cell
Crystal pulling apparatus

- seed holder
- seed
- crystal neck
- shoulder (cone)
- thermal shield
- heater
- crucible
- susceptor
- crucible
- silicon melt
- crucible shaft

Si casting apparatus

Multiple wire saw
High efficiency solar cell

- Inverted pyramids
- Metal grid
- SO_2
- Emitter
- p-base
- SO_2
- Local back surface field
- Aluminium
The buried contact solar cell

The point contact solar cell

Fraunhofer ISE
Solar Energy Systems
The hetero junction solar cell (HIT) by Sanyo

![Diagram of a hetero junction solar cell (HIT) by Sanyo]

The emitter wrap through solar cell

![Diagram of the emitter wrap through solar cell]
The metal wrap through cell

\[\eta(t) = \eta_L (1 - \exp((a_0-a)/c)) \]
Long term efficiency development

Market growth of solar cell technologies
Future developments

- **Short term**: Lower cost
 - Thinner wafers
 - Further enhancement of efficiency by adapting high efficiency techniques to production
 - New solar cell structures
- **Long term**
 - Crystalline thin film cells
 - Spectrum conversion to utilize solar spectrum more completely

Crystalline silicon cells will dominate the market for a very long time