

The Role of Damping in Stable and Unstable Alfvén Eigenmodes

S. D. Pinches¹, A. Könies², Ph. Lauber¹ H.L.Berk³, S.E.Sharapov⁴ and M.Gryaznavich⁴

¹Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Garching, Germany ²Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Greifswald, Germany ³Institute for Fusion Studies, University of Texas at Austin, Austin, Texas, USA ⁴EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, UK

Motivation

- In a burning plasma α-particles significantly contribute to pressure
- Large scale α -particle driven instabilities
 - Loss of α -particles and thus self-heating
 - Damage to device
- Stability boundary determined by damping mechanisms
 - Disagreement over understanding of dominant physical damping mechanisms

Physics to Capture

Multiple scale-lengths

 Minor radius (global modes) → orbit width → Larmor radius

Realistic geometries

Tokamak and stellarator

Self-consistency

- Particle distribution \leftrightarrow Mode structure
- Energy and momentum conservation

Nonlinear evolution

 Saturated mode amplitudes, pitchfork splitting, frequency sweeping

Numerical Tools

• LIGKA

- Linear gyrokinetic non-perturbative tokamak model
- [Ph. Lauber, Ph.D. Thesis, T.U. München 2003]

• CAS3D-K

- Perturbative drift-kinetic approach for stellarators
- [A. Könies, Phys. Plas. **7** 1139 (2000)]

• HAGIS

- Initial value nonlinear drift-kinetic δf model
- [S. D. Pinches et al., Comput. Phys. Commun. **111**, 131 (1998)]

LIGKA: Gyrokinetic Model

Based on model by H. Qin, W. M. Tang and G. Rewoldt

- Linear shear Alfven perturbations
 - Calculates mode frequency, growth rate and mode structure
- Gyrokinetic
 - Particles feel perturbation around gyro-orbit

Non-pertubative

- Solves Ampere's law and quasi-neutrality equation simultaneously
- Allows change from MHD eigenmode structure
- Nonlinear eigenvalue problem (Nyquist solver)

Accurate treatment of unperturbed particle orbits

Numerical integration of full drift orbit effects (HAGIS)

General tokamak geometry

- From numerical equilibrium code (e.g. HELENA)

[H. Qin, W. M. Tang, G. Rewoldt, Phys. Plas. **6** 2544 (1999)

Shear Alfvén Continuum

 Described by local dispersion relation:

$$\omega^2 = k_{\parallel}^2 v_A^2$$

- Mode coupling creates frequency gaps and global modes
 - Large scale interaction with fast particles

(Equilibrium from A. Jaun)

Simon Pinches, 2nd IAEA Technical Meeting on Theory of Plasma Instabilities, Trieste

TAE

- Global mode formed in toroidicity induced gap
- Ballooning character
- Principle damping mechanisms

Electron/(ion) Landau damping, continuum/radiative damping

[C.Z. Cheng and M.S. Chance, Phys. Fluids **29** 3695 (1986)] [D. Borba and W. Kerner, J. Comp. Phys. **153** 101 (1999)] Simon Pinches, 2nd IAEA Technical Meeting on Theory of Plasma Instabilities, Trieste 7

FLR Effects

• FLR effects introduce kinetic Alfvén waves (KAW)

$$\omega^{2} = k_{\parallel}^{2} v_{A}^{2} \left[1 + k_{\perp}^{2} \rho_{i}^{2} \left(\frac{3}{4} + \frac{T_{e}}{T_{i}} \right) \right]$$

$$\underbrace{\partial \omega / \partial k_{\perp} = 0} \quad \frac{\partial \omega / \partial k_{\perp} \neq 0}{\partial \omega / \partial k_{\perp} \neq 0}$$

- Alfvén continuum resolved into discrete spectrum
 - MHD singularity resolved by higher order equation

Coupling of TAE to KAW leads to radiative damping

- Energy carried away from gap region

Coupling of KAW leads to formation of KTAE

- Global modes existing just above top of TAE frequency gap

[Hasegawa & Chen Phys. Fluids **19** 1924 (1976)] [Mett and Mahajan, Phys. Fluids B **4** 2885 (1992)] [Conner *et al*, Proc. 21st EPS Conf., **18B** 616 (1996)]

Radiative Damping in LIGKA

With only two harmonics, TAE intersects "continuum" Perturbed electrostatic potential In this JET case, mode conversion dominantly occurs at edge m=1 JET #42979, t = 10.121s Frequency [∞/∞_A] m=2 0.5 Radial coordinate TAE 0.5 0 0.4 0.6 0.2 0.8 Radius

External Antenna Drive

[Conner et al, Proc. 21st EPS Conf., Montpellier, 18B 616 (1996)]

Simon Pinches, 2nd IAEA Technical Meeting on Theory of Plasma Instabilities, Trieste

10

KTAEs in LIGKA

Radiative Damping

- Out-going KAWs at bottom of gap
- Oscillation scale-length ~ O(20ρ_i)
- Mode heavily damped compared with TAE

Comparison to Experiment

- Once LIGKA fully benchmarked...
- Investigate sensitivity to edge density
 - TAE gap closes as edge density falls
 - Damping rate increases
 - Better match to experimental measurements...

Ibb

Perturbative Approach

Restricted to MHD-like perturbations

$ec{B}^{(1)} = ec{ abla} imes \left(ec{\xi} imes ec{B} ight)$

 Energy functional derived from MHD moment equation:

 $\vec{\nabla}\cdot\vec{P}=-\vec{B}\times\left(\vec{\nabla}\times\vec{B}\right)$

• \vec{P} is replaced with a kinetic expression

- I.e. integrals over distribution function

 Analogous to calculating growth rate from wave-particle energy transfer rate

- Perturbative stability code based on hybrid MHD drift-kinetic model
- General mode structure and 3D equilibrium
 e.g. AE in W7-AS and W7-X
- Particle drifts approximated as bounce averages
- Presently zero radial orbit width
- Perturbative growth/damping rate

using MHD eigenfunctions and eigenfrequency

δW_{mag} from the ideal MHD stability code CAS3D
 [C. Nührenberg Phys. Plas. 6 137 (1998)]

[A. Könies, Phys. Plasmas 7 1139 (2000)]

Global n=1 TAE Damping

- Mass scaling of electron Landau damping rate
 - [A. Könies 2004]
- Local fluid approximation
 - $-\gamma/\omega \sim A_{eff}^{-1/2}$
- Kinetic model agrees with hybrid model
 - LIGKA and CAS3D-K
- Trend agrees with experimental results
 - But factor 10 too small, $\gamma_d/\omega \sim 1\%$
 - [A.Fasoli et al, Phys. Lett. A **265** (2000) 288]

Simon Pinches, 2nd IAEA Technical Meeting on Theory of Plasma Instabilities, Trieste 16

$$A_{eff} = \left(\sum_{i} n_{i} m_{i}\right) / \sum_{i} n_{i}$$

[Fu & Van Dam, Phys. Fluids B **1** 2404 (1989)]

Nonlinear Effects

• Near-threshold phenomena

- System can't go far beyond threshold
- Weak source of fast ions \Rightarrow Population builds up on much longer timescale than characteristic growth time

• Observed behaviour:

- Mode saturation, pitchfork splitting, frequency sweeping
- [Recall talk by Sharapov]

Model with nonlinear HAGIS code

- Evolves ensemble of Hamiltonian drift-kinetic markers
- Delta-f representation
- Fixed mode structure

Nonlinear Evolution

- Linearly unstable TAE grows and saturates
 - Nonlinear
 wave-particle
 interaction
 - Wave
 redistributes
 fast ions and
 removes drive

Experimental Observations

Frequency sweeping in MAST #5568

Frequency Sweeping

- Occurs when mode is close to marginality
 - Damping balancing drive
- Structures form in fast particle distribution function
 - Holes and clumps
- These support long-lived nonlinear **BGK** waves
- Background dissipation is balanced by frequency sweeping

[H.L. Berk, B.N. Breizman & N.V. Petviashvili, *Phys. Lett. A* 234 213 (1997)] [Errata Phys. Lett. A 238 408 (1998)] 20

Wave-Particle Interaction

- Evolution governed by wave-particle interaction
 - Principle mechanism wave-particle trapping
- Constants of motion for wave E(r,t) = C(t) E(r,θ,nφ - ω₀t)

– Magnetic moment, μ (if $\omega_0 \ll \omega_c$ and $L_{\omega} > \rho_i$)

- Energy in rotating frame, H' = H (ω_0/n) P_{ζ} (if 1/C dC/dt « ω_0)
- Motion of particles trapped in wave described by "pendulum equation"

$$\frac{d^2\xi}{dt^2} + \omega_{bl}^2(t) \sin \xi = 0$$
F is a phase space dependent form factor

Trapping frequency, $\omega_{bl}(t) \propto |E|^{1/2}F(H',\mu)$

imon Pinches, 2nd IAEA Technical Meeting on Theory of Plasma Instabilities, Trieste 21

Diagnostic Information

• Trapping frequency is related to TAE amplitude

$$\omega_{b,l}(t) \propto |\delta B|^{1/2}$$

- Frequency sweep is related to trapping frequency $\delta\omega\propto\omega_{b}^{3/2}t^{1/2}$

Amplitude related to frequency sweep

$$\frac{\delta B}{B} = \frac{1}{C_1^2} \left(\frac{\delta \omega^2}{C_2^2 t} \right)^{2/3}$$
 Use numerical simulation to obtain coefficients.

[S D Pinches et al., Plasma Phys. Control. Fusion 46 S47-S57 (2004)]

Wave-particle Interaction

- Employ HAGIS to establish δB from observed frequency sweeping
 - <section-header>

Nonlinear Simulation

• Fourier spectrum of evolving mode

- Sweeping behaviour agrees with analytic theory

Summary & Outlook

25

- Suite of codes developed
- Capture principle tokamak damping effects with linear gyro-kinetic code (LIGKA)
 - Describes electron/ion Landau damping, FLR effects, radiative damping
 - Recently extended to antenna version
- Perturbative hybrid code CAS3D-K developed to address stability boundaries in stellarator
 - Benchmarked against LIGKA, NOVA-K and theory
- Mass scaling of electron Landau damping investigated
 - Trend agrees with experiment, although magnitude too small
- Model nonlinear frequency sweeping AE with HAGIS
 - Infer information about internal mode amplitude