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Outline of the talk

Burning plasma and ITER

Confinement of ICRH-accelerated 4He studied with gamma-ray diagnostics during the
Alpha-simulation experiment

Experimental status and recent results on TAE-modes

Alfvén Cascade instability in shear-reversed plasmas

Recent progress in diagnosing Alfvén instabilities

Summary
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ITER is supposed to provide information on fusion-born alphas:

1) Production of fusion-born alphas

2) Plasma heating by alphas

3) Confinement of alphas

4) Losses of alphas
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ITER as a burning plasma machine

ITER burning plasma: Pαααα/Pin = 2 for Q=10
Different fast ions of comparable energy contents will co-exist in ITER:

Fusion-born alphas with temperature ≈≈≈≈ 1 MeV (isotropic distribution function)

Deuterium NB injected at ≈≈≈≈ 1 MeV (anisotropic distribution function with E >> E⊥⊥⊥⊥)

ICRH-accelerated ions of H, 3He, … (anisotropic distribution function with E⊥⊥⊥⊥ >> E )

Study of alpha-effects will be hindered by competing effects from the other ions.

Example: TAE-drive from 1 MeV anisotropic NBI is ≈≈≈≈ 3 times higher than that from
isotropic fusion-born alphas, for similar values of dββββfast /dr.
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ITER as a burning plasma machine (continued)
ITER with high bootstrap current fraction may converge to ‘self-organised’ plasma equilibrium with
strong reversed shear as on JET and JT-60U. Alpha confinement and heating profiles may be non-trivial
in such equilibrium further complications in addition to co-existence of several groups of fast ions
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ITER as a burning plasma machine (continued)

Understanding of burning plasma in ITER =

1) identifying all the crucial fast ion problems and
2) measuring the fast ions with diagnostics, which

• measure different groups of fast ions at the same time,
• have time and space resolution good enough to observe all the principal fast ion effects, and
• are compatible with DT operation.

In order to be prepared for the burning plasma, targets (1), (2) have to be met on existing
facilities.
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JET is a unique test-bed for preparing for the burning plasma:

• JET was designed to confine 3.5 MeV fusion-born alphas

• Capable of Tritium operations

• Has a flexible ICRH plant for accelerating various types of ITER-relevant ions up to the
MeV range in a variety of different plasma conditions

Two campaigns on alpha-studies were performed in 2003-2004:

• Trace Tritium Experiment (use of T for real fusion-born alphas)

• Helium campaign (use of ICRH-acceleration for producing ‘artificial alphas’)

- Alpha-simulation experiment
- Fast ions in 4He plasma experiment
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Helium campaigns on JET

Aim at developing alpha-diagnostics and studying the alpha-physics without use of
Deuterium-Tritium plasma:

• Investigate confinement and profiles of the MeV-range 4He accelerated with 3rd

harmonic ICRH in ‘neutron-free’ 4He plasmas with monotonic and non-monotonic q(r).

• Develop nuclear gamma-ray diagnostics for simultaneous measurements of spatial profiles
and temperatures of ITER-relevant 4He hot ions (E>1.7 MeV) and D hot ions (E>500 keV).
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Alpha Simulation Experiment in JET Helium Plasma

Studies of fast He4 complimentary to Tritium experiments,
but performed at very low neutron rates in not-activating environment
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4He acceleration with 3ωωωω(4He) ICRF heating of 4He NBI

0

4

2

0

1

2.5

1.5

0

4

70keV

120keV

8

2

2

4

3

8

Pulse No: 54164
ω = 3ω(4He) 2.2T/2.2MA 51MHz dipole phasing

Pulse No: 54165

20 22 24 26

W
D

IA

(M
J)

R
N

T

(1
013

s-
1 )

n e
(1

019
m

-
3 )

P
IC

R
F

(M
W

)
P

N
B

I

(M
W

)
T e

(k
eV

)

Time (s)

JG
01

.1
21

/4
c

4He plasma ++++ 8 MW of ICRH at 3ωωωω(4He) +
120 keV 4He beam of power 1.5 MW

H-mode with MeV energy 4He ions:
THot = 1.1 ±±±± 0.4 MeV,
nHot / ne ∼∼∼∼ (∆∆∆∆WDIA/WDIA)*(Te/THot) ∼∼∼∼ 10-3

M.Mantsinen et al., Phys.Rev.Lett. 88
(2002)105002
Fast ion parameters are close to these in
record DT discharge #42976:
THot ≈≈≈≈ 1MeV, nHot / ne ∼∼∼∼ 4⋅⋅⋅⋅10-3 ,
but at four orders lower neutron rates

NO ACTIVATION
Very good scenario for developing and
testing αααα-diagnostics !
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4He acceleration technique in reversed shear plasmas (2004)
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Simultaneous Measurement of 4He (E>1.7 MeV) and D (E>0.5 MeV)

Energy windows for ALL Gamma
Camera channels

I > 2.0 MeV (total)
II 2.5 - 3.5 MeV (D+C)
III spare
IV 4.0 - 5.0 MeV (4He+Be)
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Gamma-ray Images of 4He (E>1.7 MeV) and D (E>0.5 MeV)
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Alfvén Instabilities Driven by Pressure Gradient of Fast Ions:

• Toroidal Alfvén Eigenmodes (TAEs) in monotonic q(r)
• Alfvén Cascade (AC) egenmodes + TAEs in non-monotonic q(r)
• Energetic Particle Modes (EPMs, Talk by F. Zonca)

• Three main parameters characterise instability and radial transport:

- Alfvén Mach Number Vαααα / VA(0) (=1.9 in ITER, 1.6-1.9 in JET DT)
- Pressure Gradient (scaled) R∇∇∇∇ββββαααα (=0.05 in ITER, 0.02-0.037 in JET DT)
- Number of Drift Orbits per Radius ∆∆∆∆f /a ∼∼∼∼ qρρρραααα / a (=0.016 in ITER, 0.1 in JET)
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Weakly-damped Toroidal Alfvén Eigenmodes

• C.Z.Cheng, L.Chen, M.S.Chance, Ann. Phys. 161 21 (1985):

1) In toroidal geometry, gap in the Alfvén continuum appears at frequency

)()()()( 1 rVrkrVrk AmAm +−==ω giving two extremum points in Aω

2) In addition to the continuum, weakly-damped Toroidal Alfvén Eigenmode (TAE) may
exist in the gap if magnetic shear is finite
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TAEs Observed on All Tokamaks with Fast Ions
• TAE instability excited by NBI- and ICRH-accelerated ions is commonly observed on all

existing tokamaks (TFTR, JET, JT-60U, DIII-D, C-Mod…)
• First observation of αααα-driven TAE in DT plasma was made on TFTR by R.Nazikian et al.,

Phys. Rev. Lett. 78 2976 (1997)
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Nonlinear Evolution of a Single TAE
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FHOT

• Non-linear TAE behaviour depends on competition between the field of the mode that
tends to flatten distribution function near the resonance (effect proportional to the net
growth rate γγγγ≡≡≡≡γγγγL- γγγγd) and the collision-like processes that constantly replenish it
(proportional to ννννeff)
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Nonlinear Evolution of a Single TAE
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derived in [*] describes four different
regimes of TAE amplitude A:

a) Steady-state A=const;
b) Periodically modulated (observed as

‘pitchfork-splitting’ effect);
c) Chaotic;
d) Explosive regime

as ratio νννν≡≡≡≡ννννeff /γγγγ decreases

[*] H.L.Berk, B.N.Breizman, and M.S.Pekker, Plasma Phys. Reports 23 (1997) 778
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STEADY-STATE →→→→ PITCHFORK →→→→ CHAOTIC TAE ON JET
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THE HOLES AND CLUMPS THEORY

• Explosive regime in a more complete non-linear model leads to frequency-sweeping
‘holes’ and ‘clumps’ on the perturbed distribution function. (H.L.Berk, B.N.Breizman, and
N.V.Petviashvili, Phys. Lett. A234 (1997) 213)

• These long-living Bernstein-Greene-Kruskal (BGK) nonlinear waves sweep in frequency
away from the starting frequency, with frequency sweep

2/12/12/3 )(; TAEbb Btt δωωδω ∝∝
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MAST: FREQUENCY-SWEEPING MODES ARISING FROM TAEs

Identified as hole-clump frequency-sweeping pairs
(Talk by S.Pinches)
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Effect of Alfven Eigenmodes on
ICRH-accelerated protons in q=1 plasmas in JET

This JET data supports previously published results from
JT-60U (Saigusa et al., PPCF 40 (1998) 1647)
TFTR (Bernabei et al., Phys. Rev. Lett. 84 (2000) 1212)
DIII-D (Heidbrink et al., Nuclear Fusion 39 (1999) 1369)
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Gamma-ray intensity from 5MeV protons decreases
0.5–1 sec before sawtooth crashes

200

180

160

140

120

100

80

60

40

20

0

220

8 9 10 11 12 13 14 15
Time (s)

JG
04

.5
02

-4
c

γγγγ-rays from reactions 12C(p, p’γγγγ)12C

8

6

4

2

8 10 12 14
10

3  e
V

Time (s)

JG
04

.5
02

-5
c

Te at different radii show sawteeth at t=11.4,
t=13 s occuring after decreases of γγγγ- intensity



S.E.Sharapov et al, 2nd TM on Theory of Plasma Instabilities, Trieste, 3rd March 2005

The Gamma-ray Decrease Happens when
TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist
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The Gamma-ray Decrease Happens when
TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist
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• Prompt losses of protons with E>5 MeV (orbit width ∆∆∆∆f /a ≤≤≤≤ 0.5) enhanced
by the TAEs are considered as a primary channel of proton losses.
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ICRF acceleration of 3He minority: a step towards
time resolved profiles of fast ions and ITER-relevant

ratio of ∆∆∆∆f /a
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Why Fast 3He in 4He Plasma?
3He with E>500 keV generates lots of gamma-rays when it collides with C and Be:

• For given ne ,Ti VA / VTi is higher in He plasma smaller AE damping on thermal
ions

• Low neutron yield in 4He plasma excellent conditions for gammas
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Profile of Fast Ions (Top) Measured Simultaneously with AEs (Bottom)

Notches of ICRH power (5 MW →→→→1MW) show modes most sensitive to 3He ions
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Linear and Nonlinear Characteristics of AEs
Assessed from Measured Profiles of Fast Ions

Nonlinear pitchfork splitting of ICRH-driven TAE as dββββfast/dr increases by ∼∼∼∼40%

Tens of AEs were excited, but no degradation of fast 3He observed in these
I=2.3 MA discharges with orbit width of 3He ions ∆∆∆∆f /a <<1.
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Alfvén Cascade (AC) Eigenmodes in Reversed-Shear Scenarios

ITER scenarios with high bootstrap current fractions may converge to ‘self-organised’ plasma
equilibrium with strong reversed shear/current-holes as on JET and on JT-60U:
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Alfvén Cascade (AC) Eigenmodes in Reversed-Shear Scenarios

H.Kimura et al., Nucl. Fusion 38 1303 (1998): First report on observing mysterious
frequency-sweeping modes in JT-60U reversed-shear plasmas

H.L.Berk et. al, Phys. Rev. Lett. 87 185002 (2001)
S.E.Sharapov et. al, Phys. of Plasmas 9 2027 (2002): Interpretation given

• ACs are localized in the vicinity of magnetic surface associated with minimum of q(r)
• The mode is associated with extremum of Alfvén continuum at qmin

• As the value qmin (t) evolves in time due to current changes, the AC frequency changes:
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R.Nazikian et al., Phys. Rev. Lett. 91 125003 (2003): Alpha-particle driven AC
identified in old TFTR data for DT plasma
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Alfvén Cascade (AC) Eigenmodes in Reversed-Shear Scenarios
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Alfvén Cascade (AC) Eigenmodes in Reversed-Shear Scenarios
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Alfvén Cascades are routinely used on JET
for diagnosing qmin(t) evolution

Novel approach to diagnosing Alfvén Eigenmodes based on
interferometry of internal density fluctuations shows many more

unstable modes:

Collaboration between EFDA-JET and G.Kramer, R.Nazikian (PPPL),

S.E.Sharapov et al., Phys. Rev. Lett. 93 (2004) 165001;
R.Nazikian et al., 20th IAEA Fuion Energy Conf., Vilamoura,

Portugal, paper EX/5-1 (2004)
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Alfvén Cascades detected with O-mode interferometry
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Perturbed density versus perturbed magnetic field
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Further development: detection of ACs driven by sub-Alfvénic NBI
(V∼∼∼∼0.2 VA)
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Further development

Successful use of interferometry on DIII-D (R.Nazikian) and PCI on C-Mod
(J.Snipes) for mode detection from density perturbations

Observation of ACs excited by sub-Alfvénic tangential NBI on DIII-D (R.Nazikian)

Detection of ACs with “usual” JET interferometry (B.Alper)
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Summary
• αααα-simulation experiment: fast 4He profiles measured in shear-reversed and

monotonic-q(r) plasmas.

• Simultaneous measurements of 4He with E>1.7 MeV and D with E>500 keV

• Theories of TAE spectrum and nonlinear evolution without overlapping
resonances are in a broad agreement with experimental data

• Decrease of γγγγ-rays from 5 MeV protons during “tornado” and TAE activity is
interpreted as TAE-enhanced loss of protons with ∆∆∆∆f ≤≤≤≤ a

• Time-resolved profile of 3He ions (E>500 keV) measured simultaneously with
AEs study with measured fast ion profiles becomes possible. No losses.

• Alfvén Cascade instability in shear-reversed advanced scenarios explained

• Interferometry diagnostics for Alfvén Eigenmodes shows significantly larger
number of unstable modes driven by fast ions, including sub-Alfvénic NBI

• Understanding of AEs is generally good, but extrapolation to ITER-relevant
high-n AE and search for stabilising techniques has to be performed yet


