Automating the grid work

Riccardo D1 Meo

Working with the grid 1s easy, but...

* Tough single operations aren't complicated, they
are usually reiterated very frequently becoming:

— boring
— CITOrI pronc
— 1nefficient
e Portals and workflows solve those 1ssues,

although their's static user interface 1sn't
customizable as a plain shell approach.

CLI approach

Pro Cons
* More customizable. * Overkill in many
* Full control over the sttuations.
orid (as far as the * Need more work to be
architecture allows). carried out.

e Easier than the portal ® More difficult than
approach in some the portal approach 1n
cases. many cases.

* People who consider * People who consider
programming an art programming a tool
will love it... will hate it...

What should a CLI suite provide?

* Every step from submission to result retrieval
should be carried out automatically.

* Failure 1n the job execution should be taken into
account and handled appropriately.

* data retrieval should include application specific
steps which process the results into a
manageable/usetul form.

What tools should be used?

A scripting language has to be chosen, like:

— Bash

* tough powerful and present in almost every linux installation, does not
provide all the tools needed to build useful scripts, which will always
depend from external programs.

— Python

e complete and easy to learn, Python is a de facto standard component in
every Linux distribution.

- PERL

* probably the most used scripting language: tough powerful has a tricky
syntax which make it not very easy for newbies.

- TCL/Tk

* not wide spreed as the previous ones, 1s easy to learn and provides
powerful facilities to build nice looking GUI, although like Bash relies
on external programs.

A minimum knowledge of the shell used 1is necessary.

Tools that we will use.

* Since BASH 1s the easiest approach for simple
tasks and a basic working knowledge of it 1s
necessary to work with computers, we will use it
for this tutorial.

* A basic knowledge about 1t will be required,
precisely:
— copy/move/edit files.
— pipe the result of a command to another one.
— save data into a variable.

— edit a text file with a program of your choice.

Some simple constructs in bash

* variable assignments:
- a=10
- b="1s"
* substitutions:
- echo $a (will print 10)
- echo “$a” (again, 10)
- echo 'S$a' (will print S$a)
* piping:
- To afile:

* echo $a >test.txt (create a file and put the value 10 in it)

— To the end of it:

* echo $a >> test.txt (if test.txt is present, append 10 to it, else behaves
as the former command)

— Through another command:

e echo 'plot sin(x) w 1' | gnuplot -persist

More advanced constructs

* “For” cycles:

for((1i=0;1i<10;i++))
do
echo -n $i

done

- and

for i in 01 2 3 456 7 829
do

echo -n Si

done
— which produce:
0123456789

which can be used to repeat a command for a set number of times (e.g. for every
file with a specified extension in a directory)

As already mentioned, other programs are required in order to create a
(useful) script in bash: we will describe them along the way.

Some commands are already implemented in bash, the remaining ones can
be found 1n a standard Linux distribution.

A good (basic) guide can be found here:
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/index.html

and an advanced one here:
http://www.tldp.org/LDP/abs/html/index.html

documentation for (almost) every command we will use can be found in

the man pages (typing man command name) or in the info pages (info
command name).

A simple bash script

#!/bin/bash
Lines starting with '#' are comments: save this program in a file
called “fibo.sh”. We will use this script as test program for the
next examples.
a=$1
b=§2
end=$3
for((i=0;i<end;i++))

do

let delay=3*$SRANDOM/32767

sleep Sdelay

echo $i” “Sa

let c=$a+$hb

a=$b

b=Sc

done

Handling the JDLs

* As you probably know, JDL are used to specify a
grid task.

e Often you are required to launch multiple copy of
a JDL with very small variations (changed file
name, parameters ecc...).

* Doing this by hand is boring and time consuming.

* With bash 1s easy and straighttorward. As long as
you know how ;-) : the basic 1dea 1s to create a
JDL template and to use bash to create the single
variations by substituting some parameters 1in it.

Example

Let's assume that fibo.sh 1s the program we will need to put on the grid and
that the output 1s the result we want to collect for different input parameters:
below you see the JDL for a single call (fibol.jdl):

|
Executable = “fibo.sh”;
Arguments = “1 1 107;
StdOutput = “result.txt”;
StdError =*“stderr.txt”;
InputSandbox = {“fibo.sh”};
OutputSandbox = {“result.txt”,”stderr.txt” };

|

* Assume that fibo.sh were a very complicated program (we don't have time to
make on on the fly...) that produce useful and nontrivial results for a change in
the parameters and you will get the picture...

Dumb way of working

* Assume you want to “explore” the results of fibo in respect of the
first 2 parameters in a range of [0:10] for and [0:20] respectively,
leaving the third to “10” you should:

— open fibo.jdl.
— modify the parameters in the “Arguments” field
— save the file
— submit 1t
e and all that should be done about 200 times (or more, if some

simulation fail!), and this is a very simple example!

Clearly we need a faster approach!

The smart way

* (reate this file and save it in “fibo_jdl.template”:

|
Executable = “fibo.sh’;
Arguments = “FIRST SECOND THIRD”;
StdOutput = “result.txt”;
StdError =*stderr.txt”;
InputSandbox = {“fibo.sh™};
OutputSandbox = {“result.txt”,”stderr.txt” };
|
* Now try this command:

cat fibo jdl.template | sed \
"s/FIRST/10/;s/SECOND/20/;s/THIRD/10/"

* “sed” 1s a utility that (among other things) can be used to substitute text in a file.

Let's put those things together!

#!/bin/bash

Call this file “simple submit.sh”
Read the parameters from the user
echo -n “Max a? “

read amax

echo -n “Max b?”

read bmax

For every parameter selection, substitute the values in a file called
fibo.jdl and submit it. Save the id in a file called id list.txt

for((i=0;i<=$amax;i++))
do
for((j=0; j<=S$bmax; j++))
do
echo “substituting $i and $j as first and second parameters...”
cat fibo jdl.template|sed "s/FIRST/$i/;s/SECOND/$3j/;s/THIRD/10/" >fibo.jdl
echo “Submitting the resulting jdl...”
echo 'edg-job-submit -o id list.txt fibo.Jjdl' | tee >> id list.txt
done
done

Some notes...

* There's a “echo” command in the line of the edg-job-submit
to prevent the submission (the 1d_list 1s bogus). This 1s a
standard procedure while working on/debugging a script.

* Try now to modify the previous script in order to:

— ask the starting point for the first and second parameters
and correct the for cycles.

— ask the user for the third parameter and substitute it in the
template (you can do it in 2 way: the most easy 1is to
assume that the param. doesn't change among simulations,
the other 1s to build another cycle, thus allowing the user
to explore a 3 dimensional parameter space).

— Save all the generated fibo.jdl files in another directory in
order to allow the user to inspect them during/after the
submission.

