

NEOCLASSICAL TOROIDAL ANGULAR MOMENTUM TRANSPORT IN A ROTATING IMPURE PLASMA

S. Newton & P. Helander

This work was funded jointly by EURATOM and the UK Engineering and Physical Sciences Research Council

OVERVIEW

- Motivation
- Current observations
- Current predictions
- Impure, rotating plasma
- Calculating the transport
 - Results
 - Summary

MOTIVATION

• Internal Transport Barriers believed to be caused by sheared electric field, $E'_r \neq 0$

• Toroidal velocity
$$v_{\phi} = \frac{E_r}{B_p} + \frac{p_i}{neB_p} + \dots$$

 \Rightarrow E_r(r) determined by angular momentum transport

• If turbulence is suppressed in an ITB

⇒ neoclassical angular momentum transport should play key role in formation and sustainment of ITBs

CURRENT OBSERVATIONS

• Bulk ion **thermal diffusivity** observed at neoclassical level *eg* ITB core plasma

Prediction assumes bulk ions low collisionality, banana regime

- transport scales as
$$V_{ii} \frac{q^2 \rho^2}{\epsilon^{3/2}}$$

Bulk ion viscosity order of magnitude higher than prediction
 Bulk ion viscosity determines angular momentum confinement
 ⇒ angular momentum transport anomalous

CURRENT PREDICTIONS

1971, Rosenbluth et al calculate viscosity in pure plasma:

- bulk ions in banana regime, slow rotation
- scales as $v_{ii} q^2 \rho^2$ expected for Pfirsch-Schlüter regime

1985, Hinton and Wong extended to sonic plasma rotation:

- still no enhancement characteristic of banana regime
- transport is diffusive, driven by gradient of toroidal velocity
- plasma on a flux surface rotates as a rigid body
- angular velocity determined by local radial electric field

- Trapped particles collide:
 - change position, toroidal velocity determined by local field
 - no net transfer of angular momentum
- Angular momentum transported by passing particles:
 - same toroidal velocity as trapped particles due to friction
 - typical excursion from flux surface $\sim q \rho$
 - \Rightarrow momentum diffusivity ~ $V_{ii} q^2 \rho^2$

IMPURE ROTATING PLASMA

Typically $Z_{eff} > 1$

- plasma contains heavy, highly charged impurity species
- mixed collisionality plasma

1976, Hirshman:particle flux~Pfirsch-Schlüter regimeheat flux~banana regime

Rotating Plasma

- centrifugal force pushes particles to outboard side of flux surface
- impurity ions undergo significant poloidal redistribution
- variation in collision frequency around flux surface

1999, Fülöp & Helander: particle flux typical of banana regime

CALCULATING THE TRANSPORT

Hinton & Wong: expansion of ion kinetic equation in $\delta = \rho_i / L_r$ $f = f_0 + f_1 + f_2 + \dots \qquad f_1 \sim \delta f_0$

• Cross-field transport second order in δ - use flux-friction relations: $m_i / \int d^3 y m P^2 y^2 C \left(f \right)^2$

Angular momentum flux: $\Pi = -\frac{m_i}{2e} \langle \int d^3 v \, m_i R^2 v_{\phi}^2 C_i(f_1) \rangle$

• Separate classical and neoclassical contributions: $f_1 = \tilde{f}_1 + \bar{f}_1$ \widetilde{f}_1 determined by Hinton & Wong: - valid for any species - independent of form of C_i

 \bar{f}_1

- obtained from the drift kinetic equation
- subsidary expansion in ratio of ion collision to bounce frequency

COLLISION OPERATOR

- Impurity concentration typically $\Rightarrow V_{ii} \sim V_{iz}$
- Explicit form of collision operator: $C_i = C_{ii} + C_{iz}$ C_{ii} : Kovrizhnykh model operator for self collisions C_{iz} : disparate masses \Rightarrow analogous to electron - ion collisions $C_{iz} = V_{iz}(\Psi, \theta) \left(L(f_1) + \frac{m_i V_{\parallel}}{T_i} V_{z\parallel}(\Psi, \theta) f_0 \right)$
- Parallel impurity momentum equation used to determine V_{z||} m_zn_z(V_z · ∇)V_z = -n_zze∇Φ - ∇p + **R** + n_zzeV_z × **B** - cross product with **B** gives V_{z⊥}
 - flow divergence free to first order $\Rightarrow V_{z\parallel}$

TRANSPORT MATRIX

Represent the fluxes in matrix form

$$\begin{pmatrix} \Gamma \\ q \\ \Pi \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} & L_{13} \\ L_{21} & L_{22} & L_{23} \\ L_{31} & L_{32} & L_{33} \end{pmatrix} \begin{pmatrix} d (\ln p_i)/dr \\ d (\ln T_i)/dr \\ d (\ln \omega)/dr \end{pmatrix}$$

- L_{33} usual measure of viscosity
- Each L is sum of classical, \widetilde{L} , and neoclassical, \overline{L} contribution
- Restricted to subsonic rotation to calculate neoclassical terms
- $Z_{eff} = 1$ recover Braginskii, Hinton & Wong results
- Classical contribution $\sim \left\langle n_z \frac{R^2}{B^2} \right\rangle$

Enhanced transport

- larger outboard step size $\rho_i \sim 1/B$
- larger angular momentum $m_i \omega R^2$

NEOCLASSICAL COEFFICIENTS

Most experimentally relevant limit:

- conventional aspect ratio, $\mathcal{E}(\theta) \ll 1$
- strong impurity redistribution,

$$\langle n\cos\theta\rangle$$
,~1 $n = n_z/\langle n_z\rangle$

- Enhancement of $\varepsilon^{-3/2}$ over previous predictions
 - effectiveness of rotation shear as a drive increased by small factor
 - radial pressure and temperature gradients dominate

 \Rightarrow strong density and temperature gradients sustain strong E_r shear

NEOCLASSICAL COEFFICIENTS

Numerical evaluation using magnetic surfaces of MAST - $\varepsilon = 0.14$

- increase with impurity content increase with
- Mach number as impurity redistribution increases
- Transport

 10 times
 previous
 predictions

NEOCLASSICAL COEFFICIENTS

• Larg \overline{E}_{31} \overline{L}_{32} \Rightarrow spontaneous toroidal rotation may arise:

$$\frac{\omega'}{\omega} = -\frac{1}{\overline{L}_{33}} \left(\overline{L}_{31} \frac{p'}{p} + \overline{L}_{32} \frac{T'}{T} \right)$$

- Rotation direction depends on edge boundary condition
- \overline{L}_{23} relates heat flux to toroidal rotation shear:

$$\begin{pmatrix} \Gamma \\ q \\ \Pi \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} & L_{13} \\ L_{21} & L_{22} & L_{23} \\ L_{31} & L_{32} & L_{33} \end{pmatrix} \begin{pmatrix} d(\ln p_i)/dr \\ d(\ln T_i)/dr \\ d(\ln \omega)/dr \end{pmatrix}$$

Co-NBI ⇒ shear ⇒ heat pinch Sub-neoclassical heat transport...

SUMMARY

- Experimentally, angular momentum transport in regions of neoclassical ion thermal transport has remained anomalous
- In a rotating plasma impurities will undergo poloidal redistribution
- Including this effect a general form for the flux has been derived for mixed collisionality plasma
- At conventional aspect ratio, with impurities pushed towards outboard side, angular momentum flux seen to increase by a factor of $\varepsilon^{-3/2} \Rightarrow$ now typical of banana regime
- Radial bulk ion pressure and temperature gradients are the primary driving forces, not rotation shear \Rightarrow strong density and temperature gradients sustain strongly sheared E_r
- Spontaneous toroidal rotation may arise in plasmas with no external angular momentum source

REFERENCES

- [1] S. I. Braginskii, JETP (U.S.S.R) 6, 358 (1958)
- [2] T. Fülöp & P. Helander, Phys. Plasmas 6, 3066 (1999)
- [3] C. M. Greenfield *et al*, Nucl. Fusion **39**, 1723 (1999)
- [4] P. Helander & D. J. Sigmar, *Collisional Transport in* Magnetized Plasmas (Cambridge U. P., Cambridge, 2002)
- [5] F. L. Hinton & S. K. Wong, Phys. Fluids 28, 3082 (1985)
- [6] S. P. Hirshman, Phys. Fluids **19**, 155 (1976)
- [7] W. D. Lee *et al*, Phys. Rev. Lett. **91**, 205003 (2003)
- [8] M. N. Rosenbluth *et al*, *Plasma Physics & Controlled Nuclear Fusion Research*, 1970, Vol. 1 (IAEA, Vienna, 1971)
- [9] J. Wesson, Nucl. Fusion 37, 577 (1997),
 P. Helander, Phys. Plasmas 5, 1209 (1998)