

NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT TRANSPORT in TOKAMAK PLASMAS

G.L.Falchetto, M.Ottaviani, X.Garbet

Association EURATOM-CEA CEA/DSM/DRFC Cadarache, France

G. Falchetto DRFC, CEA-Cadarache

IAEA-TM 02/03/2005 1

OUTLINE

- The model: 3D global fluid model of flux-driven electrostatic ITG turbulence in the plasma core
- Theoretical issue and impact
- Turbulent generation of poloidal rotation
 - impact of collisionally damped zonal flows (ZF) on ion thermal transport
 - key role of ZF shear
- Turbulent generation of toroidal rotation
 - quasi-linear theory
 - preliminary results in a cylindrical case
- Summary and discussion

1) Turbulent generation of poloidal rotation

Zonal flow generation:

balance between Reynolds' stress drive [Diamond et al., 1991]

and damping by ion-ion collisions [Rosenbluth-Hinton, 1998]

Association EURATOM-CEA The MODEL: 3D FLUID GLOBAL ELECTROSTATIC

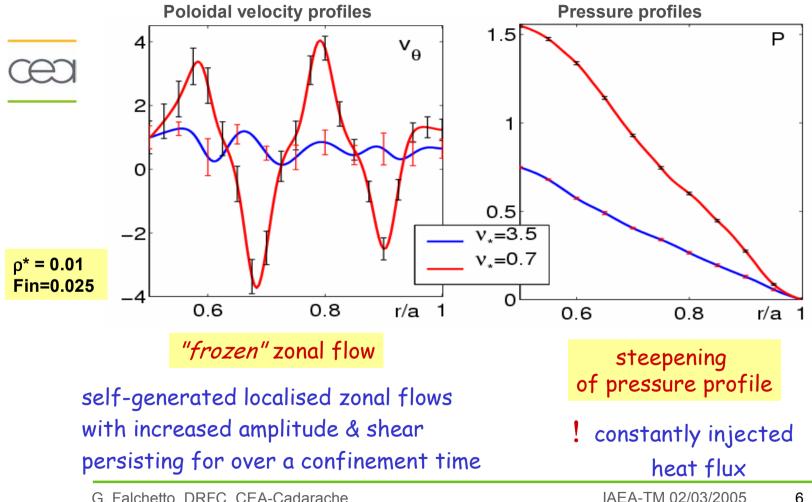
Continuity eq. + parallel momentum + ion pressure evolution eq. including curvature, poloidal flow damping [Hinton-Rosenbluth '99], Landau damping closure and flux driven boundary conditions.

$$\left(\frac{d}{dt} + \vec{\mathbf{v}}_E \cdot \nabla\right) w - 2 \varepsilon \,\omega_d \left(\Phi + p_i\right) + A \nabla_{\parallel} v = A \gamma_{pfd} < w > + D_w \nabla^2 w$$
$$\left(\frac{d}{dt} + \vec{\mathbf{v}}_E \cdot \nabla\right) v - 4 \varepsilon \,\omega_d \,v + A \nabla_{\parallel} (\Phi + p_i) = D_v \nabla^2 v$$
$$\left(\frac{d}{dt} + \vec{\mathbf{v}}_E \cdot \nabla\right) p_i - 2\Gamma \varepsilon \,\omega_d \left(2 \, p_i + < \Phi >\right) + \Gamma A \nabla_{\parallel} v = -\gamma_L |\nabla_{\parallel}| \, p_i + D_p \nabla^2 p_i$$

G. Falchetto DRFC, CEA-Cadarache

IAEA-TM 02/03/2005 4

Perpendicular flow shears are effective in turbulence suppression [e.g Hahm-Burrell. 1995]

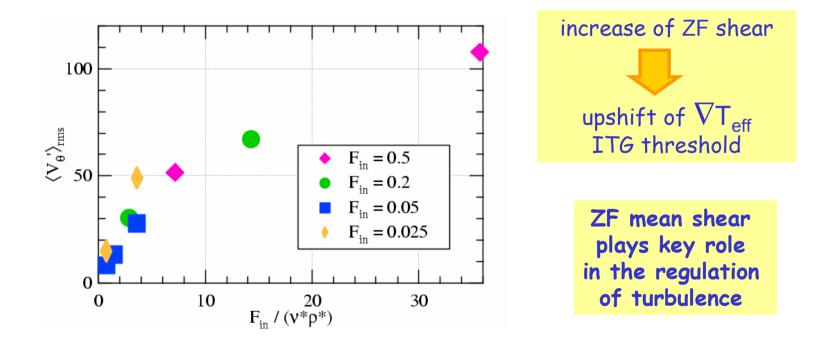

Impact of ion-ion collisions on zonal flows and tranport: low collisionality $v^* = ZF$ less damped \rightarrow decrease of turbulent fluctuation amplitudes \rightarrow reduced radial turbulent flux

 \rightarrow improved energy confinement at low collisionality v^*

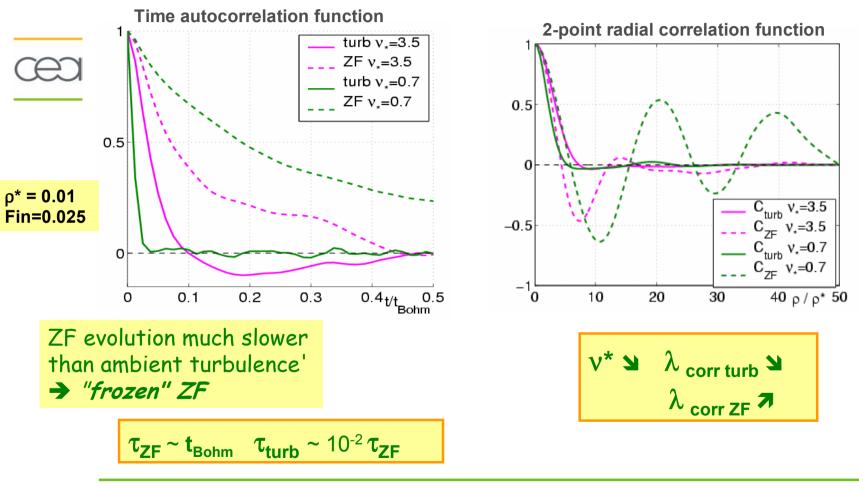
Mechanism of turbulence stabilization via zonal flow damping: reduction of collisionality \rightarrow self-generation of larger amplitude and higher shear ZF \rightarrow upshift of effective temperature threshold for ITG instability \rightarrow decrease of effective ion heat conductivity [G.L. Falchetto&M. Ottaviani, PRL 92, 2004]

EFFECT OF LOW COLLISIONALITY **ON STEADY-STATE PROFILES**

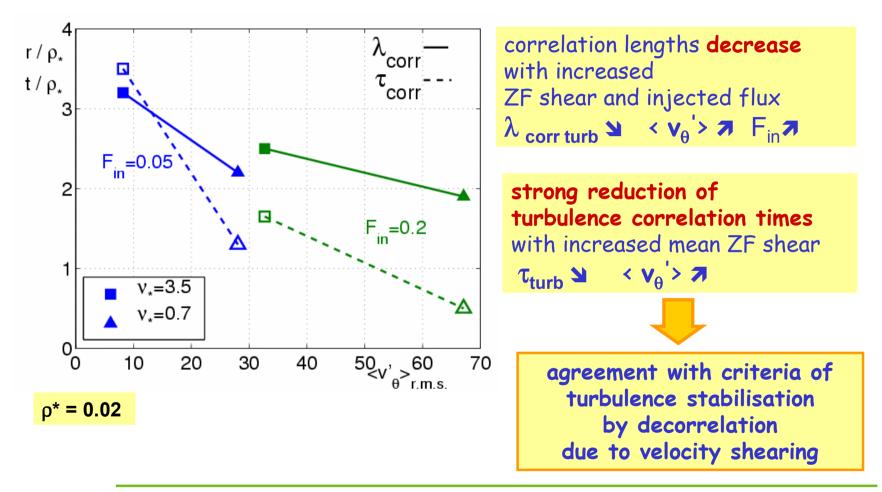
G. Falchetto DRFC, CEA-Cadarache


6

KEY ROLE of MEAN ZONAL FLOW SHEAR in REGULATING TURBULENT TRANSPORT



zonal flow mean shear depends on collisionality and input power $\langle v_{\theta} \rangle \gg F_{in} \gg F_{in} \Rightarrow$



AUTOCORRELATION FUNCTIONS

ZONAL FLOW SHEAR EFFECT ON TURBULENCE CORRELATION LENGHTS AND TIMES

2) Turbulent generation of toroidal rotation

The effect of parallel flow shear has not been well investigated

Experimental facts:

Association

FURATOM-CEA

- Large toroidal velocities without external torque observed in many tokamaks (Alcator C-mod, JET, Tore-Supra).
 [J.Rice, Nucl.Fus.1998; L.G. Eriksson, Nucl.Fus. 2001; PRL 2003]
- Dynamical coupling between parallel flows and turbulent transport observed in JET [C. Hidalgo, B. Gonçalves et al., PRL 2003]
- ✓ Following H-mode transition, toroidal momentum is observed to propagate inward from the plasma edge (Alcator C-mod). Momentum redistribution linked to edge physics phenomenon. [J.Rice et al., Nucl.Fus.44 / IAEA 2004]

Various theoretical interpretations

TURBULENT GENERATION of TOROIDAL ROTATION

Turbulence driven mechanism

Similarly to the well known generation of perpendicular flow, turbulence can generate a parallel flow via the parallel Reynold's stress component [Dominguez & Staebler 1993; P.Diamond et al., 1994; B.Coppi, 2002;

X. Garbet et al., 2002]

$$\Pi_{//} = < \tilde{v}_{Er} \tilde{v}_{//} >$$

! Few numerical simulations available to test this effect

ANOMALOUS TOROIDAL ROTATION -CYLINDRICAL CASE

Parallel momentum equation, flux-surface averaged

$$\partial_t < v > + \frac{1}{r} \partial_r < -\frac{1}{r} (\partial_\theta \phi) v > = D_v \frac{1}{r} \partial_r (r \partial_r < v >)$$

 $\pi_{//}$ Reynolds stress

Quasi-linear analysis: parallel Reynold's stress = anomalous viscosity + source term

$$F_{Q.L.}^{D} = \int_{0}^{t} d\tau \sum_{m,n} \left[k_{\theta}^{2} \,\tilde{\phi}(r,t) \,\tilde{\phi}^{*}(r,\tau) \,e^{im\,\omega_{0}(t-\tau)} \right] \partial_{r} < v(r,\tau) >$$

$$F_{Q.L.}^{S} = \int_{0}^{t} d\tau \sum_{m,n} \left[A \,k_{\theta} \,k_{\parallel} \,\tilde{\phi}(r,t) \,\left(\tilde{\phi}^{*}(r,\tau) + \tilde{p}^{*}(r,\tau) \right) \,e^{im\,\omega_{0}(t-\tau)} \right]$$

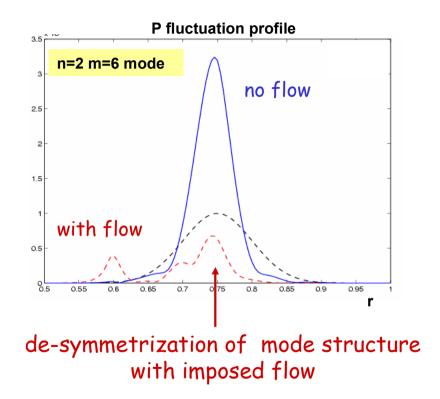
G. Falchetto DRFC, CEA-Cadarache

ANOMALOUS TOROIDAL ROTATION -CYLINDRICAL CASE

In the absence of shear flow, fluctuations are symmetric around rational surfaces

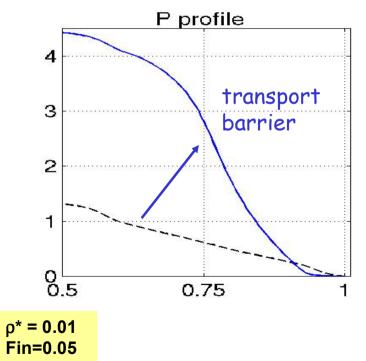
 $F_{Q.L.}^{S} = \int_{0}^{t} d\tau \sum_{m,n} \left[A k_{\theta} k_{\parallel} \tilde{\phi}(r,t) \left(\tilde{\phi}^{*}(r,\tau) + \tilde{p}^{*}(r,\tau) \right) e^{im \omega_{0}(t-\tau)} \right]$

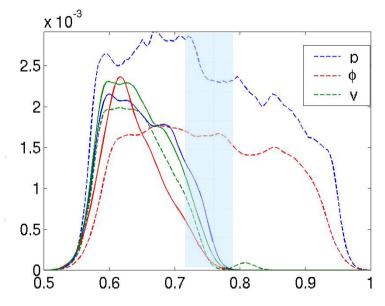
I no net parallel velocity is produced


for parallel velocity generation a de-symmetrization of the parallel flow is needed

> e.g. imposed strong constant shear flow

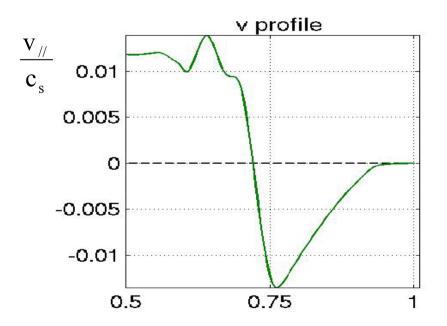
Test simulation one mode cylindrical case with imposed constant shear flow


 $v_{\theta 0}(r) = const.$



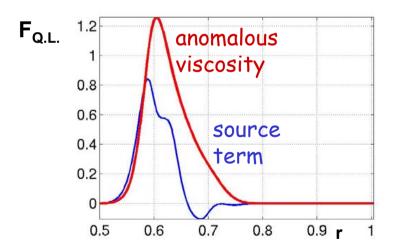
Cylindrical case with zero initial velocity and profile

- ✓ strong shear flow triggers a transport barrier
- ✓ complete stabilization of fluctuations by imposed ExB shear



stabilization of fluctuations induced by shear flow outside the barrier

De-symmetrization induced by the shear flow \rightarrow


finite parallel velocity generation in region internal to the barrier ! HOWEVER low amplitude of generated velocity

DISCUSSION

- - The turbulent source is small outside the barrier
 - parallel Reynold's stress quasi-linear components, diffusion and source, are asymmetric and small outside the barrier

further investigate to better understand generation mechanism

3D fluid global non-linear simulations of flux-driven electrostatic ITG turbulence in a tokamak core

✓ Effect of poloidal rotation on turbulence

main trigger parameter: collisionality ν^{\star}

- ✓ low v* : self-generation of "frozen" zonal flows of large amplitude and shear → shearing of convective cells, upshift of ITG threshold & steepening of steady-state pressure profiles → improved confinement
- ✓ key role of ZF mean shear in decorrelating turbulence: stronger
 ZF shear (at low v^{*}) → shorter turbulence correlation lenghts and
 times

> interplay with geodesic curvature modes

Association

FURATOM-CFA

SUMMARY and CONCLUSIONS

preliminary reults - cylindrical case with imposed strong poloidal flow shear :

✓ there is a source of parallel momentum due to a desymmetrization of the turbulent flow

 ✓ finite parallel velocity generation but SMALL with an imposed shear flow because of turbulence quench