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The Equations:The Equations:
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These are toy equations, in the sense that viscosity and 
resistivity are included in the simplest possible way, and 
as constants.  In dense environments (inside stars and 
accretion disks) this can be ~realistic, but in general it’s 
not. 

Compressibility is also neglected, although I will relax 
this assumption later.
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Modes in Incompressible MHDModes in Incompressible MHD

1.  Alfven waves:1.  Alfven waves:
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2. Pseudo-Alfven waves (slow modes):
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Both modes propagate along field lines at VA



Alfvenic Turbulence: The Iroshnikov-Kraichnan
Model (I63, K65)

Alfvenic Turbulence: The Iroshnikov-Kraichnan
Model (I63, K65)

Assume an ensemble of waves, distributed isotropically in phase 
space and interacting weakly.  The nonlinear interaction rate is
reduced by the ratio of the advective rate to the wave frequency, 
or
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Then
 v

2τ nonlinear
−1 = constant : k v4 VA

Since v decreases as k increases, the waves become 
increasingly weakly interacting.



Isotropy?Isotropy?

Since the large scale magnetic field appears in the 
dynamical equations in the combination            we can 
compare this to the advective rate   

kPB0

k⊥ v⊥

We see that we can define two classes of modes, 
depending on which rate is higher, (Alfven waves and 
zero-frequency vortices) and these modes will have 
fundamentally different dynamical properties.  The 
assumption of isotropy is not self-consistent.

These classes are usually called “slab turbulence”
and “2D turbulence”.



“Reduced MHD” (Rosenbluth, Strauss)  assumes 
that the magnetic field is stiff, so that  

 
kP = k⊥

MHD turbulence is often modeled as a superposition of 
“slab” and “2D” modes.  The boundary between them was 
not initially assumed to have much weight. 

Early simulations aimed at studying mode anisotropy 
(e.g. Shebalin et al. 1983) seemed to show that the 
degree of anisotropy in a turbulent cascade is set at the 
largest scales, so that            is a constant.  This 
validates the IK scaling giving a 1D spectral index of -3/2 
for the cascade.

kP
k⊥

This ratio is also assumed to describe the ratio of δb 
to B0 while slow modes are dropped.



Turbulence in the Solar WindTurbulence in the Solar Wind

From Leamon et al. 1998 - Typical power spectrum 
for stationary states of the solar wind. The cascade 
extends from ~10-4 Hz to a fraction of Hz.



Armstrong & Spangler (1995)Armstrong & Spangler (1995)

Slope ~ -5/3
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The Goldreich-Sridhar Model (1995)The Goldreich-Sridhar Model (1995)

Resonant 3-wave interactions vanish for Alfven waves.  GS 
showed the 4-wave interactions could produce strong 
turbulence with the following properties:

• The advective and Alfven rates are comparable at every level in 
the turbulent cascade.

• Alfven waves have coherence times comparable to the inverse of 
these rates, that is, about one wave period.

• The cascade shows a scale-dependent level of anisotropy.  
Smaller eddies are more elongated along the field direction.

They also concluded that all higher order interactions 
contributed corrections of order unity.



�That turns out not be as bad as it sounds (or I wouldn’t cite 
their work at all).  2D turbulence has an inverse energy 
casdade.  The perpendicular wavenumber will decrease (and 
the parallel wavenumber increase via a random walk) so the 
eddies work back towards the limit where the Alfven frequency 
is significant.

On the other hand, 4-wave interactions among Alfven waves 
will increase the perpendicular wavenumber, while the parallel 
wavenumber stays constant.

So left to themselves, either slab modes or 2D modes will 
evolve towards the balance where

k⊥ v⊥ ≈ kPVA



The Energy SpectrumThe Energy Spectrum

Since there is only one rate, the turbulent cascade looks just 
like the Kolmogorov cascade, except that we only deal in 
perpendicular velocities and wavenumbers.

v⊥
3k⊥ = constant, v⊥ ∝ l⊥

1/3

On the other hand, the rate balance condition gives

kP ≈ k⊥ v⊥ VA( )∝ k⊥
2 /3

Smaller eddies are more elongated.



Where are pseudo-Alfven modes in all of this?Where are pseudo-Alfven modes in all of this?

To leading order, PA modes do not transfer power to high 
wavenumbers via nonlinear interactions with other PA modes.  
They do this via interactions with Alfven waves.  They have no 
effect on Alfven waves.

The prediction is that the power spectrum of PA modes 
should look much like that of the Alfven modes, but if some 
mechanism suppresses these modes, there will be no effect 
on the Alfven modes or their turbulent cascade. 

This is important because in collisionless systems, PA modes 
are strongly damped through parallel transport.



B0

From Cho & Vishniac (2000)
See also Muller & Biskamp (2000); Maron & Goldreich (2001)

|B|

The theoretical and observational developments of the ‘90s were 
parallel by technological improvements that made it possible to 
perform detailed 3D MHD simulations.



Does this settle the issue?   NoDoes this settle the issue?   No

The simulations by Maron and Goldreich, and more recent 
simulations by Muller and Biskamp, seem to argue for the IK 
power spectrum. I think this is an unresolved issue, and raises 
observational difficulties. 

The other prediction in GS is that eddies should show a scale 
dependent elongation.  This can also be checked in simulations, 
but first we need to address why this effect was not seen by 
Shebalin et al.



Averaging over a turbulent 
system using a global 
definition of the magnetic field 
direction will smear out small 
scale anisotropies, leaving 
only those due to the largest 
scale eddies.  This is what 
Shebalin et al. saw.



Anisotropy in the Numerical SimulationsAnisotropy in the Numerical Simulations

Contours in the velocity structure function (Cho and 
Vishniac).  Similar results in MG, MB, and Milano et al.  The 
shape of the contours closely match the GS model.  Plots of 
magnetic field structure functions are very similar.



What is the PDF for Magnetic Fluctuations?What is the PDF for Magnetic Fluctuations?

From the simulations, the correlation tensor for the 
magnetic field scales as                  for a given value of  
and large values of 

From the simulations, the correlation tensor for the 
magnetic field scales as                  for a given value of  
and large values of 

exp −AkP k⊥
2 /3( )

k⊥ kP

This is consistent with observations of the solar wind, 
although in this case the data is sufficient to argue that a 
more complete description is given by a Castaing
distribution (Forman and Burlaga).



Intermittency in Turbulence: Structure Function Exponents

MHD turbulence is anisotropic, so we need to specify if we are 
looking at correlation along the field lines or across them.  We also 
need to specify whether directions are defined relative to the local 
magnetic field, or  a global magnetic field direction.  The scaling 
exponents ζ are connected to the details of the energy cascade 
(among other things). 



C is the codimension of the dissipative structures, e.g. 
vortices in hydrodynamic turbulence imply C=2.

She-Leveque Model of intermittency

For example, for p=2 we get ζ=0.696 (as opposed to 2/3).  
If we assumed instead that hydrodynamic turbulence 
forms dissipatative sheets we would get    ζ=0.741.  The 
effect of C gets larger as p increases.







Suppose we look along the local field direction, 
that is, take

∆rr = ∆rb̂local
The errors in ζ(p) become much larger, since it is 
hard to track the magnetic field lines with the 
required accuracy.

For the velocity field, the results are consistent with
multiplying the previously derived set of exponents 
by 3/2.  The velocity structure of the turbulence is 
simply stretched by a scale dependent factor which 
follows the proposed Goldreich-Sridhar scaling.



What Have We Learned From ζ(p)?

• The velocity and magnetic fields behave as though   they are 
controlled by dissipation structures with different dimensions, 
despite the transfer of energy between them.

• The velocity field looks very much like hydrodynamic 
turbulence, stretched along the local field direction.

• Elsasser variables can be misleading in the limit of strong 
turbulence.



The Physics of the MHD Turbulent Cascade  
--- as if I knew

The Physics of the MHD Turbulent Cascade  
--- as if I knew

Reading off the Elsasser variable intermittency 
exponents suggests a simple picture with 2D 
dissipative structures.  Looking at the velocity and 
magnetic field results separately seems to suggest 
that there are two sets of dissipative structures: 
vortices (1D),  and current sheets (2D).

Moreover, looking at the results in the local frame 
suggests that the effective dimension of the 
magnetic structures is slightly greater than 2. 

Perhaps a fractal distribution of current sheets, with 
partially aligned vortex tubes?
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Compressible TurbulenceCompressible Turbulence

Adding compressibility opens up the possibility of 
fast magnetosonic waves.  If we go to the 
supersonic, but sub-Alfvenic, limit, we see very 
little change in the properties of the Alfven waves 
and the slow modes.  

However, the fast waves look dramatically different.
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We get isotropic sonic turbulence with a spectral index of 3/2. 
The fast waves follow the model proposed by Iroshnikov and 
Kraichnan.

Despite collisionless damping in the ISM, these waves 
dominate the scattering of cosmic rays by about 15 orders of 
magnitude.   (Yan and Lazarian)



Summary Summary 
There exists a theory for MHD turbulence, roughly 
comparable to the original work of Kolmogorov, 
describing the strong turbulent MHD cascade.  It is the 
model proposed in GS95.  It is also equivalent to 
assuming that “typical” modes satisfy the ordering 
given in reduced MHD. This model successfully 
predicts eddy shapes
However, the power spectrum of incompressible MHD 
turbulence is still uncertain. This may be explained by 
intermittency.
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More Summary:More Summary:
If we look directly at intermittency statistics, we see 
that the velocity field is like hydrodynamic turbulence, 
stretched along the magnetic field lines.  On the other 
hand, the magnetic field is strikingly more intermittent.  
This hints at significantly different roles in the energy 
cascade.
The PDF of the simulations matches that in the solar 
wind.  It is not predicted from first principles.
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