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MotivationMotivation

• In a burning plasma -particles
significantly contribute to pressure

• Large scale -particle driven instabilities
– Loss of -particles and thus self-heating

– Damage to device

• Stability boundary determined by damping 
mechanisms
– Disagreement over understanding of dominant 

physical damping mechanisms



Simon Pinches, 2nd IAEA Technical Meeting on Theory of Plasma Instabilities, Trieste 3

Physics to CapturePhysics to Capture

• Multiple scale-lengths
– Minor radius (global modes) orbit width 

Larmor radius

• Realistic geometries
– Tokamak and stellarator

• Self-consistency
– Particle distribution Mode structure
– Energy and momentum conservation

• Nonlinear evolution
– Saturated mode amplitudes, pitchfork splitting, 

frequency sweeping
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Numerical ToolsNumerical Tools

• LIGKA
– Linear gyrokinetic non-perturbative tokamak model
– [Ph. Lauber, Ph.D. Thesis, T.U. München 2003]

• CAS3D-K
– Perturbative drift-kinetic approach for stellarators
– [A. Könies, Phys. Plas. 7 1139 (2000)]

• HAGIS
– Initial value nonlinear drift-kinetic f model
– [S. D. Pinches et al., Comput. Phys. Commun. 111, 131 (1998)]
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LIGKA:LIGKA: GyrokineticGyrokinetic ModelModel

• Linear shear Alfven perturbations
– Calculates mode frequency, growth rate and mode structure

• Gyrokinetic
– Particles feel perturbation around gyro-orbit

• Non-pertubative
– Solves Ampere's law and quasi-neutrality equation simultaneously
– Allows change from MHD eigenmode structure
– Nonlinear eigenvalue problem (Nyquist solver)

• Accurate treatment of unperturbed particle orbits
– Numerical integration of full drift orbit effects (HAGIS)

• General tokamak geometry
– From numerical equilibrium code (e.g. HELENA)

[H. Qin, W. M. Tang, G. Rewoldt, Phys. Plas. 6 2544 (1999)

Based on model by H. Qin, W. M. Tang and G. Rewoldt



Simon Pinches, 2nd IAEA Technical Meeting on Theory of Plasma Instabilities, Trieste 6

Shear AlfvShear Alfvéén Continuumn Continuum

• Described by 
local dispersion 
relation:

• Mode coupling 
creates
frequency gaps 
and global 
modes
– Large scale 

interaction with 
fast particles
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TAETAE
• Global mode formed in toroidicity induced gap
• Ballooning character
• Principle damping mechanisms

– Electron/(ion) Landau damping, continuum/radiative damping

qR

vA

2

[C.Z. Cheng and M.S. Chance, Phys. Fluids 29 3695 (1986)]
[D. Borba and W. Kerner, J. Comp. Phys. 153 101 (1999)]
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FLR EffectsFLR Effects
• FLR effects introduce kinetic Alfvén waves (KAW)

• Alfvén continuum resolved into discrete spectrum
– MHD singularity resolved by higher order equation

• Coupling of TAE to KAW leads to radiative damping
– Energy carried away from gap region

• Coupling of KAW leads to formation of KTAE
– Global modes existing just above top of TAE frequency gap
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[Hasegawa & Chen Phys. Fluids 19 1924 (1976)]
[Mett and Mahajan, Phys. Fluids B 4 2885 (1992)]
[Conner et al, Proc. 21st EPS Conf., 18B 616 (1996)]
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Radiative Damping in LIGKARadiative Damping in LIGKA
• With only two 

harmonics, TAE 
intersects “continuum”

• In this JET case, mode 
conversion dominantly 
occurs at edge
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External Antenna DriveExternal Antenna Drive

• Modelled via change 
in LIGKA code 
boundary conditions
– No vacuum region

• Systematically find 
all stable modes
– Including damping rates

• Analogous to TAE 
antenna experiments

– [Fasoli et al., PRL 76 1067 (1996)]
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KTAEsKTAEs in LIGKAin LIGKA
• Global modes
• Anti-ballooning character
• Formed at top of TAE gap
• Stronger damping than TAE
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Radiative DampingRadiative Damping
• Out-going KAWs at bottom of gap
• Oscillation scale-length ~ O(20 i)
• Mode heavily damped compared with TAE
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Comparison to ExperimentComparison to Experiment

• Once LIGKA fully benchmarked…
• Investigate sensitivity to edge 

density
– TAE gap closes as edge density falls

– Damping rate increases

– Better match to experimental 
measurements…
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Perturbative ApproachPerturbative Approach

• Restricted to MHD-like perturbations

• Energy functional derived from MHD 
moment equation:

• is replaced with a kinetic expression
– I.e. integrals over distribution function

• Analogous to calculating growth rate 
from wave-particle energy transfer rate
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CAS3DCAS3D--KK
• Perturbative stability code based on hybrid MHD 

drift-kinetic model
• General mode structure and 3D equilibrium

– e.g. AE in W7-AS and W7-X

• Particle drifts approximated as bounce averages
• Presently zero radial orbit width
• Perturbative growth/damping rate

using MHD eigenfunctions and eigenfrequency
– from the ideal MHD stability code CAS3D

[C. Nührenberg Phys. Plas. 6 137 (1998)]
[A. Könies, Phys. Plasmas 7 1139 (2000)]
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Global n=1 TAE DampingGlobal n=1 TAE Damping
• Mass scaling of 

electron Landau 
damping rate
– [A. Könies 2004]

• Local fluid 
approximation
– Aeff

-1/2

• Kinetic model agrees 
with hybrid model
– LIGKA and CAS3D-K

• Trend agrees with 
experimental results

i
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– But factor 10 too small, d 1%
– [A.Fasoli et al, Phys. Lett. A 265 (2000) 288]

CAS3D-K (passing particles only)
Asymptotic expansion in Aeff

Local approximation for passing particles

LIGKA (passing particles only)
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Nonlinear EffectsNonlinear Effects

• Near-threshold phenomena
– System can’t go far beyond threshold
– Weak source of fast ions Population builds up on 

much longer timescale than characteristic growth time

• Observed behaviour:
– Mode saturation, pitchfork splitting, frequency sweeping
– [Recall talk by Sharapov]

• Model with nonlinear HAGIS code
– Evolves ensemble of Hamiltonian drift-kinetic markers
– Delta-f representation
– Fixed mode structure
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Nonlinear EvolutionNonlinear Evolution
HAGIS code• Linearly

unstable TAE 
grows and 
saturates
– Nonlinear

wave-particle
interaction

– Wave
redistributes
fast ions and 
removes drive

S. D. Pinches et al., CPC 111 131 (1998)
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Experimental ObservationsExperimental Observations

• Frequency sweeping in MAST #5568
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Frequency SweepingFrequency Sweeping
• Occurs when mode is 

close to marginality
– Damping balancing drive

• Structures form in fast 
particle distribution 
function
– Holes and clumps

• These support long-lived 
nonlinear BGK waves

• Background dissipation 
is balanced by frequency 
sweeping

[H.L. Berk, B.N. Breizman & N.V. Petviashvili, Phys. Lett. A 234 213 (1997)]
[Errata Phys. Lett. A 238 408 (1998)]
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WaveWave--Particle InteractionParticle Interaction
• Evolution governed by wave-particle interaction

– Principle mechanism wave-particle trapping
• Constants of motion for wave

E(r,t) = C(t) E(r, ,n - 0t)
– Magnetic moment, (if 0 « c and L > i)

– Energy in rotating frame, H’ = H - ( 0/n) P (if 1/C dC/dt « 0)

• Motion of particles trapped in wave described by 

“pendulum equation”

• Trapping frequency,Trapping frequency

F is a phase 
space dependent 

form factor
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Diagnostic Information Diagnostic Information 

• Trapping frequency is related to TAE amplitude

• Frequency sweep is related to trapping 
frequency

• Amplitude related to frequency sweep

Use numerical
simulation to 

obtain coefficients.

[S D Pinches et al., Plasma Phys. Control. Fusion 46 S47-S57 (2004)]

[Berk, Breizman & Petviashvili, Phys. Lett. A 234 213 (1997)]
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WaveWave--particle Interactionparticle Interaction
• Employ HAGIS to establish 

B from observed frequency 
sweeping

– General geometry

• TAE trapped fast ions in MAST
– All particles have same H’ = E - /n P = 20 keV
– Determine scaling of bounce frequency with 

mode amplitude:

b = 1.156 × 106 ( B/B)
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Nonlinear SimulationNonlinear Simulation
• Fourier spectrum of evolving mode

– Sweeping behaviour agrees with analytic theory

• Peak internal amplitude calculated agrees with
Mirnov measurements,
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[S D Pinches et al., Plasma Phys. Control. Fusion 46 S47-S57 (2004)]
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Summary & OutlookSummary & Outlook
• Suite of codes developed
• Capture principle tokamak damping effects with linear 

gyro-kinetic code (LIGKA)
– Describes electron/ion Landau damping, FLR effects, radiative damping

– Recently extended to antenna version

• Perturbative hybrid code CAS3D-K developed to 
address stability boundaries in stellarator
– Benchmarked against LIGKA, NOVA-K and theory

• Mass scaling of electron Landau damping investigated
– Trend agrees with experiment, although magnitude too small

• Model nonlinear frequency sweeping AE with HAGIS
– Infer information about internal mode amplitude


