
Turbulence and intermittent
transport in edge/SOL of a toroidal

plasmas
Odd Erik Garcia, Volker Naulin, Anders H. Nielsen, and Jens Juul Rasmussen

jens.juul.rasmussen@risoe.dk

Association EURATOM-Risø National Laboratory,
Department of Optics and Plasma Research

OPL-128 Risø, DK-4000 Roskilde, Denmark

thanks to Olaf Grulke, IPP, Greifwald

Garcia et al 2nd IAEA meeting: Theory of Plasma Instabilities, March 2 - 4, 2005, Trieste, Italy Back Next – p. 1/3



Motivation
Cross field transport of particles and heat in the
edge/scrape-off-layer (SOL) region of a magnetically confined
plasma is strongly intermittent and characterized by:

large-amplitude, radially propagating blob-like structures
of particles and heat,

generated close to the last closed flux surface (LCFS),

resulting in asymmetric conditional wave forms, and
skewed and flattened PDFs,

Observed under a variety of conditions:
see, e.g., Zweben Phys. Fluids 28 974 (1985) Antar et al, PoP
10 419 (2003); Boedo et al, PoP 10, 1670 (2003); Zweben et
al, Nucl. Fus. 44, 134 (2004); Grulke et al PSI-2004
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Density blob observations

Observations of density blobs at the outboard midplane of
ALCATOR C-mod (Dα - light)
O. Grulke et al. PSI-2004.

Structure along B. Radial propagation, V ≈ 0.05cs.

Garcia et al 2nd IAEA meeting: Theory of Plasma Instabilities, March 2 - 4, 2005, Trieste, Italy Back Next – p. 3/3



Density blobs theory

Several recent works:
Krasheninnikov PLA 283, 268 (2001)
Curvature drift: charging of a density blob → radial
propagation, velocity fraction of cs, linear model, no
self-consistent blob formation
D’Ippolito et al, PoP 9, 222 (2002)
Bian et al, PoP 10, 671 (2003)
D’Ippolito et al, CPP 44, 205 (2004)
..........

Similar mechanism for uprising density bubbles in
ionospheric E-F layer – inverse stratification in a
gravitational field.
e.g. Kelley and Ott, JGR 83, 4369 (1978).
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Overview
A self-consistent description of fluctuations and intermittent
transport in the edge/SOL by employing the RISØ ESEL
(Edge SOL Electrostatic) model for interchange dynamics
that:

include separate plasma production “edge” and loss
region “SOL”,

allow self-consistent flows and profile relaxations,

conserve particles and energy in collective dynamics.

Results are in good agreement with experimental
observations
Garcia, Naulin, Nielsen, Rasmussen, PRL 92 165003 (2004);
PoP 2005 submitted.
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Geometry and Coordinates
We consider the outboard midplane of a toroidal plasma

The non-uniform magnetic field is B = −(B0R0/R)Θ̂,
described in elementary cylindrical coordinates (R,Θ,Z).

Applying a local slab approximation: x = R−Ra, y = Z,
z = −Θ.

Z

R
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Model Equations
Fluid model cold ions and quasi-neutrality

dn
dt

+nC (φ)−C (nT ) = νn∇2
⊥n−σn(n−1)+Sn,

dT
dt

+
2T
3

C (φ)− 7T
3

C (T )− 2T 2

3n
C (n) = νT ∇2

⊥T −σT (T −1)+ST ,

dΩ
dt

−C (nT ) = νΩ∇2
⊥Ω−σΩΩ, Ω = ∇2

⊥φ.

Advective derivative and curvature operators defined by

d
dt

=
∂
∂t

+
1
B

ẑ×∇φ ·∇, C = ∇
(

1
B

)
· ẑ×∇, B(x) =

1
1+ ε+ζx

.

Conservation of particles and global energy (lowest order in ζ)

E(t) =
∫

dx
[

1
2

(∇⊥φ)2 +
3
2

nT
]
.
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Instability, Energy Integrals

Interchange instability: N = −B′(p′
0 − 5

3B′) ≤ 0 instability at
low field side.
Naulin et al. PRL 81, 4148 (1998); PoP 10, 1075 (2003)

Define the kinetic energy of the fluctuating and poloidal
mean motions,
v0(x, t) = 1

Ly

∫ Ly
0 vy(x, t)dy = ∂φ0/∂x:

K(t) =
∫ 1

2

(
∇⊥φ̃

)2
dx, U(t) =

∫ 1
2

v2
0 dx .
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Energy Transfer, Transport

Define the kinetic energy of the fluctuating and poloidal
mean motions,
v0(x, t) = 1

Ly

∫ Ly
0 vy(x, t)dy = ∂φ0/∂x:

K(t) =
∫ 1

2

(
∇⊥φ̃

)2
dx, U(t) =

∫ 1
2

v2
0 dx .

Energy transfer rates from thermal energy to the fluctuating
motions, and from the fluctuating to the poloidal mean flow:

Fp(t) =
∫

pC (φ)dx, Fv(t) =
∫

ṽxṽy
∂v0

∂x
dx.

Fp is also a measure of the turbulent energy transport.
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Simulation Geometry
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Domain Lx = 2Ly = 200, resolution 512×256, xLCFS = 50. SOL
damping rates σn = σΩ = σT /5 = 3ζ/2πq with q = 3; magnetic
curvature ε = 0.25, ζ = 5×10−4; collisional diffusion ν = 10−2;
timespan 4×106
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Density Evolution
T = 40000 T = 42790

T = 42900 T = 43040

Density blob propagation: The blob is generated inside LCFS (xLCFS = 50).
Radial propagation velocity of the structures is estimated to ≈ 0.05cs; but
with large variance. Envisage the density blob as a filament elongated
along the magnetic field with a ballooning structure.
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Energy Transfer
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Bursting : Kinetic energy contained by the mean U and
fluctuating K motions and the collective energy transfer terms
Fp and Fv .
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Energy Transfer
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Bursting : Expanded time scale, (ν = 10−2) .
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Energy Transfer
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Bursting : Half viscosity ν = 5×10−3 → double time span

Robust behavior
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Profiles
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Time averaged profile of density, n̄0 and temperature, T̄0:
Strong gradients in the edge region (x < xLCFS = 50) and flat
profiles in the SOL.

Time averaged profile of the poloidal flow, v̄0, and vorticity,
Ω̄0 (ν = 10−2)
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Shear flow stabilization?
Influence of a background shear flow V (x)ŷ on the classical
interchange instability
Benilov et al Phys. Fluids 14 1674 (2002)
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NOTE: Stability for
2π/Ly > kc
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Energy flow

Instability drive in the edge

Turbulence propagating into the SOL

Saturates and via particle and momentum fluxes

Profile modification and flow generation; weak
transport

Profile steepening, flow damping (viscous timescale)

Instability drive

Bursting period related to viscous timescale.
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Cross-correlations

Cross-correlations of density fluctuations between probe P4 and the other
probes Pi in the simulations:
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..Comparison Experiment
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ALCATOR C-Mod (Grulke et al)
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Single-Point PDFs
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Probability distribution functions (count number) of density at Pi.
i > 2 exponential tails, indicating strong blob structures.
Coarse grained PDF at P3. Time intervals τ. Increasing τ: skewness
decreases: 2.6 → 0.06, flatness factor decreases: 12.0 → 3.1. Absence of
self-similarity for all scales (τ > 104): intermittency
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..Comparison Experiment

0

1

2

3

4

5

-5  0  5  10  15

P1
P2
P3
P4
P5
P6
P7

n

�

nrms

lo
g 1

0
PD

F

�n

�

Probability distribution functions (count number) of density at Pi.
i > 2 exponential tails, indicating strong blob structures.
PDF from experiment in ALCATOR C-Mod (Grulke et al)

Detailed comparisons with density fluctuation PDFs at TCV are in
progress. Universal PDF: One parameter Gamma-distribution.
Graves et al, PPCF 47, L1 (2005)
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Conditionally Averaging
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Conditional averaging of radial velocity; maximum > 0 in blob center.
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..Comparison Experiment
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results from the ALCATOR C-Mod (Grulke et al)
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Spatial Structure
Vorticity

Density

“Laminar” Burst
“Laminar” periods: dominated by poloidal flow. “Bursty” periods: blob
propagating radially with dipolar vorticity structure.
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Spatial Structure
Temperature

Potential

“Laminar” Burst
Temperature structure, faster decay (higher sheath transmissivity) than density structure; the

potential is subtracted the poloidially averaged potential.
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Particle Density Flux
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Γ0 = 〈nvx〉 at P1, P3. Exponential tails: flux dominated by strong bursts.
Coarse grained PDF at P3. Increasing τ = 2.5m: skewness and flatness
factor decreases → Gaussain for large τ > burst intervals. Absence of
self-similarity for all scales: intermittency
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Particle Density Flux
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Conditional particle flux Γα = 〈Γ0|Γ0 − Γ̄0 > αΓ0rms〉 relative to total flux ΓΣ

at P3.
Relative count number Nα of sub-records.
Few events contain most of the flux. Burst rate ∝ viscosity.

Transport characterized by the Flux PDF; not diffusive: find the “unique
PDF“

Prediction of loads to divertor plates and PFC.

Garcia et al 2nd IAEA meeting: Theory of Plasma Instabilities, March 2 - 4, 2005, Trieste, Italy Back Next – p. 27/3



Impurity dynamics

Impurity dynamics are modeled by tracing passive particles
convected by the turbulent field.
Assumptions: Impurity density low, fully ionized, cold.

Impurity convection: d�x
dt =�vpart = 1

B ẑ×∇φ ∇ ·�vpart �= 0 due to
curvature.

Neglecting inertia effects ∝ Mimp/Zmi: only lighter impurities.

Impurity density: D(nimp/B)/Dt = 0 : Total mixing :: nimp ∝ B
:: Curvature pinch (Naulin, PRE 71, 015402 (2005))
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Impurity dynamics

Impurity density: D(nimp/B)/Dt = 0 : Total mixing :: nimp ∝ B
:: Curvature pinch (Naulin, PRE 71, 015402 (2005))
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Generalizations: 3D effects

Connect regions of good curvature (HFS) with outboard midplane (LFS) in
the edge region to mimic the dynamics along the field lines.

First approach dnL
dt .. = ..α(nH −nL), dnH

dt .. = ..α(nL −nH)

Ballooning nature of fluctuations.
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Conclusions and Outlook
The non-linear dynamics of interchange turbulence (2-D
ESEL-code) yields very good agreement with experimental
measurements:

the formation of blobs due to profile relaxations,

radial propagation velocities around 0.1 acoustic speed,

asymmetric wave forms; skew and flat PDFs.

intermittent transport.

More complete modelling of edge and SOL turbulence

should be 3-D, non-local, and energy-conserving,

with geometry effects and boundary conditions,

address the relation to ELMs
Garcia et al 2nd IAEA meeting: Theory of Plasma Instabilities, March 2 - 4, 2005, Trieste, Italy Back Next – p. 31/3


