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Outline

• The Tokamak Edge

— properties
— computational setup
— turbulence, mechanisms

• Gyrokinetic Edge Turbulence

— basic model, add geometry handling and collisions
— kinetic shear Alfvén behaviour
— mode structure of edge turbulence
— velocity space effects



The Tokamak Edge

• coordinates: radial (x), electron drift (y), parallel (s)

• “thin atmosphere” property: L⊥/a � 1 hence Ly � Lx (in a code, Ly/Lx ∼ 4)

• field line connection: Ls = 2πqR, with property that k‖ �= 0 for ky �= 0

• small but moderate drift scale δ = ρs/L⊥ � 1 but δ > 10−2

• turbulence, small scale isotropy: both Max(kxρs) > 1 and Max(kyρs) > 1

• two-fluid adiabatic response: neeE‖ ∼ ∇‖pe

• NB: if Ti ∼ Te then ρi ∼ ρs hence k⊥ρi > 1 hence full FLR

well constructed computations respect all of these
in every run
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edge parameters

• typical situation: Alfvén/electron transit, collision, and drift frequencies comparable

• drift frequency is cs/L⊥, spectral range of main interest is 0.1 < kyρs < 1

• steep gradient

µ̂ ≡ me

MD

(
qR

L⊥

)2

=
(

cs/L⊥
Ve/qR

)2

> 1

• collisional

C ≡ 0.51νe

cs/L⊥
me

MD

(
qR

L⊥

)2

= 0.51
νe cs/L⊥
(Ve/qR)2

> 1

• electromagnetic

β̂ ≡ 4πpe

B2
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qR

L⊥

)2

=
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cs/L⊥
vA/qR

)2
>∼ 1



what determines the edge?

• mainly, the first of the conditions: µ̂ > 1

• consider the boundary, µ̂ = 1
me

MD

(
qR

L⊥

)2

= 1

• solve this for the profile scale length

L⊥ =
√

me/MD qR

• for linear profile gradients this is typically about 8 cm
◦ and it holds over about the last 4 cm within the LCFS

if a pedestal exists, the top is the edge/core boundary
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Drive/Saturation Mechanisms, Turbulence

• linear modes at these scales are resistive ballooning
(P Guzdar et al, PoP Oct 1993)

• turbulence: all degrees of freedom participate, including (especially) damped modes
◦ self sustained drift wave turbulence

(B Scott, PRL Dec 1990, PFB Aug 1992)

• turbulence has energetic character of collisional drift waves
◦ special: ion temperature, ITG/interchange for ηi > 2

(B Scott, PPCF Oct 1997 & New J Phys 2002; V Naulin, PoP Oct 2003)

• observe clear changes in mode structure, linear → saturation → turbulence
(B Scott, PPCF Dec 2003)

• presence/absence tests with nonlinearities (NL) show:
◦ vorticity NL is a drive mechanisms
◦ ExB density NL is the (only) saturation mechanisms

• correlation lengths do not follow linear instability scales
(see gyrokinetics, below)



Self Sustained Turbulence erases Linear Instabilities

e.g., phase shift distributions for each wavelength

• for linear modes: part of the dispersion relation

• for turbulence: part of the statistical character
◦ involves damped or stable, as well as driven, transients
◦ this pattern is a clear signature of drift wave mode structure



Nonlinearity Tests — Saturation

• alternatively remove vE · ∇Ω̃ . . . or vE · ∇ñe

• ExB diffusive mixing of electrons is the saturation mechanism
◦ vorticity drive result is same as 3D slab → drive mechanism

(B Scott, IAEA 2000)



Why Kinetic?

• previous argument: electron mean free path

χ‖ ∼ Te

meνe
∼ λmfpVe

• not sufficiently considered: time dependence . . .

ω ∼ Ve/qR ω ∼ νe

. . . especially in the ions, by two orders of magnitude!

ω � Vi/qR ω � νi

• many potential issues, of varying importance

gyrokinetic explorations should be considered very useful



Low-frequency delta-f Gyrokinetic Formulation

• wide spectrum turbulence

• usual ordering: eφ̃/Te ∼ ρs/L⊥ ≡ δ � 1 and k⊥ρi ∼ 1
◦ but allow for eφ̃/Te ∼ 1 at k⊥ρi ∼ δ

• assume f̃ � F M (background Maxwellian), linearise parallel acceleration

• keep ExB advection and “magnetic flutter” as quadratic nonlinearities

• keep curvature and trapping
◦ manipulate factors of B to maintain free energy conservation law

• add collisions

• ensure flux surface geometry representation allows arbitrary mode structure

• parameters can be of order unity, except for one:

δ ≡ ρs

L⊥
� 1



collisionless slab (Alfvén) part
(F Jenko and B Scott, PoP Jun 1999)

• terms describing Alfvén dynamics

∂f

∂t
+ v‖b · ∇f − e

m

(
1
c

∂A‖
∂t

+ b · ∇φ

)
∂f

∂v‖
= 0

• use F M for f in ∂/∂v‖

• combine A‖ with f under ∂/∂t

• combine φ with f under b · ∇

∂

∂t

(
f + e

v‖
c

A‖
FM

T

)
+ v‖b · ∇

(
f + eφ

FM

T

)
= 0

• note we must have F M = FM (v‖, µ) only!



• now keep nonlinearities, separately

∂f

∂t
→ ∂f

∂t
+ vE · ∇f b · ∇f → b(0) · ∇f + b⊥ · ∇f

• express as brackets — determine coordinates later

vE · ∇f = [φ, f ] b⊥ · ∇f = −1
c
[A‖, f ]

• use vE · ∇φ = 0 to combine f and φ

∂

∂t

(
f + e

v‖
c

A‖
FM

T

)
+ v‖b(0) · ∇

(
f + eφ

FM

T

)

+
[
φ,

(
f + eφ

FM

T

)]
−

[
v‖
c

A‖,
(

f + eφ
FM

T

)]
= 0



• define auxiliaries

G ≡ f + e
v‖
c

A‖
FM

T
H ≡ f + eφ

FM

T

• combine potentials
ψ ≡ φ − v‖

c
A‖

• the equation collapses into a single bracket

∂G

∂t
+ v‖b(0) · ∇H + [ψ, H] = 0

• all dynamics comes from H (“nonadiabatic part”)

• induction, magnetic energy, comes from G



• linear term is also a bracket in Hamada coordinates

B · ∇H = Bs ∂H

∂s
=

∂χ

∂x

∂H

∂s
= [χ, H]xs

• curvature terms work through log B as a potential

B∇×b ≡ −B∇ · F
B

≈ −F · ∇ log B where Fij = εijkBk

b×∇µB = −F
B

· ∇µB = −µF · ∇ log B

• potentials combine (B is constant unless appearing as log B)

ψ → ψ +
mv2

‖ + µB

e
log B

• also add trapping (as bracket) and collisions
◦ (usual model scattering both pitch angle and energy)



Gyrokinetic Edge Turbulence

• delta-f gyrokinetic model (as GENE/GS2), with
◦ collisions, “shifted metric” f-tube geometry, non-periodic radial boundaries

∂G

∂t
+ δωT FM ∂ψe

∂y
+ [δψ, H]xy + [δaψ + v‖χ, H]xs − (µB)

χ′

m
[log B, f ]sv‖ = C(f)

with δ = c/B and δa = c/Ba, and Poisson brackets [, ] and potentials

G = f + e
v‖
c

FM

T
J0A‖ H = f + e

FM

T
J0φ

ψe = J0

(
φ − v‖

c
A‖

)
ψ = ψe +

mv2
‖ + µB

e
log B

• and with polarisation and induction

∑
sp

∫
dW

[
eJ0f + (J2

0 − 1)
FM

T
e2φ

]
= 0 ∇2

⊥A‖ +
4π
c

∑
sp

∫
dW [

ev‖J0f
]

= 0



Gyrokinetic Energy

• ExB and magnetic energy

EE =
1
2

∑
sp

∫
dΛ (1 − J2

0 )
FM

T
e2φ2 EM =

1
8π

∫
dV k2

⊥A2
‖

• time derivatives (reformulate using polarisation/induction)

∂EE

∂t
=

∑
sp

∫
dΛ eJ0φ

∂f

∂t

∂EM

∂t
=

∑
sp

∫
dΛ ef

v‖
c

J0

∂A‖
∂t

• thermal free energy and time derivative (cf.: Lee and Tang 1988)

EF =
1
2

∑
sp

∫
dΛ

T

FM
f2 ∂EF

∂t
=

∑
sp

∫
dΛ

T

FM
f

∂f

∂t



Gyrokinetic Energy Theorem

• combine three time derivatives for E = EE + EM + EF

∂E
∂t

=
∑
sp

∫
dΛ

T

FM
H

∂G

∂t

=
∑
sp

∫
dΛ

[
−v‖χ′ ∂(log B)

∂s

µB

FM

f2

2
− δωT T f

∂ψe

∂y
+

T

FM
f C(f)

]

• entropy term from trapping, linear drive, and collision damping

• NB: turbulence requires high-k⊥ and high-k‖ numerical dissipation
◦ collisional scales ∼ ρe and k‖qR ∼ 100
◦ main cascade process: direct, both k⊥ and k‖, through vE · ∇ñe

(F-Y Gang et al, PFB Jun 1989 & Apr 1991; J Albert et al, PFB Dec 1990)

• use energy theorem pieces to diagnose energy transfer, Reynolds stress



Test of KALF Damping Rate, collisionality scaling

FEFI3, βe = 10−4 µ−1
e = 3670 qR/L⊥ = 100 k⊥ρs = 0.1

• collisionless (left) and trans-collisional (right)

• recursion problems for νz < 10−5

• non-thermalisation for νz > 10−3

• well converged for Nz = 64

• collisional regime for νe > 1

• v‖-space grid problems for νe < 0.1

• usual edge turb range is νe ∼ 1



edge parameters

• typical situation: Alfvén/electron transit, collision, and drift frequencies comparable

• drift frequency is cs/L⊥, spectral range of main interest is 0.1 < kyρs < 1

• steep gradient

µ̂ ≡ me

MD

(
qR

L⊥

)2

=
(

cs/L⊥
Ve/qR

)2

> 1 (5)

• collisional

C ≡ 0.51νe

cs/L⊥
me

MD

(
qR

L⊥

)2

= 0.51
νe cs/L⊥
(Ve/qR)2

> 1 (2.55)

• electromagnetic

β̂ ≡ 4πpe

B2

(
qR

L⊥

)2

=
(

cs/L⊥
vA/qR

)2
>∼ 1 (1)

• NB: ν∗ = µ̂1/2νε−3/2, so for these cases we have ν∗ = 10 ν with ν = νeL⊥/cs



computational details

• local flux tube model (x, y, s)
◦ globally consistent (1 connection length in s), “shifted metric”
◦ local version of x = r2/a2 and yk = q(θ − sk) − ζ and s = θ
◦ sk is a global constant, gxy

k = 0 at s = sk

• perpendicular drift plane domain Lx = Ly/4 = LT = 4 cm = 67ρs

• velocity space domain −5 < v‖/Vt < 5 and 0 < µB0/T0 < 10

• spatial grid node count 32 × 128 × 16 in (x, y, s)

• velocity space grid 16 × 8 in v‖ and µB0

• collisions: pitch angle and energy scattering from fixed background

• conservative part:
◦ Arakawa scheme for spatial brackets, Colella MUSCL for trapping
◦ time step: Karniadakis 3rd order “stiffly stable” with δt = 0.02LT /cs

(cf.: V Naulin, PoP Oct 2003)



time traces, showing saturation

nominal case: δ = 0.015, β̂ = 1, µe = me/MD, qR/L⊥ = 100, ν = 1



time traces, showing saturation

nominal case: δ = 0.015, β̂ = 1, µe = me/MD, qR/L⊥ = 100, ν = 1



amplitude and flux spectra

nominal case: δ = 0.015, β̂ = 1, µe = me/MD, qR/L⊥ = 100, ν = 1

• vorticity spectrum flat all the way to kyρs = 1

• note the differing shape of the electron conduction transport spectrum



flux profiles

nominal case: δ = 0.015, β̂ = 1, µe = me/MD, qR/L⊥ = 100, ν = 1



parallel mode structure

nominal case: δ = 0.015, β̂ = 1, µe = me/MD, qR/L⊥ = 100, ν = 1

• note that h̃e = ñe − φ̃ is flat though ñe and T̃i are especially ballooned

• top/bottom enhancements to flux are due to φ̃



drift plane morphology

nominal case: δ = 0.015, β̂ = 1, µe = me/MD, qR/L⊥ = 100, ν = 1



three dimensional morphology

nominal case: δ = 0.015, β̂ = 1, µe = me/MD, qR/L⊥ = 100, ν = 1



cross correlation and phase shifts



velocity space dependence of fluctuations



velocity space dependence of ExB thermal fluxes



velocity space dependence of thermal flux components



velocity space dependence of magnetic “flutter” fluxes



Transport Scaling versus Beta

• shallow rise begins for β̂ > 1

• “magnetic flutter” positive for all β̂ (unique to gyrokinetics)



cross correlation and phase shifts, various beta



Correlation Length Scalings

• radial correlation length λx ∼ 5 to 7ρs consistent with observations

• λx does not follow linear scales (∝ ν1/2)

• for this parameter choice, αM = 0.15β̂ and ν∗ = 10 ν



edge/core transition — parallel structure
position 1: Te = 100 eV L⊥ = 4 cm



edge/core transition — parallel structure
position 2: Te = 200 eV L⊥ = 8 cm



edge/core transition — parallel structure
position 3: Te = 300 eV L⊥ = 12 cm



edge/core transition — parallel structure
position 4: Te = 400 eV L⊥ = 16 cm



edge/core transition — flux spectrum
position 1: Te = 100 eV L⊥ = 4 cm



edge/core transition — flux spectrum
position 2: Te = 200 eV L⊥ = 8 cm



edge/core transition — flux spectrum
position 3: Te = 300 eV L⊥ = 12 cm



edge/core transition — flux spectrum
position 4: Te = 400 eV L⊥ = 16 cm



Main Points

• Turbulence (turb) Drive and Saturation

— mechanisms nonlinear, do not follow linear scales
— drive: vorticity nonlinearity, plus linear ITG mechanism
— saturation: ExB diffusive mixing of electrons

• Gyrokinetic Edge Turbulence

— now feasible
— basic character same as electromagnetic, collisional, gyrofluid models
— important differences in Te effects (anisotropy, also magnetic flutter)

• Future Generalisation — total-f model (FEFI) almost complete

— total-f model (FEFI) in late development stages
— required for full inhomogeneity, even radial parameter variation
— apparently minimal necessity to treat pedestal


