Neoclassical Effects in the Theory of Magnetic Islands: Neoclassical Tearing Modes and more

A. Smolyakov

University of Saskatchewan, Saskatoon, Canada,
also at CEA Cadarache, France

IAEA Technical Meeting on Theory of Plasmas Instabilities: Transport, Stability and their Interaction,
2-4 Mar, 2005, Trieste, Italy
Acknowledgements/Contributors:

J.D. Callen, U Wisconsin
J. Connor, UKAEA
R. Fitzpatrick, IFS, UT
X. Garbet, CAE Cadarache
E. Lazzaro, IFP, CNR
A.B. Mikhailovskii, Kurchatov Institute
M. Ottaviani, CAE Cadarache
P.H. Rebut, JET
A. Samain, CAE Cadarache
B. Scott, IPP
K.C. Shaing, U Wisconsin
F. Waelbroeck, IFS, UT
H. Wilson, UKAEA

.................
Neoclassical Magnetic Islands

- Neoclassical modes in TFTR, Z. Chang et al. PRL 74, 4663 (1995)

\[
\tau_R \frac{\partial w}{\partial t} = \Delta' + \frac{\beta}{w}
\]

Rutherford growth

\[
w \sim \Delta' t / \tau_R
\]

Bootstrap growth

\[
w \sim \left(\frac{\beta t}{\tau_R} \right)^{1/2}
\]

Saturation for \(\Delta < 0 \)

Beta dependence signatures are critical for NTM identification

FIG. 4. Theory-experiment comparison of saturated magnetic island width. The \(w_{\text{exp}} \) is from Eq. (5). The \(w_{\text{sat}} \) is from Eq. (4). A constant \(k_2 = 1.7 \) has been used for all discharges.
Outline

• Basic island evolution -- extended Rutherford equation
• Finite pressure drive: Bootstrap current
• Stabilization mechanisms:
 Removal of pressure flattening due to finite heat conductivity
 Polarization current
• Other neoclassical effects
 Neoclassical coupling of transverse and longitudinal flows
 Enhanced polarization current due to neoclassical flow damping
• New stabilization mechanism due to parallel dynamics and neoclassical coupling
 Ion sound effects
• Island rotation frequency
Basics of Nonlinear Magnetic Islands Theory

- Effective helical flux function for the rotating island

\[\psi(x, t) = -\frac{x^2}{2L_s} B_0 + \tilde{\psi}(t) \cos \xi. \]

\(x = r - r_s \) is the distance from the rational surface, \(L_s = qR/S \) is the shear length, \(S = q'r_s/q \), and the helical coordinate \(\xi = m\bar{\theta} - \int^t \omega(t') dt' \), \(\bar{\theta} = \theta - \zeta/q_s \). Magnetic island with half-width \(w^2 = 4L_s\tilde{\psi}/B_0 \).

- Rutherford regime: \(w > \delta_R \). Typical values: \(\delta_R < 0.3 \text{ cm} \) for \(S = 10^5 - 10^8 \), \(w \simeq 1 \text{ cm} \)

- Constant \(\psi \) approximation. Single helicity
Motivation

- Neoclassical Tearing Modes (NTM) are often observed in the ideal MHD stable ($\Delta' < 0$) plasmas – seriously degrade tokamak performance (10-50 %, loss of H-mode and disruptions)

- Modes are driven by finite pressure effects: bootstrap current associated with the perturbation of plasma pressure near/inside the magnetic island –neoclassical effect \rightarrow NTM

- Experimental data seem to suggest that at a small island width the destabilizing effect of the bootstrap current is reduced by some other effect(s) \rightarrow Threshold (*Sauter et al.* PoP 4, 1654 (1997))

 Plasma is metastable with respect to NTM \rightarrow Trigger mechanism, seed island

Stabilization/driving mechanisms?

Bootstrap Current Drive

- Pressure driven current due to friction between trapped and untrapped particles

\[J_\parallel = \sqrt{\epsilon} \frac{c}{B_0} \frac{dp}{dr} \]

- Generalized Ohm law

\[0 = -en \left(-\nabla \phi - \frac{1}{c} \frac{\partial \psi}{\partial t} \right) - b \cdot \nabla p_e - b \cdot \nabla \cdot \Pi_e + enJ_\parallel / \sigma \]

- Diamagnetic banana current + friction effects

\[b \cdot \nabla \cdot \Pi_e = n_e n_{\mu_e} V_{\theta e} \]

- Bootstrap current

\[V_{\theta e} = -\frac{c}{enB_0} \frac{\partial}{\partial r} (p_e + p_i) + \frac{B_0}{B_0} (V_{ze} - V_{zi}) \]

\[J_b = \langle J_b \rangle \quad \nabla \parallel J_b = 0 \]

Loss of the bootstrap current around the island
Extended Rutherford Equation–Basic Evolution Equation

- The nonlinear equations for the evolution of the magnetic island follow from the matching conditions obtained by integration of the Ampere’s law, $4\pi J_\parallel/c = \nabla^2_\perp \psi$, across the nonlinear region

$$\int_{-\pi}^{\pi} d(m\theta) \int_{-\infty}^{\infty} dx J_\parallel \cos \xi = \frac{c}{4} \Delta' \psi$$

- Rutherford equation

$$\tau_R \frac{\partial w}{\partial t} = \frac{\Delta'_c}{4} + \sqrt{\epsilon} \frac{\beta_\theta}{S_w} + \ldots$$

$$J_\parallel = \frac{\sigma}{c} \frac{\partial \psi}{\partial t} + \sqrt{\epsilon} \frac{c}{B_\theta} \frac{dp}{dr}$$

- Transition to the linear limit $w \to 0$?

All m mode numbers are unstable? Does not happen in the experiments:
most often $m/n = 3/2, 4/3, 5/4$. →
Threshold mechanism?
Neoclassical Tearing Modes are metastable – Thresholds

- Modification of the bootstrap current for small island width (finite parallel heat conductivity)

\[\tau_R \frac{\partial w}{\partial t} = \frac{\Delta_c'}{4} + \sqrt{\epsilon} \frac{\beta_\theta}{S} w \quad \text{No threshold} \]

\[\tau_R \frac{\partial w}{\partial t} = \frac{\Delta_c'}{4} + \sqrt{\epsilon} \frac{\beta_\theta}{S} w \frac{w}{w_c^2 + w^2} \quad \text{Threshold} \]

- Polarization current threshold

\[\tau_R \frac{\partial w}{\partial t} = \frac{\Delta_c'}{4} + \sqrt{\epsilon} \frac{\beta_\theta}{S} w \frac{w}{w_c^2 + w^2} - \alpha \beta_\theta \frac{1}{w^3} \]

- Magnetic field curvature (Glasser-Green-Johnson) effect is also stabilizing. Usually is small but can be important for small aspect ratio (MAST, R.J. Bitterly et al., PRL 88, 125005-1 (2002), H.Lutjens, J-F Luciani, and X. Garbet, POP 8, 4267 (2002)).

\[\Delta'_{GGJ} = g_{GGJ} \frac{D_R}{\sqrt{w_c^2 + w^2}} \]
Drift/Inertial, Neoclassical, Curvature, etc Effects

- Quasineutrality equation
 \[\nabla_\| J_\| + \nabla_\perp \cdot J_\perp = 0 \]

\[J_\| = \nabla^{-1} \nabla_\perp \cdot J_\perp \]

- Perpendicular current
 \[J_\perp = \frac{c}{B} b \times \nabla p + \frac{cm_i n_0}{B} b \times \frac{d_0}{dt} V + \frac{c}{B} b \times \nabla \cdot \Pi \]

 Diamagnetic current
 Glasser-Green Johson
 Neoclassical viscosity, enhanced polarization
 Inertia, polarization current
Polarization Current Effects

- Polarization current

\[J_\parallel = \nabla^{-1} \nabla_\perp \cdot J_\perp \]

\[J_\perp = \frac{cm_i n_0}{B} \mathbf{b} \times \frac{d_0}{dt} \mathbf{V} \]

- Rutherford equation

\[\tau_R \frac{\partial w}{\partial t} = \frac{\Delta_\epsilon'}{4} + \sqrt{\epsilon} \frac{\beta_0}{S w} + g \frac{\beta_0}{w} \left(\frac{\rho_s}{w} \right)^2 \frac{\omega (\omega - \omega_{*i})}{\omega_{*e}^2} \]
Neoclassically Enhanced Polarization Current

Coupling of the transverse and longitudinal flows/Neoclassical flow damping

- Current closure equation

\[\nabla || J || + \nabla \cdot \left(\frac{c m_i n_0}{B} b \times \frac{d_0}{dt} V \right) + \nabla \cdot \left(\frac{c}{B} b \times \nabla \cdot \Pi \right) = 0 \]

\[\Pi || = \frac{3}{2} \pi || \left(b b - \frac{1}{3} \mathbf{I} \right) \quad \frac{3}{2} \pi || = p_\perp - p || \]

- Neoclassical current

\[\nabla \cdot J_{nc} \equiv \nabla \cdot \left(\frac{c}{B^2} \mathbf{B} \times \nabla \cdot \Pi \right) = \frac{c}{B \theta} \frac{\partial}{\partial x} \langle b \cdot \nabla \cdot \Pi \rangle \]

- Divergence of the transverse current is related to the component of the parallel force

\[m_i n_0 \frac{d}{dt} V || = -\nabla || p - \langle b \cdot \nabla \cdot \Pi \rangle \theta \]

\[\nabla \cdot J_{nc} = \frac{c}{B \theta} m_i n_0 \frac{\partial}{\partial x} \frac{d_0}{dt} V || + \frac{c}{B \theta} \frac{\partial}{\partial x} \nabla || p \]

Enhanced inertia, replaces the standard polarization current
Neoclassical Flow Damping

- Neoclassical force

\[
\langle b \cdot \nabla \cdot \Pi \rangle = -\frac{3 \varepsilon}{2q} \langle \pi_\parallel \frac{1}{r_s} \frac{\partial}{\partial \theta} \nabla_\perp \ln B \rangle = m_i n_0 \chi_\theta V_\theta
\]

\[
\chi_\theta = \frac{q^2}{\varepsilon^{1/2}} \left(\frac{d_0}{dt} + \frac{\nu_i}{\varepsilon} \right) \quad V_\theta = V_v + \frac{\varepsilon}{q} V_\parallel \quad \dot{V}_v = \frac{c}{B_0} \frac{\partial \phi}{\partial x}
\]

Resulting equation for the parallel flow velocity is

\[
\frac{d_0}{dt} V_\parallel = -q \varepsilon^{1/2} \left(\frac{d_0}{dt} + \frac{\nu_i}{\varepsilon} \right) \left(V_y + \frac{\varepsilon}{q} V_\parallel \right) - \frac{1}{m_i n_0} \nabla_\parallel p
\]
Neoclassical Flow Damping II

- Large collisional frequency: $\nu_i/\varepsilon \gg d_0/dt$

$$V_{\parallel}^{(0)} = -\frac{q}{\varepsilon} V_y$$

$$\frac{d_0}{dt} V_{\parallel}^{(0)} = -q\varepsilon^{1/2} \frac{d_0}{dt} V_y - \varepsilon^{1/2} \nu_i V_{\parallel}^{(1)} - \frac{1}{m_i n_0} \nabla_{\parallel p}$$

$$\langle b \cdot \nabla \cdot \Pi \rangle = q\varepsilon^{1/2} \frac{d_0}{dt} V_y + \varepsilon^{1/2} \nu_i V_{\parallel}^{(1)}$$

- Low collisional frequency: $\nu_i/\varepsilon \ll d_0/dt$

Zero order

$$\frac{d_0}{dt} V_{\parallel}^{(0)} = -q\varepsilon^{1/2} \frac{d_0}{dt} V_y$$

$$V_{\parallel}^{(0)} = -q\varepsilon^{1/2} V_y$$

$$\langle b \cdot \nabla \cdot \Pi \rangle = q\varepsilon^{1/2} \frac{d_0}{dt} V_y + q \frac{\nu_i}{\varepsilon^{1/2}} V_y$$

Neoclassical polarization
Neoclassically Enhanced Polarization Current II

- Neoclassical current

\[\nabla \cdot J_{nc} = \frac{c}{B_\theta} m_i n_0 \frac{\partial}{\partial x} \frac{d_\theta}{dt} V_\parallel + \frac{c}{B_\theta \partial x} \nabla p_\parallel \]

- From the radial momentum balance

\[V_\parallel \approx V_\zeta = V_\theta \frac{B_\zeta}{B_\theta} + \frac{c}{\epsilon n_0 B_\theta} E_r - \frac{c}{B_\theta \partial r} \frac{\partial p}{\partial r} \quad V_\theta = k \frac{cT'}{eB} \]

- Extended Rutherford equation

\[\frac{\tau_R}{\partial t} = \frac{\Delta c}{4} + \sqrt{\epsilon} \frac{\beta_\theta}{S_w} + g \frac{\beta_\theta}{\omega \rho_s w} \left(\frac{\rho_s}{w} \right)^2 \frac{\omega (\omega - \omega_{*i})}{\omega_{*e}^2} + g_{\text{neo}} \frac{\beta_\theta}{w} \left(\frac{\rho_s}{w} \right)^2 \frac{\omega (\omega - k \omega_{*i})}{\omega_{*e}^2} + \frac{\text{standard inertia}}{\text{Neoclassically enhanced inertia}} \]

\[g_{\text{neo}} = \begin{cases} \frac{q^2}{\epsilon^2} & \nu_i \gg \epsilon \omega \\ \frac{q^2}{\sqrt{\epsilon}} & \nu_i \ll \epsilon \omega \\ \text{Smolyakov et al., PoP 2, 1581 (1995)} \\ \text{Wilson et al. PoP 3, 248 (1996)} \end{cases} \]

\[g_{\text{neo}} \]

depends on collisionality regime and may have further dependence on frequency, Mikhailovskii PPCF 2001
Neoclassically Enhanced Polarization Current

Coupling of the transverse and longitudinal flows/Neoclassical flow damping

- Current closure equation
 \[\nabla_{\parallel} J_{\parallel} + \nabla_{\perp} \cdot \left(\frac{cm_{i}n_{0}}{B} b \times \frac{d_{0}}{dt} V \right) + \nabla \cdot \left(\frac{c}{B} b \times \nabla \cdot \Pi \right) = 0 \]
 \[\Pi_{\parallel} = \frac{3}{2} \pi_{\parallel} (bb - \frac{1}{3} I) \]
 \[\frac{3}{2} \pi_{\parallel} = p_{\perp} - p_{\parallel} \]

- Neoclassical current
 \[\nabla \cdot J_{nc} \equiv \nabla \cdot \left(\frac{c}{B^2} B \times \nabla \cdot \Pi \right) = \frac{c}{B_\theta} \frac{\partial}{\partial x} \langle b \cdot \nabla \cdot \Pi \rangle \]

- Divergence of the transverse current is related to the component of the parallel force
 \[m_{i}n_{0} \frac{d}{dt} V_{\parallel} = -\nabla_{\parallel} p - \langle b \cdot \nabla \cdot \Pi \rangle_\theta \]
 \[\nabla \cdot J_{nc} = \frac{c}{B_\theta} m_{i}n_{0} \frac{\partial}{\partial x} \frac{d_{0}}{dt} V_{\parallel} + \frac{c}{B_\theta} \frac{\partial}{\partial x} \nabla_{\parallel} p \]

Enhanced inertia, replaces the standard polarization current
Finite Ion Orbits

- Cold ions case: $T_e \gg T_i$. Plasma pressure is $p \approx T_e n_e$, and the electron density is determined from the quasineutrality condition $n_e = n_i$ so that $p = T_e n_i$. The ion density is not a function of magnetic flux surface due to the ion inertial drift off the surface

$$n_i = \frac{c^2}{v_A^2} \frac{1}{4\pi e} \nabla_\perp^2 \phi = n_0 \rho_s^2 \nabla_\perp^2 \frac{e\phi}{T_e}$$

For finite ρ_i

$p = p(\psi) \rightarrow \nabla_\parallel p = 0$

$\rho_i \rightarrow 0$

- Extended Rutherford equation

$$\tau_R \frac{\partial w}{\partial t} = \frac{\Delta_e'}{4} + \sqrt{\epsilon} \frac{\beta_\theta}{S_w} + g_1 \frac{\beta_\theta}{w} \left(\frac{\rho_s}{w} \right)^2 \frac{\omega(\omega - \omega_{\ast i})}{\omega_{\ast e}^2} + g_{\text{neo}} \frac{\beta_\theta}{w} \left(\frac{\rho_s}{w} \right)^2 \frac{\omega(\omega - k\omega_{\ast i})}{\omega_{\ast e}^2}$$

$$+ g_2 \frac{\beta_\theta \rho_s^2}{w^2} \frac{\omega}{\omega_{\ast}}$$

$g_{\text{neo}} = \left\{ \begin{array}{ll} \frac{q^2}{\epsilon^2} & \nu_i \gg \epsilon \omega \\ \frac{q^2}{\sqrt{\epsilon}} & \nu_i \ll \epsilon \omega \end{array} \right\}$

- Finite banana width

$$n_b = n_0 \rho_s^2 \frac{q^2}{\epsilon} \sqrt{\epsilon} \nabla_\perp^2 \frac{e\phi}{T_e}$$

$$g_2 \sim 1 \rightarrow g_2 \sim \frac{q^2}{\sqrt{\epsilon}}$$

Finite orbit effect provides threshold of the same order as polarization current!
Effect of a Finite Heat Conductivity Along the Magnetic Field

- Finite parallel heat conductivity results in the variations of plasma pressure along the perturbed magnetic surface
 \[p \neq p(\psi) \quad \nabla_{\parallel} p \neq 0 \]
 \[w_c^4 = \frac{\chi_{\perp}}{\chi_{\parallel}} \frac{L_s^2}{k_b^2} \]

- Pressure gradient across the magnetic island is partially restored
 \[\tau_R \frac{\partial w}{\partial t} = \frac{\Delta_c'}{4} + c_1 \sqrt{c} \frac{1}{S} \frac{\beta_0}{w_c^2} w - c_2 \frac{1}{S w \sqrt{1 + (w/w_c)^2}} \]

- At the threshold Ware pinch term is comparable or larger than the standard bootstrap current (driving) term!
Ion Sound Effects

- Ion sound effects are known to stabilize drift-tearing modes in linear regimes. Bussac et al. PRL 40, 1500 (1978). There are indications that these are also stabilizing nonlinearly, however may be destabilizing for large ω_*, M. Ottaviani, et al., PRL 93 (2004)

- Basic equations

\[-enE_\parallel - Te_\nabla_\parallel n = 0.\]

\[\frac{d_0}{dt} \left(n_i - n_0 \rho_s^2 \nabla_\perp^2 \frac{e \phi}{T_e} \right) + \nabla_\parallel (n_0 V_\parallel_i) = 0\]

\[-\frac{c^2}{4\pi v_A^2} \frac{d_0}{dt} \nabla_\perp^2 \phi + \nabla_\parallel J_\parallel = 0.\]

\[\frac{d_0}{dt} n_e + \nabla_\parallel (n_0 V_\parallel_e) = 0\]

\[n_0 m_i \frac{d_0}{dt} V_\parallel = -T \nabla_\parallel n.\]

- Coupling of the Alfvén and ion sound modes

\[(k_\parallel^2 v_A^2 - \omega^2) \left(1 - \frac{k_\parallel^2 v_s^2}{\omega^2} \right) + k_\parallel^2 v_A^2 k_\perp^2 \rho_s^2 = 0\]
Stabilizing ion sound, but Ω^*

- Extended Rutherford equation taking into account the ion sound effects, *Smolyakov et al., PPCF, 46 (2004)*

$$\Delta' + \frac{g_1 \omega^2 L_s^2}{w^3 k_\theta^2 v_A^2} - \frac{g_2 c_s^2}{w v_A^2} = 0$$

- Caveat: Ω^* dependence has been omitted.

$$1 \sim \frac{k_{||}^2 c_s^2}{\omega^2}, \quad k_{||} = -k_\theta w / L_s$$

- Coupling of the Alfvén and ion sound modes

$$(k_{||}^2 v_A^2 - \omega^2) \left(1 - \frac{k_{||}^2 v_A^2}{\omega^2}\right) + k_{||}^2 v_A^2 k_{\perp}^2 \rho_s^2 = 0$$
Stabilization Mechanisms

- Removal of pressure flattening due to finite $\chi_\parallel/\chi_\perp$, (Fitzpatrick PoP 2, 825 (1995); Gorelenkov, Zakharov PoP 3, 3379 (1996))

- Other stabilizing neoclassical effects/ion sound effects?
Island Rotation Frequency

- Island rotation is determined by dissipation
 - minimum dissipation principle

Dissipation:
- Classical collisions: resistivity and heat conductivity
- Collisionless (Landau damping)
- Perpendicular diffusion density/energy: classical/anomalous
- Perpendicular anomalous viscosity
- Neoclassical flow damping/symmetry breaking
Classical dissipation: parallel resistivity and heat conductivity

\[\frac{\partial E}{\partial t} = -Q = \int dx d\xi \left(\frac{1}{\sigma} J_{\parallel} - \frac{1}{e} \nabla_{\parallel} T \right) J_{\parallel} \]

\[\left(\nabla_{\parallel} T \right)^0 = 0 \quad \left(\nabla_{\parallel} T \right)^1 = \frac{1}{\chi_{\parallel}} (...) \]

\[Q \sim (\omega - \omega_e)(\omega - \omega_i)^2 (\omega - \omega_e (1 - \eta_e / \eta_{cr})) \]

Smolyakov, Sov J Pl Phys 1989
Connor et al; PoP, 2001

\[\eta_{cr} = \frac{1 + (1 + \alpha)^2 \sigma T / e^2 \chi_{\parallel}}{3(1 + \alpha) \sigma T / 2 e^2 \chi_{\parallel}} \]

\[\eta_e = \partial \ln T_e / \partial \ln n \]
Classical dissipation: parallel resistivity and heat conductivity

\[
\frac{\partial E}{\partial t} = -Q = \int dx \, d\xi \left(\frac{1}{\sigma} J_{\|} - \frac{1}{e} \nabla_{\|} T \right) J_{\|}
\]

\[
(\nabla_{\|} T)^0 = 0 \quad (\nabla_{\|} T)^1 = \frac{1}{\chi_{\|}} (\ldots)
\]

\[
Q \sim (\omega - \omega_e)(\omega - \omega_i)^2(\omega - \omega_e(1 - \eta_e/\eta_{cr}))
\]

\[
\omega = \omega_e(1 - \eta_e/\eta_{cr})
\]

\[
\eta_{cr} = \frac{1 + (1 + \alpha)^2 \sigma T / e^2 \chi_{\|}}{3(1 + \alpha)\sigma T / 2e^2 \chi_{\|}}
\]

\[
\eta_e = \partial \ln T_e / \partial \ln n
\]

\[
\int dx \, d\xi J^c_{\|} \cos \xi = \Delta_s \vec{\psi}
\]

\[
\int dx \, d\xi J^s_{\|} \sin \xi = \Delta_s \vec{\psi}
\]

\[\Delta_s\] is due to the coupling to external perturbations/wall; otherwise = 0

Smolyakov, Sov J PL Phys 1989
Connor et al; PoP, 2001
Collisional dissipation in toroidal plasma:
mainly collisions at the passing/trapped boundary

\[
\omega = \omega_e \left(1 + \frac{\eta_e}{4} \right)
\]

Weakly collisional regime, electron dissipation, Wilson et al, 1996

\[
\omega = \omega_e \left(1 + 0.3\eta_e \right)
\]

\[
\omega = \omega_i
\]

\[
\omega = \omega_e \left(1 + 2.43\eta_e \right)
\]

\[
\omega = \omega_i
\]

\[
\omega = \omega_e \left(1 + 0.389\eta_i \right)
\]

\[
\omega = \omega_i
\]

Mikhailovski, Kuvshinov, PPR, 1998

\[
\frac{V_e}{\varepsilon \omega} < 1
\]

Ion dissipation is important for larger collisionality
Neoclassical magnetic damping

Drift waves emission

Anomalous viscosity

Symmetry breaking, neoclassical losses in 3D
Summary

Variety of mechanisms affect the island stability:
neoclassical/bootstrap, polarization/inertial drifts, magnetic field curvature/plasma pressure, parallel heat conductivity, banana orbits, ion-sound effects, …

Each of these has to be carefully evaluated

Critical issues:
Island rotation frequency?
Nonlinear trigger/excitation mechanism
"Cooperative effects" of the error field and neoclassical/bootstrap drive?