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MotivationsMotivations

Strong discrepancies between
kinetic & fluid descriptions
of turbulence:

Linear thresholds
Non linear fluxes [Beer '95, Dimits '00]

kinetic
fluid

χ⊥

New type of non collisionnal closures:

Non local [Hammet-Perkins '90,
Snyder-Hammet-Dorland '97, Passot-Sulem '03]

Non dissipative [Sugama-Watanabe-Horton '01,'04]
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Outline of the talkOutline of the talk

Standard closure assumes weak departure from local 
thermodynamical equilibrium (F Maxwellian)

⇒ small number of moments required

Aim:

Compare kinetic & fluid approaches (linear & non-linear)
in a simple turbulence problem:

Same instability (2D interchange)
Same numerical tool

Closure based on entropy production rate
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2D+1D interchange instability 2D+1D interchange instability 

Constant curvature drift:  Evd ey

Slab geometry (x,y)

Limit k⊥ ρi → 0

Hamiltonian:  H = vdEx + φ

v//=0 ions  → E ≈ v⊥
2  

Adiabatic electrons

Drift kinetic eq.

Quasi-neutrality
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ϒ=2 ⇔ neglected

Fluid descriptionFluid description

2 first moments of Vlasov   ⇒ evolution of density & pressure

Closure:
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Different linear stability diagrammesDifferent linear stability diagrammes

Threshold instability: Ω*Tc                 = (1 + k⊥
2) ωd kinetic

ϒ(ϒ−1) (1+k⊥
2) ωd fluid

Vanishing relative discrepancy for large density gradients (Ω*n→∞)

at  Ω*n=0
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2 distributions                at energies

Fluid Fluid ≈≈ F at 2 energiesF at 2 energies
Constraint:  same numerics to treat fluid & kinetic descriptions

Ensures dissipation at small scales
stability of

Equivalent to ϒ=1 closure
in the limit ε <<1

cf  [V. Grandgirard, 2004 & this conference]
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Adjustable linear propertiesAdjustable linear properties

3 degrees of freedom in fluid: T0, ε and D

Linear fluid properties can mimic kinetic ones:Linear fluid properties can mimic kinetic ones:

1. Linear threshold:

Ω*Tc                 = ωd(1 + k⊥
2)

× F(T0, ε, D)

adequate choice

2. Unstable spectrum width
(or maximum growth rate)

at  Ω*n=0
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(analogous to "Dimits graph" with the same code)

Non linear discrepancy:  QNon linear discrepancy:  Qflfl >>>> QQkinkin

Heat turbulent transport larger in fluid than kinetic
by orders of magnitude

Suggest non linear threshold (Dimits upshift ?)

Transition not understood: ZF unchanged
(amplitude & dynamics)
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(analogous to "Dimits graph" with the same code)

Zonal Flows DO NOT explainZonal Flows DO NOT explain
the whole differencethe whole difference

Larger turbulent flux when ZF artificially suppressed
Difference still present between kinetic & fluid (orders of magnitude)

Note similar T profiles 
for similar fluxes
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Quantifying the departure from FQuantifying the departure from FMaxwell

Projection on the basis of Laguerre polynomials Lp
(standard approach for neoclassical transport)

with

CorrespondanceCorrespondance
kth Fluid moment  ↔ Polynomes L1 … Lk
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2 fluid moments are not enough2 fluid moments are not enough

Ortho-normal basis Lp(ξ) ⇒

Slow convergence towards 0

Suggest any fluid description
of the problem

should account for
high order moments Mk (k>2)

May explain why fluid & kinetic results are still different w/o May explain why fluid & kinetic results are still different w/o ZFZF
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Alternative closure: entropy production ratesAlternative closure: entropy production rates
SQL governed by QL transport
Closure fulfils 2nd principle

.

Weights WQL :
Kinetic: infinity of resonances
Fluid: only 2

Main ideas:

Fluid closure:   Q = ϒ( P  + Peq σ ) T
operator: σr(ky) + i σi(ky)
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Similar linear behaviour Similar linear behaviour w/o ad-hoc dissipation

Same threshold as in kinetic: Ω*Tc
fl = kyvd(1+k⊥

2) = Ω*Tc
kin

Stability of small scales: implies σi / ky < 0

Similar linear spectra   → what about non linear behaviour ?
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ConclusionsConclusions

Looking for adequate fluid closures:  what degree of 
convergence kinetic-fluid is requested? (χ⊥ , spectrum, dynamics, …)

Same numerical tool applied to 2D interchange model

1st closure: weak departure from FM (Q = ϒP T)
– Linear properties can be made comparable (D required)
– Fluid transport >> Kinetic transport
–– Non linear upshift not captured by ZF only (Non linear upshift not captured by ZF only (≠≠ Dimits)Dimits)
– Possible explanation: large number of fluid moments required

22ndnd closure:   closure:   Q Q == ϒϒ (P  (P  ++ PPeq eq σσ) T) T
–– Target: balance entropy production rates Target: balance entropy production rates  ⇒ ⇒ σσ
– Linear properties are similar 
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SemiSemi--Lagrangian numerical schemeLagrangian numerical scheme

Semi-Lagrangian scheme:
Fixed grid in phase space
Follow the characteristics backward

in time

Total distribution function F
Global code

Damping at radial ends to prevent numerical instabilities at 
boundaries

Good conservation properties  (e.g. Error on energy < 1%)

Phase space

time

t + ∆t

t

∆x

[Grandgirard et al. 2004]


