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Outline

• Sawtooth model - importance of macroscopic drive δW .

• Important kinetic effects often neglected in hybrid stability codes:

� Plasma rotation: effect on internal kink mode

� Finite orbit effects in adiabatic response: unbalanced NNBI and

asymmetric distributions of highly energetic ions.

� Anisotropy: degree to which auxiliary ions can represent role of

alpha particles

� Anisotropy: effect on the equilibrium

• Conclusions
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Model for Sawtooth Trigger

Three distinct components to ITER sawtooth model: [F. Porcelli et al PPCF 38, 2163 (1996)].

1) Current and pressure profiles evolve during sawtooth quiescence.

2) Sawtooth Trigger. In JET it is argued that instability could be governed by threshold against

m = 1 reconnection with two-fluid effects [L. Zackharov et al Phys. Fluids B 5, 2498 (1993)]:

� τsaw <∼ resistive diffusion time:

ˆδW

s1

> ρ̂i −→
ˆδW

s1

< ρ̂i AND s1 < sc(β) −→ s1 > sc(β).

where Larmor radius ρi implies ion kinetic regime, and macroscopic drive:

δW = −1

2

Z
d

3
x ξ

∗ · (δj × B + j × δB − ∇ · δP ).

3) Profiles are relaxed at sawtooth crash. s1 and βp return to smaller values.
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Macroscopic Drive Terms employed in 96 ITER
Model

Bussac Toroidal term:
ˆδWMHD ≈ (1 − q0)

»“
β
c
p

”2

− β
2
p

–
.

The following assumes Pi,h = P0(1 − (r/a)2) and ε1 ≡ r1/R ∼ (r1/a)
2:

Trapped thermal ion term [M. D. Kruskal and C. R. Oberman, Phys. Fluids 1, 275 (1958)] assumes

ω � {ω∗i, 〈ωmdi〉}:

ˆδWKO ≈ 1

4π
√

2ε1
βpi.

Isotropic ion population (e.g. alpha particles, balanced NBI ions, thermal ions) and assumption

ω 
 {ω∗h, 〈ωmdh〉} [B. Coppi et al Phys. Fluids B 2, 927 (1990)]:

ˆδWkh ≈ 1

3π
√

2ε1
βph.

Trapped thermal ions could be more stabilising than isotropic fast ions if βi > βh.
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• Perturbed inertia evaluated in frame absent of electrostatic poten-

tial Φ. e.g. without two fluid effects:

δK ≡ −1

2

Z
d

3
xρm |δV − VΦ|2 = −1

2

Z
s

d
3
xρm ξ

2
θ(ω−ΩΦ)

2
.

where ΩΦ = −qΦ′/B0r and ξθ = i(rξr)
′ � ξr near q = 1.

• Magnetic precession is dominated by E × B drift:

〈ωd〉 = ωmd + ΩΦ(r).

• In plasma frame, normal mode and precession drift frequencies are:

ω̃ = ω − ΩΦ(r1) and 〈ωmd〉 + ∆ΩΦ(r)

where ∆ΩΦ(r) = ΩΦ(r) − ΩΦ(r1).

i

r

r

r

q

ξ r

r1

0

0

0

1

θξ

Effect of Toroidal Rotation in Dispersion Relation
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Effect of Toroidal Rotation in Dispersion Relation

The dispersion relation δK + δW = 0 can then be solved for ω̃ = ω − ΩΦ(r1):

i
s31/2[ω̃(ω̃ − ω∗i)]1/2

3πε2ωA

˛̨̨
˛̨
r1

= ˆδWMHD+βi

Z
d

3
xd

3
v 〈ξ · κ〉2

»
ω̃ − ∆ΩΦ(r) − ω∗i

ω̃ + iνeff − ∆ΩΦ(r) − 〈ωmdi〉
–
.

• Rigid rotation only Doppler shifts mode ω → ω̃ = ω − ΩΦ(r1).

• Solution for sawtooth mode typically ω̃ ∼ ω∗i.

• Third adiabatic invariant conserved for ω̃ ∼ ω∗i � 〈ωmdi〉 + ∆ΩΦ(r).

� implies improved stabilisation for ∆ΩΦ(r) > 0 (co-rotation). Impaired
stabilisation for ∆ΩΦ(r) < 0 (counter-rotation).

• Fast ion response modified much less than thermal ion because typically
|∆ΩΦ| <∼ 〈ωmdh〉.

• Large co-rotation will yield KO stabilisation for thermal ions. Counter-rotation?
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Negative ion neutral beam (NNBI) in ITER-FEAT is pre-

dicted to induce central toroidal flows of Ω ∼ 1.5 × 104

rad/s [R. Budny, 4th IAEA, Gandinhagar (2005)] for which

Ω ∼ ω∗pi.
Since normalised rotation Ω/ω∗pi is the important quantity,

these predictions indicate that toroidal rotation will not have

such a large effect on sawteeth in ITER.

~< *piωΩ

Ω
F. Nave et al, Submitted to Nuc. Fusion (2005)
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J. P. Graves: PPCF 42, 1049 (2000)

Sawtooth Period and Toroidal Rotation
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• Highly tangential injection (350 keV in JT-
60U) is employed. Passing fraction of par-
ticles is very large.

• Unbalanced NNBI produces asymmetric dis-
tribution. Choose to approximate with one
sided slowing down distributions:

F σ
h =

P σ
‖

23/2πmhB0E inj
E−3/2δ(λ)

where P‖ =
∑
σ P σ

‖ and we define angle of
asymmetry

A ≡
∑
σ σP σ

‖
P‖

=
P+
‖ − P−

‖
P+1
‖ + P−1

‖

Asymmetric Negative Ion Based NBI
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Solution to Fast Ion Response

• The perturbed distribution function describing the energetic ion response to stability is [P. Helander

et al Phys. Plasmas 4, 2182 (1997)]:

δFh = δFhf + δFhk, where δFhf = −(Ze/mh)(ξ · ∇ψp)
∂Fh

∂Pφ

is the adiabatic (fluid) contribution, with ξ ∼ exp(−imθ−inφ−iωt) the MHD displacement,

and the non-adiabatic (kinetic) contribution δFhk can be approximately written as ‘bounce time’

τb periodic function of time:

δfhk =

∞X
l=−∞

δF
(l)
hk exp

h
−i
“
ω + lωb + n

D
φ̇
E”

t
i

where δF
(l)
hk = − ω − nω∗h

ω + n
D
φ̇
E

+ lωb

∂Fh

∂E ×

* 
v

2
‖ +

v2
⊥
2

!
κ · ξ̂⊥ exp

h
i
“
ω + lωb + n

D
φ̇
E”

t
i+

(1)
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Solution to Fast Ion Response

Make progress by writing δFh as a sum of MHD and non-MHD terms. Hence we expand about orbit

centres:

r = r + ∆b cos θ with ∆b =
q(r)v‖
ωc

θ = χ+ (1 + s)
∆b

r
sinχ with χ =

v‖
q(r)R

(t− t0)

ζ = q(r)χ.

adiabatic response can then be written as:

δ̂F hf =−ξ0H[r1 − r]

„
exp(−iθ)+σ {1+exp(−i2θ)}

»
∆b

r
− 1

2r

∂

∂r
r∆b

–«
∂Fh(r)

∂r

where exp(−iθ) is the fluid term, the finite orbit term
∆b
r cancels the non-adiabatic term of [S.

Wang, et al, Phys. Rev. Lett. 88, 105004 (2002)], but the finite orbit term 1
2r

∂
∂r r∆b remains [J. P.

Graves, Phys. Rev. Lett. 92, 185003 (2004)].
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Jonathan P. Graves, CRPP Second IAEA TM on Theory of Plasma Instabilities, Trieste, March 2005 11



The sawtooth period does not simply increase linearly with the resistive diffusion time.

Systems, JAERI, Naka, Japan, p. 73

� � � � � �
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� � � � � �

� � � � � �

� � � � � �

� � � � � �

K. Tobita et al, Proc. 6th IAEA Technical Committee Meeting on Energetic Particles in Magnetic Confinement

Sawteeth in JT-60U
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• TRANSP simulations of 1MeV NNBI demon-

strates that locally pressure gradient of NNBI

could exceed that of the alpha particles.

• In particular could expect the response of

asymmetic NNBI passing to compete with the

stabilising response of trapped alpha particles

if

r
dPNNBI

dr

˛̨̨
˛
r1

≈ 1

ε
1/2
1

Z r1

0

dr

„
r

r1

«2 dPα

dr

• Nevertheless, these TRANSP simulations also

demonstrate a very large current drive effect

which could sustain q > 1 for hundreds of

seconds.

R. Budny, 8th IAEA Technical Meeting on Particles General Atom-

ics, San Diego, CA, Oct 6-8, 2003

NNBI in ITER-FEAT
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Anisotropy

Recipe for separating isotropic, anisotropic and finite orbit terms:

• Separate δFh = δFhf + δFhk where δFhf = −(Ze/mh)(ξ · ∇ψp)∂Fh(Pφ)/∂Pφ

• Expand δFhf around orbit centre:

δFhf = −ξ · ∇∂Fh + adiabatic finite orbit terms

• Choosing diagonal pressure tensor yields fluid potential energy δWhf :

δWhf = −1

2

Z
d

3
x

„
ξ · ∇(Ph‖ + Ph⊥) − (Ph‖ + Ph⊥ + Ch)

ξ · ∇B

B

«
ξ∗ · ∇B

B

where Ch = 2mh

R
dv3 (µB)2∂Fh/∂v.

• We wish to combine the isotropic part of δWhf with the core plasma MHD contribution. Hence

we need to identify anisotropic corrections.

• For isotropic plasma Ch + Ph‖ + Ph⊥ = 0 and (Ph‖ + Ph⊥)/2 = Ph(ψ)

• For strongly anisotropic plasma for which Ph‖/Ph⊥ ∼ ε we have:

Ch ∼ ε
−1
Ph⊥ and

∂Ph⊥
∂θ

∼ Ph⊥
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Anisotropy

For a distribution function of the form

Fh(E, µ, r) =
〈P (r)〉 c(r)

E3/2
exp[−(λ− λ0)

2
/∆λ

2
]

where we choose λ ≡ B0µ/E = 1 and ∆λ = 0.1 to give 〈P⊥〉 /
˙
P‖
¸˛̨
r=0

= 14.
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Separating MHD and anisotropic terms

We can calculate fluid response by either

(1) Using e.g. TERPSICHORE [Cooper, Varenna 1992] - capable of evaluating growth rates for

anisotropic fluid plasma

(2) Analytically separating MHD isotropic and anisotropic contributions:

• Given a distribution F (E, µ, ψ), conservation of E and µ gives:

∂

∂θ
(Ph⊥ + Ph‖) = (Ph⊥ + Ph‖ + Ch)

1

B

∂B

∂θ

• This differential equation can be solved for B = B0(1 − ε cos θ) to give

Ph⊥ + Ph‖ =
˙
Ph⊥ + Ph‖

¸
+ P

A
h⊥(θ) + P

A
h‖(θ)

• Hence we can write

δWf = δWMHD

`
Pcore +

˙
Ph‖ + Ph⊥

¸
/2
´

+ δW
A
f
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• Without self-consistently separating

toroidal and anisotropic effects due to

fast ions, we incorrectly find that δWh

is insensitive to 〈Ph⊥〉 /
˙
Ph‖
¸
.
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Effect of anisotropy on hot ion stabilisation

total

The Internal Kink Mode with Anisotropy

Assume symetric but anisotropic distibution. Include effects of toroidicity, anisotropy and trapped

kinetic effects:

ˆδW = 3(1 − q0)
h
{βp(core) + βp(hot)}2 − 0.3

2
i

+ ˆδWhA + ˆδWhk

• ˆδWhA provides stabilisation mechanism for parallel anisotropy 〈Ph⊥〉 /
˙
Ph‖
¸
 1

• Anisotropy of 〈Ph⊥〉 /
˙
Ph‖
¸ ∼ 10 is most stabilising, for which ˆδWhk dominates.
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• Equilibrium reconstruction should generally be able

to account for anisotropy. This is possible with e.g.

VMEC [Cooper, PPCF 47, 561 (2005)].

• This would be particularly important in spherical toka-

maks having large βh, and 〈P⊥h〉 /
˙
P‖h
¸� 1.

• The effect on cross section shaping has been reported

in [Madden and Hastie, Nucl. Fusion 34, 519 (1994)].

Shafranov shift modified as:

d∆

dr
= ε

»
li

2
+ 〈βp〉 + β

A
ph

–

where

β
A
ph =

 
2µ0

B2
p

!fi
(Ph⊥ + Ph‖)

2
cos 2θ

fl

• ∆ can change sign in the core! i.e. obtain reverse

shift. Purely toroidal MHD modes (e.g. internal

kink) are expected to be strongly modified.

Z

R

/PAN=P

Effect of Anisotropy on Equilibrium
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Conclusions

• Investigated are effects of auxiliary heated ions on the internal kink mode. Special attention given

to important effects typically ignored in kinetic-MHD hybrid codes.

• NBI induced toroidal rotation is analysed. Sheared flow significantly modifies the collisionless

thermal ion response.

� Predictions of relatively small flows in ITER indicate that NNBI induced rotation is not likely

to have a large impact on sawteeth.

• A mechanism has been identified where unbalanced injection of NNBI can stabilise the internal

kink mode.

� Predictions of large local NNBI pressure gradients in ITER indicate that NNBI stabilisation

could compete with stabilisation from alpha particles.

• Anisotropy is found to significantly modify the stability of the internal kink mode. All except very

strongly trapped hot ion distributions are found to be stabilising.

� The damping rate of RF distributions with 〈Ph⊥〉 /
˙
Ph‖
¸
<∼ 10 is found to be around twice

as large as for an isotropic distribution (i.e. alphas) with the same energy content.
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Employ typical JT-60U parameters and solve

ideal dispersion relation at marginal stability

J. P. Graves, Phys. Rev. Lett. 92, 185003

(2004)
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A

A describes asymmetric adiabatic response. F (ω) describes the non-adiabatic response which is smaller

and depends sensitively on ω + qωp −
D
φ̇
E

[J. P. Graves, Varenna conf. proc. 2004].

Ideal Internal Kink Stability with NNBI

• The finite orbit, MHD anisotropic, and MHD isotropic contributions combine as:

ˆδW = −ε−1
1

˛̨̨
˛∆b

r1

˛̨̨
˛
„

2µ0

B0

«"„
A− 2F (ω)

πs1

«
σr

dPh

dr

˛̨̨
˛
r1

#

−1

2

„
2µ0

B0

«Z r1

0

dr

„
r

r1

«2 dP

dr

+3ε
2
1(1 − q0)

h
β

2
crit − β

2
p(
˙
P‖
¸
/2 + Pc)

i
.

Jonathan P. Graves, CRPP Second IAEA TM on Theory of Plasma Instabilities, Trieste, March 2005 20



2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

Ph

Ph

magnetic axis R=R 0

Ph

Ph

R(m)

midplane Z=0

/ h
PPh =14 / h

PPh =14

Z(m)

Anisotropy

For a distribution function of the form

Fh(E, µ, r) =
〈P (r)〉 c(r)

E3/2
exp[−(λ− λ0)

2
/∆λ

2
]

where we choose λ ≡ B0µ/E = 1 and ∆λ = 0.1 to give 〈P⊥〉 /
˙
P‖
¸˛̨
r=0

= 14.
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Separating MHD and anisotropic terms

We can calculate fluid response by either

(1) Using e.g. TERPSICHORE [Cooper, Varenna 1992] - capable of evaluating growth rates for

anisotropic fluid plasma

(2) Analytically separating MHD isotropic and anisotropic contributions:

• Given a distribution F (E, µ, ψ), conservation of E and µ gives:

∂

∂θ
(Ph⊥ + Ph‖) = (Ph⊥ + Ph‖ + Ch)

1

B

∂B

∂θ

• This differential equation can be solved for B = B0(1 − ε cos θ) to give

Ph⊥ + Ph‖ =
˙
Ph⊥ + Ph‖

¸
+ PA

h⊥ + PA
h‖ where

P
A
h⊥+P

A
h‖ = −ε

»
1− 1

2π

Z 2π

0

dθ

– »
(Ph⊥+Ph‖+Ch) cos θ−

Z
θ

dθ cos θ
∂

∂θ
(Ph⊥+Ph‖+Ch)

–

• Hence we can write δWf = δWMHD

`˙
P‖ + P⊥

¸
/2
´

+ δWA
f where

δW
A
f = −1

2

Z
d

3
x

„
ξ · ∇(P

A
h‖ + P

A
h⊥) − (Ph‖ + Ph⊥ + Ch)

ξ · ∇B

B

«
ξ∗ · ∇B

B
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