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The Sun’s Global Magnetic Field

Ca II emission                             Extreme ultra- violet
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Temporal variation of sunspots

Number of sunspots varies 
cyclically with an approximately
11 year cycle.

Latitudinal location of spots varies 
with time – leading to
butterfly diagram.

Sunspots typically appear as bipolar pairs.
Polarity of sunspots opposite in each hemisphere
Polarity of magnetic field reverses every 11 years.
22 year magnetic cycle.

Known as Hale’s polarity laws.
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The Solar Dynamo

Now almost universally believed that
the solar magnetic field is maintained
by some sort of dynamo mechanism, in
which the field is regenerated by 
inductive motions of the electrically
conducting plasma.

The precise site of the dynamo is 
still a matter of some debate – though
is certainly in all, or part, of the
convection zone and, possibly, in the
region of overshoot into the radiative 
zone.

Dynamo theory deals with the regeneration of magnetic fields in an electrically conducting 
fluid or gas – nearly always through the equations of magnetohydrodynamics (MHD).

The vast majority of the modelling of astrophysical dynamos has been performed within
the framework of mean field electrodynamics.
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Starting point is the magnetic induction equation of MHD:
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where B is the magnetic field, u is the fluid velocity and η is the magnetic 
diffusivity (assumed constant for simplicity).

Assume scale separation between large- and small-scale field and flow:
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where B and U vary on some large length scale L, and u and b vary on a 
much smaller scale l.
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where averages are taken over some intermediate scale l « a « L.

Kinematic Mean Field Theory
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In dimensionless units:
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For simplicity, ignore large-scale flow, for the moment.
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Induction equation for mean field:

where mean emf is

This equation is exact, but is only useful if we can relate E to .0B
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Consider the induction equation for the fluctuating field:

Traditional approach is to assume that the fluctuating field is driven solely by the 
large-scale magnetic field.

i.e. in the absence of B0 the fluctuating field decays.

i.e. No small-scale dynamo

Under this assumption, the relation between b and 0B (and hence between

E and 0B ) is linear and homogeneous.
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Postulate an expansion of the form:
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where αij and βijk are pseudo-tensors.

Simplest case is that of isotropic turbulence, for which αij = αδij and βijk = βεijk.
Then mean induction equation becomes:
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β: turbulent diffusivity.

α: regenerative term, responsible for large-scale dynamo action. 
Since     is a polar vector whereas B is an axial vector then α can be non-zero 
only for turbulence lacking reflexional symmetry (i.e. possessing handedness). 
The simplest measure of the lack of reflexional symmetry is the helicity of the
flow,

E

.uu ×∇⋅
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Analytic progress possible if we neglect the G term (“first order smoothing”).

These results suggest a clear link between α and helicity.

This can be done  if either the correlation time of the turbulence τ or Rm is small.

For the latter:
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where F(k,ω) is the helicity spectrum function.

Correlations between u and b have been replaced by correlations between u and ω.
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For the former (assuming isotropy):
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Mean Field Theory – Applications

Mean field dynamo theory is very user friendly.
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A dynamo can be thought of as a mechanism for “closing the loop” between poloidal
and toroidal fields. Velocity shear (differential rotation) naturally generates toroidal
from poloidal field. The α-effect of mean field electrodynamics can complete the 
cycle and regenerate poloidal from toroidal field.

e.g. butterfly diagrams for dipolar and quadrupolar fields:

(Tobias 1996)

With a judicial choice of α and β (and differential rotation ω) it is possible to 
reproduce a whole range of observed astrophysical magnetic fields.
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Mean field dynamo models “work well” – and so, at some level, capture what
is going on with cosmical magnetic fields.
However, all our ideas come from consideration of flows with either very short 
correlation times or with very small values of Rm.

3.      What is the role of the Lorentz force on the transport coefficients α and β? 
How weak must the large-scale field be in order for it to be dynamically
insignificant? Dependence on Rm?

Crucial questions

1. We still do not fully understand the detailed micro-physics underlying the 
coefficients α, β,  etc. – maybe not even in the kinematic regime.

What happens in conventional MHD turbulence with O(1) correlation times and Rm >> 1? 

2. What happens when the fluctuating field may exist of its own accord, independent of the 
mean field?

What is the spectrum of the magnetic field generated? Is the magnetic energy dominated 
by the small scale field?

We shall address some of these via an idealised model.
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Boussinesq convection.
Boundary conditions:    impermeable, stress-free, fixed temperature,

perfect electrical conductor.

Taylor number, Ta = 4Ω2d4/ν2 = 5 x 105, 
Prandtl number Pr = ν/κ = 1, 
Magnetic Prandtl number Pm = ν/η = 5.
Critical Rayleigh number = 59 008.

Anti-symmetric helicity distribution                         anti-symmetric α-effect.
Maximum relative helicity ~ 1/3.

g

T0 + ∆T

T0 Ω

Rotating turbulent convection

Cattaneo & Hughes 2005
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Ra = 70,000 Ra = 150,000 Ra = 500,000

Temperature near upper boundary (5 x 5 x 1 box)

Relative Helicity
2/122/12 |||| 〉×∇〈〉〈

〉×∇⋅〈=
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Ra = 106        

Box size: 10 x 10 x 1, 
Resolution: 512 x 512 x 97
Snapshot of temperature.
No imposed mean magnetic field.

A Potentially Large- Scale Dynamo Driven by Rotating Convection

Growth of magnetic energy takes place 
on an advective (i.e. fast) timescale.
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Bx

No evidence of significant energy in the large scales – either in the kinematic eigenfunction
or in the subsequent nonlinear evolution.

Picture entirely consistent with an extremely feeble α-effect.

Healthy small-scale dynamo; feeble large-scale dynamo.
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α and its cumulative average versus time.
Imposed horizontal field of strength  B0 = 10.

Enlargement of the above.
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Ra = 150 000
Temperature on a horizontal slice close to 
the upper boundary.

Ra = 150,000.   
No dynamo at this Rayleigh 
number – but still an α-effect.

Mean field of unit magnitude 
imposed in x-direction.

Self-consistent dynamo action
sets in at Ra ≈ 180,000.

2u

2B

time

time

Turbulent α- effect with no small- scale dynamo
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time

time

time

zE

yE

xE
e.m.f. and time-average
of e.m.f.

Ra = 150,000
Imposed Bx = 1.

Imposed field extremely
weak – kinematic regime.
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α – the ratio of e.m.f. to applied 
magnetic field – is very small.

At first sight this appears to be 
consistent with the idea of 
α-effect suppression.

However, the field here is too
weak for this.

Thus it appears that the α-effect
here is not turbulent (i.e. fast),
but diffusive (i.e. slow).

Cumulative time average of the
e.m.f.

Not fantastic convergence.
xE

yE

zE
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The α-effect here is 
inversely proportional to Pm 
(i.e. proportional to η).

It is therefore not turbulent 
(i.e. fast), but diffusive (i.e. 
slow).

Changing Pm
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Relation to the work of Jones & Roberts (2000)

Similar model – dynamo driven by rotating Boussinesq convection – but 
with the following differences:

• Smaller box size

• Different boundary conditions
(i)  No-slip velocity conditions
(ii) Magnetic field matches onto a potential field.

• Infinite Prandtl number

Jones & Roberts work with the Ekman number E and a modified Rayleigh
number RaΩ

.,2

E
RaRaETa Ω− ==
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Temperature contours for mildly supercritical convection – no field.
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Magnetic energy vs time for (a) RaΩ = 500,   q = 5, E = 0.001
(b) RaΩ = 1000, q = 1, E = 0.001
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The Influence of Box Size for the Idealised Problem

Ra = 80 000

Temperature contours:
aspect ratio = 0.5

〈u2〉 = 330

3 components of e.m.f. vs time, calculated over upper and lower half-spaces.

αxx ≈ 8.5
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Aspect ratio = 1
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αxx ≈ 1.6
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Conclusions

1. Rotating convection is a natural way of producing a helical flow, even at
high values of Ra, when the flow is turbulent. However, the simple ideas derived
for small correlation time or small Rm do not carry over to turbulent flows
with an O(1) value of τ and a high value of Rm.

2.      The α-effect driven by rotating, “turbulent” convection seems to be
(a) hard to measure – wildly fluctuating signal in time, even after averaging over 

many convective cells. Convergence is painfully slow.
(b) feeble (i.e. diffusive);

3.      Given (a), what meaning should we give to the α-effect in this case?


