

Gyrokinetic Edge Turbulence and the Edge/Core Transition

B. Scott

Max Planck Institut für Plasmaphysik Euratom Association D-85748 Garching, Germany

IAEA TM on Instabilities, Mar 2005

Outline

• The Tokamak Edge

- properties
- computational setup
- -turbulence, mechanisms

• Gyrokinetic Edge Turbulence

- basic model, add geometry handling and collisions
- kinetic shear Alfvén behaviour
- mode structure of edge turbulence
- velocity space effects

The Tokamak Edge

- coordinates: radial (x), electron drift (y), parallel (s)
- "thin atmosphere" property: $L_{\perp}/a \ll 1$ hence $L_y \gg L_x$ (in a code, $L_y/L_x \sim 4$)
- field line connection: $L_s = 2\pi q R$, with property that $k_{\parallel} \neq 0$ for $k_y \neq 0$
- small but moderate drift scale $\delta = \rho_s / L_{\perp} \ll 1$ but $\delta > 10^{-2}$
- turbulence, small scale isotropy: both $Max(k_x \rho_s) > 1$ and $Max(k_y \rho_s) > 1$
- two-fluid adiabatic response: $n_e e E_{\parallel} \sim \nabla_{\parallel} p_e$
- NB: if $T_i \sim T_e$ then $\rho_i \sim \rho_s$ hence $k_{\perp}\rho_i > 1$ hence full FLR

well constructed computations respect all of these in every run

Computational Domain

edge parameters

- typical situation: Alfvén/electron transit, collision, and drift frequencies comparable
- drift frequency is c_s/L_{\perp} , spectral range of main interest is $0.1 < k_y \rho_s < 1$
- steep gradient

$$\hat{\mu} \equiv \frac{m_e}{M_D} \left(\frac{qR}{L_\perp}\right)^2 = \left(\frac{c_s/L_\perp}{V_e/qR}\right)^2 > 1$$

• collisional

$$C \equiv \frac{0.51\nu_e}{c_s/L_{\perp}} \frac{m_e}{M_D} \left(\frac{qR}{L_{\perp}}\right)^2 = 0.51 \frac{\nu_e c_s/L_{\perp}}{(V_e/qR)^2} > 1$$

• electromagnetic

$$\hat{\beta} \equiv \frac{4\pi p_e}{B^2} \left(\frac{qR}{L_\perp}\right)^2 = \left(\frac{c_s/L_\perp}{v_A/qR}\right)^2 \gtrsim 1$$

what determines the edge?

- mainly, the first of the conditions: $\hat{\mu} > 1$
- consider the boundary, $\hat{\mu} = 1$

$$\frac{m_e}{M_D} \left(\frac{qR}{L_\perp}\right)^2 = 1$$

• solve this for the profile scale length

$$L_{\perp} = \sqrt{m_e/M_D} \, qR$$

for linear profile gradients this is typically about 8 cm
and it holds over about the last 4 cm within the LCFS

if a pedestal exists, the top is the edge/core boundary

Edge Turbulence Computation Arrangement

Drive/Saturation Mechanisms, Turbulence

- linear modes at these scales are resistive ballooning (P Guzdar et al, PoP Oct 1993)
- turbulence: all degrees of freedom participate, including (especially) damped modes

 self sustained drift wave turbulence
 (B Scott, PRL Dec 1990, PFB Aug 1992)
- turbulence has energetic character of collisional drift waves • special: ion temperature, ITG/interchange for $\eta_i > 2$ (B Scott, PPCF Oct 1997 & New J Phys 2002; V Naulin, PoP Oct 2003)
- observe clear changes in mode structure, linear \rightarrow saturation \rightarrow turbulence (B Scott, PPCF Dec 2003)
- presence/absence tests with nonlinearities (NL) show:
 o vorticity NL is a drive mechanisms
 o ExB density NL is the (only) saturation mechanisms
- correlation lengths do not follow linear instability scales (see gyrokinetics, below)

Self Sustained Turbulence erases Linear Instabilities

e.g., phase shift distributions for each wavelength

- for linear modes: part of the dispersion relation
- for turbulence: part of the statistical character
 involves damped or stable, as well as driven, transients
 this pattern is a clear signature of drift wave mode structure

Nonlinearity Tests — Saturation

• alternatively remove $\mathbf{v}_E \cdot \nabla \widetilde{\Omega}$

... or $\mathbf{v}_E \cdot \nabla \widetilde{n}_e$

ExB diffusive mixing of electrons is the saturation mechanism
 o vorticity drive result is same as 3D slab → drive mechanism
 (B Scott, IAEA 2000)

Why Kinetic?

• previous argument: electron mean free path

$$\chi_{\parallel} \sim \frac{T_e}{m_e \nu_e} \sim \lambda_{\rm mfp} V_e$$

• not sufficiently considered: time dependence ...

$$\omega \sim V_e/qR \qquad \qquad \omega \sim \nu_e$$

... especially in the ions, by two orders of magnitude!

$$\omega \gg V_i/qR \qquad \qquad \omega \gg \nu_i$$

• many potential issues, of varying importance

gyrokinetic explorations should be considered very useful

Low-frequency delta-f Gyrokinetic Formulation

- wide spectrum turbulence
- usual ordering: $e\widetilde{\phi}/T_e \sim \rho_s/L_{\perp} \equiv \delta \ll 1$ and $k_{\perp}\rho_i \sim 1$ \circ but allow for $e\widetilde{\phi}/T_e \sim 1$ at $k_{\perp}\rho_i \sim \delta$
- assume $\tilde{f} \ll F^M$ (background Maxwellian), linearise parallel acceleration
- keep ExB advection and "magnetic flutter" as quadratic nonlinearities
- keep curvature and trapping
 manipulate factors of B to maintain free energy conservation law
- add collisions
- ensure flux surface geometry representation allows arbitrary mode structure
- parameters can be of order unity, except for one:

$$\delta \equiv \frac{\rho_s}{L_\perp} \ll 1$$

collisionless slab (Alfvén) part

(F Jenko and B Scott, PoP Jun 1999)

• terms describing Alfvén dynamics

$$\frac{\partial f}{\partial t} + v_{\parallel} \mathbf{b} \cdot \nabla f - \frac{e}{m} \left(\frac{1}{c} \frac{\partial A_{\parallel}}{\partial t} + \mathbf{b} \cdot \nabla \phi \right) \frac{\partial f}{\partial v_{\parallel}} = 0$$

- use F^M for f in $\partial/\partial v_{\parallel}$
- combine A_{\parallel} with f under $\partial/\partial t$
- combine ϕ with f under $\mathbf{b} \cdot \nabla$

$$\frac{\partial}{\partial t} \left(f + e \frac{v_{\parallel}}{c} A_{\parallel} \frac{F^M}{T} \right) + v_{\parallel} \mathbf{b} \cdot \nabla \left(f + e \phi \frac{F^M}{T} \right) = 0$$

• note we must have $F^M = F^M(v_{\parallel}, \mu)$ only!

• now keep nonlinearities, separately

$$\frac{\partial f}{\partial t} \to \frac{\partial f}{\partial t} + \mathbf{v}_E \cdot \nabla f \qquad \mathbf{b} \cdot \nabla f \to \mathbf{b}^{(0)} \cdot \nabla f + \mathbf{b}_\perp \cdot \nabla f$$

• express as brackets — determine coordinates later

$$\mathbf{v}_E \cdot \nabla f = [\phi, f] \qquad \qquad \mathbf{b}_{\perp} \cdot \nabla f = -\frac{1}{c} [A_{\parallel}, f]$$

• use
$$\mathbf{v}_E \cdot \nabla \phi = 0$$
 to combine f and ϕ

$$\frac{\partial}{\partial t} \left(f + e \frac{v_{\parallel}}{c} A_{\parallel} \frac{F^M}{T} \right) + v_{\parallel} \mathbf{b}^{(0)} \cdot \nabla \left(f + e \phi \frac{F^M}{T} \right) + \left[\phi, \left(f + e \phi \frac{F^M}{T} \right) \right] - \left[\frac{v_{\parallel}}{c} A_{\parallel}, \left(f + e \phi \frac{F^M}{T} \right) \right] = 0$$

• define auxiliaries

$$G \equiv f + e \frac{v_{\parallel}}{c} A_{\parallel} \frac{F^M}{T} \qquad H \equiv f + e \phi \frac{F^M}{T}$$

• combine potentials

$$\psi \equiv \phi - \frac{v_{\parallel}}{c} A_{\parallel}$$

• the equation collapses into a single bracket

$$\frac{\partial G}{\partial t} + v_{\parallel} \mathbf{b}^{(0)} \cdot \nabla H + [\psi, H] = 0$$

- all dynamics comes from H ("nonadiabatic part")
- induction, magnetic energy, comes from G

• linear term is also a bracket in Hamada coordinates

$$\mathbf{B} \cdot \nabla H = B^s \frac{\partial H}{\partial s} = \frac{\partial \chi}{\partial x} \frac{\partial H}{\partial s} = [\chi, H]_{xs}$$

• curvature terms work through $\log B$ as a potential

$$B\nabla \times \mathbf{b} \equiv -B\nabla \cdot \frac{\mathbf{F}}{B} \approx -\mathbf{F} \cdot \nabla \log B \quad \text{where} \quad F_{ij} = \epsilon_{ijk} B^k$$
$$\mathbf{b} \times \nabla \mu B = -\frac{\mathbf{F}}{B} \cdot \nabla \mu B = -\mu \mathbf{F} \cdot \nabla \log B$$

• potentials combine (B is constant unless appearing as $\log B$)

$$\psi \to \psi + \frac{mv_{\parallel}^2 + \mu B}{e} \log B$$

also add trapping (as bracket) and collisions
(usual model scattering both pitch angle and energy)

Gyrokinetic Edge Turbulence

delta-f gyrokinetic model (as GENE/GS2), with
o collisions, "shifted metric" f-tube geometry, non-periodic radial boundaries

$$\frac{\partial G}{\partial t} + \delta \omega_T F^M \frac{\partial \psi_e}{\partial y} + [\delta \psi, H]_{xy} + [\delta_a \psi + v_{\parallel} \chi, H]_{xs} - (\mu B) \frac{\chi'}{m} [\log B, f]_{sv_{\parallel}} = C(f)$$

with $\delta = c/B$ and $\delta_a = c/Ba$, and Poisson brackets [,] and potentials

$$G = f + e \frac{v_{\parallel}}{c} \frac{F^{M}}{T} J_{0} A_{\parallel} \qquad \qquad H = f + e \frac{F^{M}}{T} J_{0} \phi$$
$$\psi_{e} = J_{0} \left(\phi - \frac{v_{\parallel}}{c} A_{\parallel} \right) \qquad \qquad \psi_{e} = \psi_{e} + \frac{m v_{\parallel}^{2} + \mu B}{e} \log B$$

• and with polarisation and induction

$$\sum_{\mathrm{sp}} \int d\mathcal{W} \left[eJ_0 f + (J_0^2 - 1)\frac{F^M}{T} e^2 \phi \right] = 0 \qquad \nabla_{\perp}^2 A_{\parallel} + \frac{4\pi}{c} \sum_{\mathrm{sp}} \int d\mathcal{W} \left[ev_{\parallel} J_0 f \right] = 0$$

Gyrokinetic Energy

• ExB and magnetic energy

$$\mathcal{E}_E = \frac{1}{2} \sum_{\text{sp}} \int d\Lambda \left(1 - J_0^2\right) \frac{F^M}{T} e^2 \phi^2 \qquad \qquad \mathcal{E}_M = \frac{1}{8\pi} \int d\mathcal{V} \, k_\perp^2 A_\parallel^2$$

• time derivatives (reformulate using polarisation/induction)

$$\frac{\partial \mathcal{E}_E}{\partial t} = \sum_{\mathrm{Sp}} \int d\Lambda \, e J_0 \phi \, \frac{\partial f}{\partial t} \qquad \qquad \frac{\partial \mathcal{E}_M}{\partial t} = \sum_{\mathrm{Sp}} \int d\Lambda \, e f \frac{v_{\parallel}}{c} J_0 \, \frac{\partial A_{\parallel}}{\partial t}$$

• thermal free energy and time derivative (cf.: Lee and Tang 1988)

$$\mathcal{E}_F = \frac{1}{2} \sum_{\mathrm{sp}} \int d\Lambda \, \frac{T}{F^M} f^2 \qquad \qquad \frac{\partial \mathcal{E}_F}{\partial t} = \sum_{\mathrm{sp}} \int d\Lambda \, \frac{T}{F^M} f \, \frac{\partial f}{\partial t}$$

Gyrokinetic Energy Theorem

• combine three time derivatives for $\mathcal{E} = \mathcal{E}_E + \mathcal{E}_M + \mathcal{E}_F$

$$\begin{aligned} \frac{\partial \mathcal{E}}{\partial t} &= \sum_{\mathrm{Sp}} \int d\Lambda \, \frac{T}{F^M} H \frac{\partial G}{\partial t} \\ &= \sum_{\mathrm{Sp}} \int d\Lambda \, \left[-v_{\parallel} \chi' \frac{\partial (\log B)}{\partial s} \frac{\mu B}{F^M} \frac{f^2}{2} - \delta \omega_T T \, f \, \frac{\partial \psi_e}{\partial y} + \frac{T}{F^M} f \, C(f) \right] \end{aligned}$$

- entropy term from trapping, linear drive, and collision damping
- NB: turbulence requires high-k_⊥ and high-k_{||} numerical dissipation

 collisional scales ~ ρ_e and k_{||}qR ~ 100
 main cascade process: direct, both k_⊥ and k_{||}, through v_E · ∇ñ_e
 (F-Y Gang et al, PFB Jun 1989 & Apr 1991; J Albert et al, PFB Dec 1990)
- use energy theorem pieces to diagnose energy transfer, Reynolds stress

Test of KALF Damping Rate, collisionality scaling

FEFI3, $\beta_e = 10^{-4}$ $\mu_e^{-1} = 3670$ $qR/L_{\perp} = 100$ $k_{\perp}\rho_s = 0.1$

• collisionless (left) and trans-collisional (right)

- recursion problems for $\nu_z < 10^{-5}$
- non-thermalisation for $\nu_z > 10^{-3}$
- well converged for $N_z = 64$

- collisional regime for $\nu_e > 1$
- v_{\parallel} -space grid problems for $\nu_e < 0.1$
- usual edge turb range is $\nu_e \sim 1$

edge parameters

- typical situation: Alfvén/electron transit, collision, and drift frequencies comparable
- drift frequency is c_s/L_{\perp} , spectral range of main interest is $0.1 < k_y \rho_s < 1$
- steep gradient

$$\hat{\mu} \equiv \frac{m_e}{M_D} \left(\frac{qR}{L_\perp}\right)^2 = \left(\frac{c_s/L_\perp}{V_e/qR}\right)^2 > 1 \tag{5}$$

• collisional

$$C \equiv \frac{0.51\nu_e}{c_s/L_{\perp}} \frac{m_e}{M_D} \left(\frac{qR}{L_{\perp}}\right)^2 = 0.51 \frac{\nu_e c_s/L_{\perp}}{(V_e/qR)^2} > 1$$
(2.55)

• electromagnetic

$$\hat{\beta} \equiv \frac{4\pi p_e}{B^2} \left(\frac{qR}{L_\perp}\right)^2 = \left(\frac{c_s/L_\perp}{v_A/qR}\right)^2 \gtrsim 1 \tag{1}$$

• NB: $\nu_* = \hat{\mu}^{1/2} \nu \epsilon^{-3/2}$, so for these cases we have $\nu_* = 10 \nu$ with $\nu = \nu_e L_{\perp}/c_s$

computational details

- local flux tube model (x, y, s)
 globally consistent (1 connection length in s), "shifted metric"
 local version of x = r²/a² and y_k = q(θ − s_k) − ζ and s = θ
 s_k is a global constant, g^{xy}_k = 0 at s = s_k
- perpendicular drift plane domain $L_x = L_y/4 = L_T = 4 \text{ cm} = 67\rho_s$
- velocity space domain $-5 < v_{\parallel}/V_t < 5$ and $0 < \mu B_0/T_0 < 10$
- spatial grid node count $32 \times 128 \times 16$ in (x, y, s)
- velocity space grid 16×8 in v_{\parallel} and μB_0
- collisions: pitch angle and energy scattering from fixed background
- conservative part:
 - Arakawa scheme for spatial brackets, Colella MUSCL for trapping • time step: Karniadakis 3rd order "stiffly stable" with $\delta t = 0.02L_T/c_s$ (cf.: V Naulin, PoP Oct 2003)

time traces, showing saturation

nominal case: $\delta=0.015$, $\hat{eta}=1$, $\mu_e=m_e/M_D$, $qR/L_{\perp}=100$, $\nu=1$

time traces, showing saturation

nominal case: $\delta=0.015$, $\hat{eta}=1$, $\mu_e=m_e/M_D$, $qR/L_{\perp}=100$, $\nu=1$

amplitude and flux spectra

nominal case: $\delta=0.015$, $\hat{eta}=1$, $\mu_e=m_e/M_D$, $qR/L_\perp=100$, $\nu=1$

- vorticity spectrum flat all the way to $k_y \rho_s = 1$
- note the differing shape of the electron conduction transport spectrum

flux profiles

nominal case: $\delta=0.015$, $\hat{\beta}=1$, $\mu_e=m_e/M_D$, $qR/L_{\perp}=100$, $\nu=1$

parallel mode structure

nominal case:
$$\delta=0.015$$
, $\hat{eta}=1$, $\mu_e=m_e/M_D$, $qR/L_{\perp}=100$, $u=1$

- note that $\tilde{h}_e = \tilde{n}_e \tilde{\phi}$ is flat though \tilde{n}_e and \tilde{T}_i are especially ballooned
- top/bottom enhancements to flux are due to $\widetilde{\phi}$

drift plane morphology

nominal case: $\delta=0.015$, $\hat{eta}=1$, $\mu_e=m_e/M_D$, $qR/L_\perp=100$, $\nu=1$

three dimensional morphology

cross correlation and phase shifts

velocity space dependence of fluctuations

velocity space dependence of ExB thermal fluxes

t = 0.140E + 04

velocity space dependence of thermal flux components

velocity space dependence of magnetic "flutter" fluxes

t = 0.140E + 04

Transport Scaling versus Beta

- shallow rise begins for $\hat{\beta} > 1$
- "magnetic flutter" positive for all $\hat{\beta}$ (unique to gyrokinetics)

cross correlation and phase shifts, various beta

Correlation Length Scalings

- radial correlation length $\lambda_x \sim 5$ to $7\rho_s$ consistent with observations
- λ_x does not follow linear scales ($\propto \nu^{1/2}$)
- for this parameter choice, $\alpha_M = 0.15 \hat{\beta}$ and $\nu_* = 10 \nu$

edge/core transition — parallel structure

position 1: $T_e = 100 \,\mathrm{eV}$ $L_\perp = 4 \,\mathrm{cm}$

 $t \le 410. - 0.120E + 04$

edge/core transition — parallel structure

position 2: $T_e = 200 \,\mathrm{eV}$ $L_\perp = 8 \,\mathrm{cm}$

s t = 380.0

edge/core transition — parallel structure position 3: $T_e = 300 \,\mathrm{eV}$ $L_{\perp} = 12 \,\mathrm{cm}$

s t = 260.0

edge/core transition — parallel structure position 4: $T_e = 400 \,\mathrm{eV}$ $L_{\perp} = 16 \,\mathrm{cm}$

s t = 120.0

position 1: $T_e = 100 \,\mathrm{eV}$ $L_\perp = 4 \,\mathrm{cm}$

position 2: $T_e = 200 \,\mathrm{eV}$ $L_\perp = 8 \,\mathrm{cm}$

position 3: $T_e = 300 \,\mathrm{eV}$ $L_\perp = 12 \,\mathrm{cm}$

position 4: $T_e = 400 \, \text{eV}$ $L_{\perp} = 16 \, \text{cm}$

Main Points

• Turbulence (turb) Drive and Saturation

- mechanisms **nonlinear**, do not follow linear scales
- drive: vorticity nonlinearity, plus linear ITG mechanism
- saturation: ExB diffusive mixing of electrons

• Gyrokinetic Edge Turbulence

- now feasible
- basic character same as electromagnetic, collisional, gyrofluid models
- important differences in T_e effects (anisotropy, also magnetic flutter)

• Future Generalisation — total-f model (FEFI) almost complete

- total-f model (FEFI) in late development stages
- required for full inhomogeneity, even radial parameter variation
- apparently minimal necessity to treat pedestal