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Very simple research on a very complex system

A case study in bifurcation and stability
analysis

— unifies two different views of the physics of

plasma confinement transitions

— provides new intelligence on the big

issues of shear flow suppression of
turbulence and oscillatory régimes
— suggests new design, control, and
optimization strategies for experiments.

Ball, R. 2005 Preprint,
http://wwwrsphysse.anu.edu.au/ ∼rxb105/rb.html
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What are confinement transitions?

Occur in fusion plasma containment systems such as
tokamaks and stellarators    

  

✘

highly turbulent

anomalous transport
to edge and walls

degradation of 
coherent structures

poor energy and particle
confinement

✔

quiescent

hopelessly disruptive

L−regime

good confinement

well −behaved

shear and zonal flows
development of stable

reduced transport

H−regime
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Why are they so?

☛ Confi nement (L–H) transitions have been the subject of
intensive experimental, in numero, and theoretical and
modelling investigations since the 1980s.

☛ Two major strands in the literature:

1. A quasi two-dimensional flow phenomenon
—occur spontaneously when energy flux from
small-scale turbulence to large-scale coherent
structures exceeds the nonlinear dissipation rate;

2. Radial electric fi eld bifurcation
—ion orbit losses near the plasma edge or induced
biasing cause an electric fi eld, which drives
large-scale shear flows nonlinearly.
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The most promising approach

to predictive modelling of confi nement transitions uses
low-order or reduced dynamical descriptions —

systems of coupled ODEs in a few (∼2–5) dynamical
variables or mode coeffi cients and parameters.

This type of modelling averages over spatial or mode
spectrum structure, single-particle dynamics, etc

—but we can track qualitative features of the
collective dynamics, such as bifurcations and stability
changes, broadly over the parameter space.

Motivated by the need for improved control of the (mostly
bad) behaviour of fusion plasmas in magnetic containers.
New applications in industry
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Method
1. Find and interrogate trapped degenerate

singularities that occur in the simplest

dynamical model for confinement transitions;

2. Unfold the singularities smoothly in physically

meaningful ways;

3. Interrogate any new singularities that appear;

4. Repeat steps 2 and 3 until the model is free of
pathological or persistent degenerate
singularities, is self-consistent, reflects
observations in experiments, and is
therefore predictive. Trieste, March 2005 – p.8 /26



Three energy subsystems

ϕ

power
source
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shear flow 
drive

PPP potential energy of the pressure gradient
NNN kinetic energy of the turbulence
FFF ≡ ±v′2 shear flow kinetic energy
v′ averaged background shear or zonal flow velocity
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Energy flux diagram → dynamical system

ε
dP

dt
= Q − γNP

dN

dt
= γNP − αv′2N − βN 2

2
dv′

dt
= αv′N − µv′ + ϕ

F ≡±v′2

µ=µ(P,N)

=µneP
−3/2+µanPN

Ball, Dewar & Sugama, Physical Review E 66, 066408, 2002
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A walk along untrodden ways

☛ Hysteresis and limit cycles can occur.
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A walk along untrodden ways

☛ The flow can spontaneously reverse direction.
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A walk along untrodden ways

☛ Symmetry-breaking has global as well as local

effects. For ϕ �= 0 a branch of solutions is
released from a trap at infinity.
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The plot thickens

As you increment the driving rate ϕ the “new” branch
develops a branch of limit cycles . . .
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The plot thickens

At a critical value of ϕ the new and old branches exchange
at a non-symmetric transcritical bifurcation.
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The plot thickens

There has been a complete metamorphosis of
the dynamics!
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The plot thickens

Two Hopf bifurcations annihilate each other at a DZE . . .
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The plot thickens

sh
ea

r 
flo

w

power input

I suspect a trapped
singularity

. . . and the remain-
ing Hopf bifurcation is
captured by a DZE at
(Q, v′) = (0,∞)

—which implies infinite
growth of shear fl ow as
the power input falls!

Some important physics is still missing
from the model.
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Find the trap and release the singularity

On a suspiciously degenerate branch of equilibria at Q = 0
a trapped degenerate turning point, s4, is found . . .

 0

 10

-0.1  0  0.1

v’

Q

s4 *
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Physics: shear flows feed turbulence as well as suppress it

In a strongly two-dimensional velocity fi eld there is strong
tendency to upscale energy transfer, or inverse energy
cascade , but the net rate of energy transfer to high
wavenumbers, or Kolmogorov cascade , is
not negligible —

kinetic energy in large-scale structures inevitably
feeds the growth of turbulence at smaller scales,
as well as vice versa.

What amounts to an ultraviolet catastrophe in the physics
maps to a trapped degenerate singularity in the
mathematical structure of the model when when energy
flux to high wavenumbers is neglected.
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The trapped singularity s4 is unfolded smoothly

by including a simple, conservative, back-transfer rate
between the shear flow and turbulence subsystems:

dN

dt
= γNP − αv′2N − βN 2 +κv′2

2
dv′

dt
= αv′N − µ(P,N)v′ + ϕ −κv′ .

β

power
source

Q

P
γ

N
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κ
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ϕ
shear flow 
drive
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A salutary lesson: unphysical solutions should not be ignored!

 0

 10

-0.1  0  0.1

v’

Q

s4

κ = 0

*

-0.1  0  0.1
Q

s4

κ > 0

*

*

The unfolding creates a maximum in the shear flow

A fourth h.b. is released from a trap at infi nity

An isola of steady-state solutions is formed —but the
bifurcation diagram is a slice of a three-dimensional
surface of equilibria.
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Two slices of the bifurcation surface
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**
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Predictions:

✔ Low, intermediate, and high shear flow states.

✔ Two possible back-transitions.

✔ The shear flow can actually grow as the power input
is withdrawn .
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Potential energy dissipation

ε
dP

dt
= Q − γNP −χP

power
source

Q

P
γ

N

β

α
κ

v’

µ (N,P)

ϕ
shear flow 
drive

χ

χP represents all non-turbulent or residual losses such as

cross-fi eld thermal diffusivity and radiative losses.
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Dramatic changes to bifurcation structure
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0.1 100Q
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Two new turning points s5 and s6 are born from a
local cusp singularity.

Transition to high shear flow state at s6 is now
discontinuous!

System has fi vefold multiplicity between s5 and s6.
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Dramatic changes to bifurcation structure

 0
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v’

Q

s1

s4

s5

s6
s7s8
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 0
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s1
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As you increase χ a different fi vefold domain appears

through the creation of s7 and s8 at another local
cusp singularity!
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An amusing and instructive puzzle
The turning points s1, s4, s5, s6, s7, and s8 are
computed over the dissipation coeffi cent χ and the power
input Q.

The resulting lines of turning points are projected onto
χ–Q plane.

Zone Multiplicity

Black . . . . . . fi ve

Dusted . . . . . three

White . . . . . . one

Since the two black
zones do not over-
lap, there is no do-
main of sevenfold
multiplicity !
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The rise and fall of the Roman Empire a turbulent plasma
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The system transits from s5 to a limit cycle, rather than
to a stable intermediate steady state.

The turbulence is enormously suppressed due to
uptake of energy by the shear flow, but rises again
dramatically with this hard onset of oscillations.
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A nonlinear shear flow drive unifi es the model

ε
dP

dt
= Q − γNP − v′2r(P )

dN

dt
= γNP − αv′2N − βN 2 + κv′2

2
dv′

dt
= αv′N − µ(P,N)v′ + v′r(P ) − κv′ + ϕ

r(P ) = ν exp
(
− (

w2/P
)2

)
†

µ(P,N) = µneP
−3/2 + µanPN

† Shaing, K.C. and Crume, E.C. Phys. Rev. Lett. 63, 2369, 1989; Itoh, S.-I. and Itoh, K.
Phys. Rev. Lett. 60, 2276, 1988, ++ 100s of similar papers since
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Competitive potential energy distribution channels

γ
P

Q

power
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κ
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r(P)

r(P ) = ν exp
(
− (

w2/P
)2

)
is a competing potential

energy conversion channel —
can dominate the dynamics when the critical escape
velocity w is low or the pressure is high.

What effects does it have on the bifurcation structure?
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Bifurcation diagrams for the unifi ed model

As r(P ) begins to take over:

The high shear flow peninsula is
elongated and flattened.

Fivefold régime disappears.

No practicably accessible inter-
mediate branch in the transition
region.  0

 2

 4

 0  1

v’

Locally, the bifurcation diagram begins to look
more like the simple S-shaped, cubic normal form
schematics featured in numerous papers by the
“electric field bifurcation” school . . .
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Bifurcation diagrams for the unifi ed model

. . . but this model
accounts for shear
flow suppression
of the turbulence,
whereas their mod-
els could not . . . .001
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0.1 1 10 100

N

Q

. . . because they were not coupled to the potential energy

and turbulent kinetic energy subsystems.
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Ours
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Summary

Generation of stable
shear flows in fusion
plasmas and associated
confi nement transi-
tions are governed by
Reynolds stress decor-
relation of turbulence
and/or by an induced
bistable electric fi eld.
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α v’
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N
α
κ

µ (N,P)

ϕ
shear flow 
drive

P v’

(P)r

These two mechanisms are seamlessly unified
by the first smooth path through the singularity
and bifurcation structure of a reduced
dynamical model for the system . Trieste, March 2005 – p.26 /26



Summary

Results

in particular:

✱ New strategies for controlling
confinement and reducing turbu-
lent transport in new-generation
fusion experiments.

Results

in general:

✱ Low-dimensional dynamical
models have a useful role to play
in the study of one of the most
formidable of complex systems, a
strongly driven turbulent plasma.
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