Overview on Instabilities and Confinement of Energetic Ions on JET

S.E.Sharapov, M.Mantsinen¹, V.G.Kiptily, B.Alper, H.L.Berk², L.Bertalot³, D.Borba⁴, C.Boswell⁵, B.N.Breizman², C.D.Challis, M.de Baar⁶, E.De La Luna⁷, P.de Vries, A.Fasoli⁸, J.Fessey, V.Goloborod'ko^{9,10}, M.P.Gryaznevich, S.Hacquin⁴, N.C.Hawkes, E.Joffrin¹¹, G.Kramer¹², P.J.Lomas, J.Mailloux, R.Nazikian¹², J.-M.Noterdaeme^{14,15}, S.D.Pinches¹⁴, J.Rapp¹⁶, P.Sandquist¹⁷, D.Testa⁸, A.Tuccillo³, V.Yavorskij^{9,10}, N.P.Young, F.Zonca³, and JET-EFDA Contributors

Euratom/UKAEA Fusion Assoc., Culham Science Centre, UK
1. Helsinki University of Technology, Assoc. Euratom-Tekes, Finland
2. IFS, University of Texas at Austin, USA
3. Assoc. Euratom/ENEA/CNR Fusione, Italy
4. Euratom/IST Fusion Assoc., Centro de Fusao Nuclear, Portugal
5. PSFC, Massachussets Institute of Technology, USA
6. Assoc. Euratom-FOM Inst. Plasmaphys. 'Rijnhuizen', The Netherlands
7. Assoc. Euratom-CIEMAT, Lab. National de Fusion, Madrid, Spain
8. CRPP/EPFL, Assoc. Euratom-Conf. Suisse, Switzerland
9. Assoc. Euratom-OEAW, University of Innsbruck, Austria

- 10. Institute Nuclear Research, Kiev, Ukraine
- 11. Assoc. Euratom/CEA, Cadarache, France
- 12. Princeton Plasma Physics Laboratory, USA
- 13. Helsinki University of Technology, Assoc. Euratom-Tekes, Finland

7 21

- 14. Max Planck Institute Plasmaphysik, Euratom Assoc., Germany
- 15. Gent University, EESA Department, Gent, Belgium
- 16. Forschungszentrum Julich GmbH, Euratom Assoc., Julich, Germany
- 17. Euratom/VR Fusion Assoc., Chalmers Univ. of Technology, Sweden

^{*} See Annex of J Pamela et al., 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1-6 November 2004, paper OV/1-X

Outline of the talk

Burning plasma and ITER

Confinement of ICRH-accelerated ⁴**He studied with gamma-ray diagnostics during the Alpha-simulation experiment**

Experimental status and recent results on TAE-modes

Alfvén Cascade instability in shear-reversed plasmas

Recent progress in diagnosing Alfvén instabilities

Summary

ITER is supposed to provide information on fusion-born alphas:

- 1) Production of fusion-born alphas
- 2) Plasma heating by alphas
- **3) Confinement of alphas**
- 4) Losses of alphas

ITER as a burning plasma machine

ITER burning plasma: $P_{\alpha}/P_{in} = 2$ for $Q=10 \Rightarrow$ Different fast ions of comparable energy contents will co-exist in ITER:

Fusion-born alphas with temperature \approx 1 MeV (isotropic distribution function)

Deuterium NB injected at \approx 1 MeV (anisotropic distribution function with $E_{||} >> E_{\perp}$)

ICRH-accelerated ions of H, ³He, ... (anisotropic distribution function with $E_{\perp} >> E_{||}$)

↓

Study of alpha-effects will be hindered by competing effects from the other ions.

Example: TAE-drive from 1 MeV *anisotropic* NBI is \approx 3 times higher than that from *isotropic* fusion-born alphas, for similar values of d β_{fast} /dr.

ITER as a burning plasma machine (continued)

ITER with high bootstrap current fraction may converge to 'self-organised' plasma equilibrium with strong reversed shear as on JET and JT-60U. Alpha confinement and heating profiles may be non-trivial in such equilibrium \Rightarrow further complications in addition to co-existence of several groups of fast ions

Density profile of alphas for JET #51976 Electron power deposition of alphas with a 'current-hole' at r/a=0.6

From: Yavorskij et al., Nuclear Fusion 43 (2003) 1077

UKAEA F

ITER as a burning plasma machine (continued)

Understanding of burning plasma in ITER =

- 1) identifying all the crucial fast ion problems and
- 2) measuring the fast ions with diagnostics, which
- measure different groups of fast ions at the same time,
- have time and space resolution good enough to observe all the principal fast ion effects, and
- are compatible with DT operation.

In order to be prepared for the burning plasma, targets (1), (2) have to be met on existing facilities.

JET is a unique test-bed for preparing for the burning plasma:

- JET was designed to confine 3.5 MeV fusion-born alphas
- Capable of Tritium operations
- Has a flexible ICRH plant for accelerating various types of ITER-relevant ions up to the MeV range in a variety of different plasma conditions

Two campaigns on alpha-studies were performed in 2003-2004:

- Trace Tritium Experiment (use of T for real fusion-born alphas)
- Helium campaign (use of ICRH-acceleration for producing 'artificial alphas')
 - Alpha-simulation experiment
 - Fast ions in ⁴He plasma experiment

Helium campaigns on JET

Aim at developing alpha-diagnostics and studying the alpha-physics without use of Deuterium-Tritium plasma:

- Investigate confinement and profiles of the MeV-range ⁴He accelerated with 3rd harmonic ICRH in 'neutron-free' ⁴He plasmas with monotonic and non-monotonic q(r).
- Develop nuclear gamma-ray diagnostics for simultaneous measurements of spatial profile and temperatures of ITER-relevant ⁴He hot ions (E>1.7 MeV) and D hot ions (E>500 keV).

Alpha Simulation Experiment in JET Helium Plasma

Studies of fast He⁴ complimentary to Tritium experiments, but performed at very low neutron rates in not-activating environment

LOPMENT O EFDA

⁴He acceleration with 3ω(⁴He) ICRF heating of ⁴He NBI

⁴He plasma + 8 MW of ICRH at 3ω(⁴He) + 120 keV ⁴He beam of power 1.5 MW H-mode with MeV energy ⁴He ions: $T_{Hot} = 1.1 \pm 0.4 \text{ MeV},$ $n_{\rm Hot} / n_e \sim (\Delta W_{\rm DIA} / W_{\rm DIA})^* (T_e / T_{\rm Hot}) \sim 10^{-3}$

Jet

M.Mantsinen et al., Phys.Rev.Lett. 88 (2002)105002 Fast ion parameters are close to these in record DT discharge #42976: $T_{Hot} \approx 1 MeV, n_{Hot} / n_e \sim 4.10^{-3}$, but at four orders lower neutron rates **NO ACTIVATION** Very good scenario for developing and

S.E.Sharapov et al, 2nd TM on Theory of Plasma Instabilities, Trieste, 3rd March 2005

testing α -diagnostics !

⁴He acceleration technique in reversed shear plasmas (2004)

EUROPEAN FUSION DEVELOPMENT AGREEMENT

Simultaneous Measurement of ⁴He (E>1.7 MeV) and D (E>0.5 MeV)

O EFDA

S.E.Sharapov et al, 2nd TM on Theory of Plasma Instabilities, Trieste, 3rd March 2005

Alfvén Instabilities Driven by Pressure Gradient of Fast Ions:

- Toroidal Alfvén Eigenmodes (TAEs) in monotonic q(r)
- Alfvén Cascade (AC) egenmodes + TAEs in non-monotonic q(r)
- Energetic Particle Modes (EPMs, Talk by F. Zonca)
- Three main parameters characterise instability and radial transport:
- Alfvén Mach Number
- Pressure Gradient (scaled)

 $V_{\alpha} / V_{A}(0)$ (=1.9 in ITER, 1.6-1.9 in JET DT) R∇β_α (=0.05 in ITER, 0.02-0.037 in JET DT) - Number of Drift Orbits per Radius $\Delta_f / a \sim q \rho_{\alpha} / a$ (=0.016 in ITER, 0.1 in JET)

Weakly-damped Toroidal Alfvén Eigenmodes

• C.Z.Cheng, L.Chen, M.S.Chance, Ann. Phys. 161 21 (1985):

UKAEA

1) In toroidal geometry, gap in the Alfvén continuum appears at frequency $\omega = k_{\parallel m}(r)V_A(r) = -k_{\parallel m+1}(r)V_A(r)$ giving two extremum points in ω_A

2) In addition to the continuum, weakly-damped Toroidal Alfvén Eigenmode (TAE) may exist in the gap if magnetic shear is finite

Ideal MHD continuous spectrum of n=1, m=0-4 Alfvén and SM frequencies versus $s = \sqrt{\psi_p / \psi_p^{edge}} \propto r/a$ Radial dependence of the Fourier harmonics of TAE with a frequency located in the TAE-gap

S.E.Sharapov et al, 2nd TM on Theory of Plasma Instabilities, Trieste, 3rd March 2005

0.8

ĩ.ó

TAEs Observed on All Tokamaks with Fast Ions

- TAE instability excited by NBI- and ICRH-accelerated ions is commonly observed on all existing tokamaks (TFTR, JET, JT-60U, DIII-D, C-Mod...)
- First observation of α-driven TAE in DT plasma was made on TFTR by R.Nazikian et al., Phys. Rev. Lett. 78 2976 (1997)

Nonlinear Evolution of a Single TAE

 Non-linear TAE behaviour depends on competition between the field of the mode that tends to flatten distribution function near the resonance (effect proportional to the net growth rate γ=γ_L- γ_d) and the collision-like processes that constantly replenish it (proportional to v_{eff})

AGREEMENT

Nonlinear Evolution of a Single TAE

Nonlinear equation for amplitude A(t)

ELOPMENT

$$\frac{dA}{dt} = A - \exp(i\phi) \int_{0}^{t/2} \tau^{2} \int_{0}^{t-2\tau} \exp\left[-\nu^{3}\tau^{2} \left(2\tau/3 + \tau_{1}\right)\right] \times A(t-\tau)A(t-\tau-\tau_{1})A^{*}(t-2\tau-\tau_{1})d\tau_{1}d\tau$$

derived in [*] describes four different regimes of TAE amplitude A:

- a) Steady-state A=const;b) Periodically modulated (observed as
- 'pitchfork-splitting' effect);
- c) Chaotic;
- d) Explosive regime

as ratio $v \equiv v_{eff} / \gamma$ decreases

[*] H.L.Berk, B.N.Breizman, and M.S.Pekker, Plasma Phys. Reports 23 (1997) 778

$\textbf{STEADY-STATE} \rightarrow \textbf{PITCHFORK} \rightarrow \textbf{CHAOTIC TAE ON JET}$

(#49447). Amplitudes of TAEs with n=3 to 6 change in time from steady-state to pitchfork to chaotic

ICRH power increases from 0 to 5 MW during the observed TAE-amplitude transition

Jet

[*] A. Fasoli et al., Phys. Rev. Lett. 81 5564 (1998) [**] R.F. Heeter et al., Phys. Rev. Lett. 85 3177 (2000)

C EFDA

THE HOLES AND CLUMPS THEORY

• Explosive regime in a more complete non-linear model leads to frequency-sweeping 'holes' and 'clumps' on the perturbed distribution function. (H.L.Berk, B.N.Breizman, and N.V.Petviashvili, Phys. Lett. A234 (1997) 213)

• These long-living Bernstein-Greene-Kruskal (BGK) nonlinear waves sweep in frequency away from the starting frequency, with frequency sweep

$$\delta\omega \propto \omega_b^{3/2} t^{1/2}; \quad \omega_b(t) \propto \left| \delta B_{TAE} \right|^{1/2}$$

MAST: FREQUENCY-SWEEPING MODES ARISING FROM TAEs

Identified as hole-clump frequency-sweeping pairs (Talk by S.Pinches)

Effect of Alfven Eigenmodes on ICRH-accelerated protons in q=1 plasmas in JET

This JET data supports previously published results from JT-60U (Saigusa et al., PPCF 40 (1998) 1647) TFTR (Bernabei et al., Phys. Rev. Lett. 84 (2000) 1212) DIII-D (Heidbrink et al., Nuclear Fusion 39 (1999) 1369)

Gamma-ray intensity from 5MeV protons decreases 0.5–1 sec before sawtooth crashes

The Gamma-ray Decrease Happens when TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist

The Gamma-ray Decrease Happens when TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist

TAEs with n=3, 4 within the q=1 radius (tornado), and n=5,6 TAEs outside the q=1

Orbits of 5 MeV protons

• Prompt losses of protons with *E*>5 MeV (orbit width $\Delta_f/a \le 0.5$) enhanced by the TAEs are considered as a primary channel of proton losses.

ICRF acceleration of ³He minority: a step towards time resolved profiles of fast ions and ITER-relevant ratio of Δ_f/a

Why Fast ³He in ⁴He Plasma?

³He with E>500 keV generates lots of gamma-rays when it collides with C and Be:

- For given n_e, T_i V_A / V_{Ti} is higher in He plasma ⇒ smaller AE damping on thermal ions
- Low neutron yield in ⁴He plasma \Rightarrow excellent conditions for gammas

Profile of Fast Ions (Top) Measured Simultaneously with AEs (Bottom)

Notches of ICRH power (5 MW \rightarrow 1MW) show modes most sensitive to ³He ions

UKAEA

Linear and Nonlinear Characteristics of AEs Assessed from *Measured* Profiles of Fast Ions

Time: 7.6042 to 9.4641 npt 12000000 natp: 2048 nff2:4096 f1:157.8 f2:219.9 manusher v3.14(mphot) – Uman mandhar: 3.n Feb 12:1156/25:3004

Nonlinear pitchfork splitting of ICRH-driven TAE as $d\beta_{fast}/dr$ increases by ~40%

Tens of AEs were excited, but no degradation of fast ³He observed in these I=2.3 MA discharges with orbit width of ³He ions $\Delta_f/a <<1$.

ITER scenarios with high bootstrap current fractions may converge to 'self-organised' plasma equilibrium with strong reversed shear/current-holes as on JET and on JT-60U:

2.6T/2.5MA JET discharge without LHCD (#47695). ITB i triggered at t=44.6 and it increases plasma pressure gradient and bootstrap current.

Magnetic spectrogram shows TAEs before ITB trigger \Rightarrow flat/monotonic q, and Alfven Cascades after ITB trigger \Rightarrow reversed-shear

H.Kimura et al., Nucl. Fusion 38 1303 (1998): First report on observing mysterious frequency-sweeping modes in JT-60U reversed-shear plasmas

H.L.Berk et. al, Phys. Rev. Lett. 87 185002 (2001) S.E.Sharapov et. al, Phys. of Plasmas 9 2027 (2002): Interpretation given

- ACs are localized in the vicinity of magnetic surface associated with minimum of q(r)
- The mode is associated with extremum of Alfvén continuum at q_{\min}
- As the value $q_{\min}(t)$ evolves in time due to current changes, the AC frequency changes:

$$\omega_{AC}(t) = \left| \frac{m}{q_{\min}(t)} - n \right| \frac{V_A(t)}{R_0} + \Delta \omega \implies \frac{d}{dt} \omega_{AC}(t) \approx m \frac{V_A}{R_0} \frac{d}{dt} q_{\min}^{-1}(t)$$

R.Nazikian et al., Phys. Rev. Lett. 91 125003 (2003): Alpha-particle driven AC identified in old TFTR data for DT plasma

Evolution of n=1 Alfvén continuum as a function of r/a

with $q_{min}(t)$ evolving from $q_{min}=3$ to 2.9,..., 2.4

Magnetic spectrogram showing Alfven Cascade Eigenmodes in reversed-shear JET plasma (pulse #49382)

Alfvén Cascades are routinely used on JET for diagnosing *q*_{min}(*t*) evolution

Novel approach to diagnosing Alfvén Eigenmodes based on interferometry of internal density fluctuations shows many more unstable modes:

Collaboration between EFDA-JET and G.Kramer, R.Nazikian (PPPL),

S.E.Sharapov et al., Phys. Rev. Lett. 93 (2004) 165001; R.Nazikian et al., 20th IAEA Fuion Energy Conf., Vilamoura, Portugal, paper EX/5-1 (2004)

Alfvén Cascades detected with O-mode interferometry

JET Shot: 60935 : Chn: D/63-CATS<COS:008 Time: 3.6000 to 5.0000 npt: 3180000 netp: 1024 nfft: 8192 f1: 30.00 f2: 170.0 cdmpme: v310 - Umm: spinch : Fi Sep 12 1456:11 2003

Perturbed density versus perturbed magnetic field

Further development: detection of ACs driven by sub-Alfvénic NBI $(V_{\parallel}) \sim 0.2 V_A$

dEI Shot: 61494 : Chi: 0//63-04/353/8/005 Time: 3.0184 to 3.6219 npt: 2800000 netp: 512 nfft: 4096 f1: 26.38 f2: 120.8 gender: 514 (sphid) - Uer: centre: Te Aug 24 185102 2004

Further development

Successful use of interferometry on DIII-D (R.Nazikian) and PCI on C-Mod (J.Snipes) for mode detection from density perturbations

Observation of ACs excited by sub-Alfvénic tangential NBI on DIII-D (R.Nazikian)

Detection of ACs with "usual" JET interferometry (B.Alper)

JET

Summary

- α -simulation experiment: fast ⁴He profiles measured in shear-reversed and monotonic-q(r) plasmas.
- Simultaneous measurements of ⁴He with E>1.7 MeV and D with E>500 keV
- Theories of TAE spectrum and nonlinear evolution without overlapping resonances are in a broad agreement with experimental data
- Decrease of γ -rays from 5 MeV protons during "tornado" and TAE activity is interpreted as TAE-enhanced loss of protons with $\Delta_f \leq a$
- Time-resolved profile of ³He ions (E>500 keV) measured simultaneously with $AEs \Rightarrow$ study with measured fast ion profiles becomes possible. No losses.
- Alfvén Cascade instability in shear-reversed advanced scenarios explained
- Interferometry diagnostics for Alfvén Eigenmodes shows significantly larger number of unstable modes driven by fast ions, including sub-Alfvénic NBI
- Understanding of AEs is generally good, but extrapolation to ITER-relevant high-n AE and search for stabilising techniques has to be performed yet

