
Real-time grid computing for
financial applications

Riccardo Di Meo, Ezio Corso
EGRID project, ICTP

Stefano Cozzini
CNR-INFM/Democritos and Egrid/ICTP

The EGRID infrastructure
● An italian national grid facility for finance
● The actual implementation (EGRID, through

the LCG/EDG tools) is queue oriented and not
real time: this is definitely an issue when we
come to dynamic financial services.

● Our main goal is to attain real time response
from both the grid and user applications.

How the job submission works
● The computer hosting the grid middleware (UI) contacts the

Resource Broker (RB) and sends a job request.
● The RB searches the available resources and as soon as it finds an

appropriate Computing Element (CE), it contacts it and forwards the
request.

● The CE enqueues the task: when enough Worker Nodes (WN)
become available, the program starts executing.

● The user, from the UI, checks the status of the submission: as soon as
the program ends, he/she can download the computation results.

A graphical view

Drawbacks of this approach
● The queue approach is completely

inadequate for real-time tasks: we
don't know when our program will be
executed.

● All steps, from submission to results
retrieval, add a significant delay,
which is unavoidable as long as
standard tools are used.

● The execution is not interactive: after
sending the job to the RB, there's no
way to alter it.

– The program should be ready to accept
requests at stock market opening.

– The total time needed to submit a request
and obtain an answer should be as small

as possible (less than a minute).

– A single job should be able to process
many requests.

...and solutions.
– We book resources in advance in order to

have enough at a given time (“Job
reservation”).

– We bypass the information system,
obtaining status and results directly from
the WN.

– We establish a direct connection between
WN and UI, thus letting them interact.

● The queue approach is completely
inadequate for real-time tasks: we
don't know when our program will be
executed.

● All steps, from submission to results
retrieval, add a significant delay,
which is unavoidable as long as
standard tools are used.

● The execution is not interactive: after
sending the job to the RB, there's no
way to alter it.

Job reservation
● We submit many requests in advance in order to have resources

ready when needed.
● Once each job is running, it waits until the user has some data to

process.
● No outside host (e.g. the UI) can establish a connection to the

WN since they are on private networks: it is the WN itself that
must poll periodically the host (which must be resolvable).

● On the UI there's a server program that accepts connections
from the WN and sends computational requests to them.

● Once connected, every communication between WNs and UI
bypasses the Grid infrastructure and takes place in real time.

A graphical view

Our test case
● A risk management application based on Genetic

Algorithms (GA) and Kalman Filter (KF).
● The application takes the history of a set of assets and

produces a forecast.
● The original implementation is serial.
● We focus on a specific set of parameters of the original

application, which is used as reference when
evaluating our optimizations.

Components description

● Evolutionary approach to optimization:
improved new solutions are developed
by crossing and mutating old ones.

● The key parameters are the mutation
and crossing probabilities, the number
of generations and the number of
solutions to process in each generation
(the “genetic pool”).

● Only the latter two significantly affect
(almost linearly) the simulation time
cost.

● A set of math. equations that describe
the state of a system by providing a
description of past and present states,
and a forecast as well.

● It's computational cost is a complicated
function of the data, but increases with
the size of the input.

● In our case implementation, the
number of assets and the number of
past observations are the key
parameters both for simulation
accuracy and time cost.

Genetic Algorithm Kalman Filter

Time cost of the program
● Most of the time is

spent inside the Kalman
procedures.

 KF is the main
target to be optimized.

First implementation: a
master/slaves solution.

● we separate the GA, which remains
on the UI (the “master”), from the
Kalman which takes place in the
WN (the “slaves”).

● Static Input data (the DB needed to
evaluate the KF) is transferred at the
beginning.

● The GA on the UI uses the WNs to
evaluate the fitness of the solutions.

Cons
● Obtains the same results of the

original implementation.
● Highly dynamic: new WNs are

recruited as soon as they are
available.

● Unbearable network overhead:
copying data to/from UI is slow
and scales badly with the size of
the problem.

● Increased total simulation
time!!!

Pro

Clearly we need another approach...
(though it can be reused in other programs)

A more in-depth analysis...
● Though the Kalman Filter contributes

90% of the cost of the simulation, it's
overhead is distributed over a very
large number of short KF evaluations
(~600.000!).

● Global data exchanged: ~ 960 MB

● GA and KF should reside on the
same host.

● Communication should take place
between WNs in a private network.

How can we make WNs
communicate with each other?

● A first simple approach would be to use MPI but it:

– limits our program to MPI enabled sites.
– implies less/no dynamic WN management.

● Our approach:

– submit a bunch of serial jobs and make each assigned WN aware
of the other jobs..

● technique

– UI collects WN hostnames as soon as they are recruited..
– Before start any calculation UI propagates the full list to all the

Wn recruited

A better approach: the isles algorithm
● The UI reserves N Worker Nodes and

accepts their incoming connections.

● After enough WNs are connected to
the UI (or a set timeout elapses), the
WNs addresses are received and
redistributed to enable intra cluster
communication.

● A modified version of the original
program is executed on N Worker
Nodes (“isles”).

● After a given number of generations
the WNs exchange among them in a
round robin way of their data
(“migration”).

● In the end, the best solution is selected.

N−1
N

Pro
● Greatly reduced communication

between hosts.

● Almost all data transfer takes place in
a fast private network.

● GA is parallelized too: performances
of the algorithm doesn't depend
anymore on the user's machine (which
could be a handheld).

● Though the slowest WN constitutes a
barrier to the execution, this drawback
can be removed setting the migration
and the simulation's end at a preset
time.

● With the latter improvement a
simulation ends precisely when the
user wants to.

● We lost complete compatibility with
the original program.

● Communication between different
clusters is still unfeasible (as with
MPI).

● Every GA works almost independently
on its dataset for many generations,
which could lead to worst results; on
the other hand this approach reduces
the GAs natural tendency to produce
homogeneous solutions (thus maybe
improving them!).

Cons

Enabling inter-cluster
communication.

● WNs are shielded from the outside network:
– they cannot be reached directly from the outside.
– they can connect to other hosts, as long as their names are

resolved (as seen in the first implementation).
– this problem is not solvable by sharing a complete list of

WNs' hostnames (as in the “isles” algorithm)!
● The only way to exchange data between CEs is to use one or

more resolved hosts, which accept connections from WNs in
different clusters, acting as “bridges”.

A further improvement: the “continents”
algorithm

● Multiple copies of the “isles” run on M
Computing Elements (which we will
call “continents”).

● In each one, a privileged WN is
selected to carry out the
communication with the bridge.

● After each migration of the WNs'
data (which contain a mixed “sample”
of all the solutions in the continent) is
shared in a round robin way, in
analogy with the “isles” algorithm.

● At the end of the simulation, the best
solution is chosen.

M−1
M

Pro
● Communication through a bridge is

twice as slow as that taking place
directly between CEs, since packets
travel through more routers.

● The fraction of data shared among
different continents is even smaller
than that among isles (although this
could be advantageous).

● The WN that receives the information
from the bridge uses it until the next
migration, acting as a filter: the
innermost isles will almost never
receive the original data.

● Solutions propagate very slowly
between continents.

ConsPro
● Inter cluster communication can take

place.

● Only a small quantity of data is
transmitted trough the public network:
most remains inside the CEs.

● More than one bridge can be used, and
their placement carefully studied, to
further reduce the network overhead.

● Grid resources can be mixed with
non-grid ones.

● As long as the number of continents
doesn't increase too much, network
overhead remains on a manageable
size.

Cons

Simulation results.

Performance considerations:
master-slaves algorithm.

● Though not convenient for our case study, it
could be applied proficiently to other scenarios
where:
– evaluation is very expensive.
– solutions are described by less data or can be highly

compressed.
– the “master” node (the UI in our implementation)

is moved to a WN in the same CE where the
“slaves” reside, for faster communication.

Performance considerations:
isles algorithm.

● The overhead is almost constant, no matter the number of WNs
involved.
– Good scalability.
– A significant fraction of this slowdown is due to a

synchronization barrier between WNs, which can be greatly
reduced by modifying the program to operate on a time basis.

– With the latter improvement even inhomogeneous clusters can
carry out the simulation without additional costs.

– The delay between migrations can be tailored for better
performance and results (more frequent communication doesn't
necessarily mean a better GA optimization!).

Performance considerations:
continents algorithm.

● The overhead increases linearly with the number of
continents.
– Not a significant issue, since it is likely to be very small compared

to the number of islands.
– The same “time basis” strategy can be applied to this scenario too.
– More than one bridge as well as a complex net topology can be

used to reduce the communication cost.
– Although inter CE communication is as good as it could be with

the available resources, for an “economic oriented grid” the need
of a bridging host could be removed (e.g. by opening some WNs
to incoming connections).

Conclusions
● Though the grid infrastructure was developed with batch oriented

applications in mind, this limit can be overcome:

– fast response is possible through job reservation.
– dynamic interaction between WNs and UI is feasible through a reversed

client-server approach.
– WNs can communicate with each other via hostnames gathering on the

UI and redistribution.
– inter cluster communication can be obtained through an external bridge.

● Although tailored to the optimization of our test case, all the above solutions
can be adapted to a wide range of applications.

● The grid has the potential to become a key tool for economics, providing
resources not only for academic simulations, but for “on the field”
applications too.

