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Abstract

BioDCV is a distributed computing system for the complete validation of gene
profiles. The system is composed of a suite of software modules that allow the
definition, management and analysis of a complete experiment on DNA microarray
data. The BioDCV system is characterized by high throughput computing needs in
order to build predictive classification models and extracting the most important
genes. In this paper we describe the porting of BioDCV to computational grids
running LCG [13] /EGEE [12] middleware. Performances are evaluated on a set of
6 cancer microarray datasets of different sizes and complexity, and compared with
results on a standard Linux cluster facility.
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1 Introduction

BioDCV is a gene profiling system for the molecular diagnosis of disease, im-
plementing the development of predictive classifiers based on gene signatures
within the complete validation protocol. Outcomes of the system are a predic-
tive model, the straighforward evaluation of its accuracy, lists of genes ranked
for importance, identification of patient subtypes. Molecular oncologists from
medical research centers and collaborating bioinformaticians are currently the
target end-users of BioDCV. It is applied to gene expression studies (e.g. mi-
croarrays), one of the fastest growing research area in life sciences.

The current gridification stage of BioDCV is described in this paper. Our ap-
plication runs in the Egrid [14] virtual organization within the Italian grid
facility INFN/Grid-it since March 2005. BioDCV uses all the elements of
Globus/EDG/LCG-2 middleware: computing elements, storage elements, some
worker nodes. The LCG-2 2.4 middleware was installed in July 2005 (from
Egrid live-cd) and it is connected through Egrid’s testbed of ICTP located at
Trieste (Italy).

In the experiments we describe here, BioDCV was evaluated as a grid ap-
plication on Cancer6, a set of gene expression cancer datasets with different
numbers of cases (min 35 – max 327) and genes (min 1993 – 24481). We also
include a comparison with performance on a Linux cluster of 8 Xeon 3.0 GhZ
CPU units.

The interest in grid-enabling BioDCV regards the parallelization of tasks and
subtasks within gene profiling. Complete validation schemes require an in-
tensive replication of a basic classification task on resampled versions of the
dataset. The scheme must ensure that no selection bias effect is contami-
nating the experiment [1,2]. The cost of this caution is high computational
complexity. In a binary classification problem with 50 cases and 20 000 genes,
a practitioner willing to implement this scheme will have to develop about
5 × 105 base models, which may become 2 × 106 in case the experiment is
replicated with randomized output labels. Although the application can be
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modularized, the high throughput input/output generated by loading data and
by storing intermediate model parameters and model responses may severely
stress a distributed computing facility. It was recently shown that diagnostic
quantitaties should also be conserved from the process because novel forms of
semi-supervised analysis may be derived, such as the identification of subtypes
within cancer groups [3].

To deal efficiently with this data throughput on standard Linux clusters, we
integrated the BioDCV system with the SQLite3 database management li-
braries. The application data are distributed at each job: each node operates
on a local copy of the data stored as a SQLite3 file, which is also used to
aggregate single job results. After all tasks have been completed, the local db
files are retrieved and unified together (usually offsite). It is interesting to test
this database-backed solution on a grid facility: this could allow the assess-
ment of the relative computing costs of the fraction of task needed for data
management with respect to the effective computing times.

The scientific objective is a first large scale comparison of prognostic gene
signatures from breast cancer microarray datasets realized by a complete val-
idation system and run in Grid. The models will constitute a reference exper-
imental landscape for new studies. The gene signatures resulting from each
datasets are analyzed for stability and they may be integrated. The compar-
isons presented in this paper demonstrate the factibility of this approach on
public data as well as on original microarray data from IFOM-Firc.

2 BioDCV

Let {(xi, yi)}
N
i=1 be a training set, where xi ∈ R

d are expression values of
d genes and yi ∈ {−1, 1} are class labels, i.e. clinical outcomes. Let D? =
{i1, . . . , id?}, with d? ≤ d, be the set of genes potentially related to the clinical
outcomes, i.e. we suppose that a function F : R

d?

7→ {−1, 1} exists. The aim
is first to identify D? and then to construct an approximation F ? of F .

To approximate the unknown function F and to determine the set of the rel-
evant genes D?, we use Support Vector Machines (SVM) [4] coupled with a
feature selection strategy. Our strategy is based on a variant of the classical
Recursive Feature Selection (RFE) [5], namely Entropy-based RFE [6]. These
studies require a careful and computationally demanding methodology. In par-
ticular, it is crucial to use a complete validation process to avoid the selection
bias problem [7].
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2.1 The BioDCV structure

BioDCV is comprised of the modules described below.

2.1.1 The ONF Procedure

Given a training set TR, this procedure is applied to select the optimal number
of features based on a ranking method. A resampling procedure is iterated
K times, producing each time a (TRk, TSk) split of TR. A feature ranking
procedure is applied to TRk. Then, n subsets are created with the first Fi
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Fig. 1. The ONF procedure

features of the feature list (i.e. F1 = 1, F2 = 5, F3 = 10, . . . , Fn = 1000).
Therefore, for each k a model family (Mki, i = 1, . . . , n) is produced, one
for each increasing value of Fi. The Mki models are evaluated on the TSk

test data, computing TEki test errors, and we obtain the average error curve
TEi = 1

K

∑K
k=1 TEki. An exponential fit is applied to TE, and the n∗ value

leading to saturation in terms of the exponential curve is returned as the
ONF result. The complete scheme of the procedure is shown in Figure 1.

2.1.2 The OFS-M Procedure

Given a training set TR, a feature ranking method produces a list of ranked
features, from which an optimal feature set OFS of size n∗ is selected. Based
on ONF procedure, a model M is developed by a suitable learning method.
The accuracy of OFS-M is validated by the VAL procedure. A scheme for
OFS-M is shown in Figure 2.
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2.1.3 The VAL Procedure

In VAL, the OFS-M procedure is validated on B replicated experiments (runs)
using a resampling scheme. TEb error results from testing the model with n∗

features on the test set, which minimizes the risk of data overfitting. The
procedure returns the expected test error

ATE =
1

B

B∑

b=1

TEb.

A scheme for the VAL procedure is shown in Figure 3.
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2.1.4 Sample-tracking

The semisupervised procedure implemented in BioDCV is based on an analysis
of the effects of the feature selection and ranking process on each individual
sample. Given a complete validation setup (such as the one described in [6]),
for each sample s we define the sample-tracking profile as the function of the
number of features k as Es(k) = W (s, k)/N(s), where N(s) is the number of
runs in which s belongs to the test set and W (s, k) is the number of runs in
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which s belongs to the test set and it is wrongly classified when the model
is built with k features. The sequences Es(k) may be studied as an estimate
of the classification error as a function of the size of the feature set. Sample
curves of easy-to-classify points quickly reach zero, while curves not far from
the no-information error rate should correspond to hard-to-classify points. A
profile lying systematically above the no-information error rate indicates a
typical outlier behaviour. A complete description and examples of the sample-
tracking procedure may be found in [3].

2.2 Implementation

A single experiment is formed by three main steps (summarized in 4), which
correspond to the three main programs:

exp prepares the experiment. Given a configuration file and a matrix of data
(and eventually an additional test) it builds the setup database.

run performs the validation procedure with b = initial-run, . . . , f inal-run.
Given the setup database, it builds one local database, and for each b it
builds one flat text file containing the ranking procedure weight. This is the
program which works in parallel.

tracking joins the setup database and the local databases in a unified da-
tabase containing the entire experiment and performs the semi-supervised
procedure.

Firstly, exp builds the setup database. The setup database contains the matrix
of the original data and the indices of all b replicates, so that each run can
build (TRb, TSb) pairs and continue the experiment.

Secondly, given a setup database, run executes the validation procedure for
b = initial-run, . . . , f inal-run and builds a local database. It is important
that all the runs b = 1, . . . , B are completed before joining all the local
databases. For example, if we want to execute an experiment with B = 100
external replicates, having 10 CPUs, we can submit 10 run with initial-run =
1, 11, 21, 31, . . . , 91 and final-run = initial-run + 9. Moreover, run returns a
flat text file for each b: this file contains the weights generated by the classifier
that are associated with each feature for each feature step.

At the end, tracking joins the local databases and inserts them into the
setup database creating the complete database; it then performs the sample-
tracking procedure. The replicates table of the setup database is replaced by
the replicates table union of the local databases.
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Fig. 4. The VAL procedure

2.3 Porting to the Grid

To guarantee speed, slim and robust code, and relational access to data and
model descriptions, BioDCV was written in C and interfaced with SQLite
(http://www.sqlite.org), which supports concurrent access and transactions
useful in a distributed environment where the learning, tuning and evaluation
tasks may be replicated for up to a few million models. We recently ported
our application to grid systems, namely the Egrid [14] computational grids.
The Egrid infrastructure is based on Globus/EDG/LCG2 middleware and
is integrated as an independent virtual organization within the Grid.it, the
INFN production grid. The porting requires just two wrappers, one shell script
to submit jobs and one C MPI program. Three basic elements of a Grid.it
infrastructure are used:

Storage Element (SE) stores user data in the grid and makes it available
for subsequent elaboration;

Computing Element (CE) is where user tasks are delivered for elaboration
and this is usually a front end to several Worker Node (WN);

Worker Node (WN) machines where the grid user programs are actually exe-
cuted.

When the user submits a BioDCV job to the grid, the grid middleware looks
for the CE and the WNs required to run the parallel program. As soon as the
resources (CPUs in WNs) are available, the shell script wrapper is executed
on the assigned CE. This script distributes the microarray dataset from the
SE to all the involved WNs. It then starts the C MPI wrapper which spawns
several instances of the BioDCV program itself. When all BioDCV instances
are completed, the wrapper copies all outputs including model and diagnos-
tic data from the WNs to the starting SE. Finally, the process outputs are
returned, allowing the reconstruction of a complete data archive for the study.
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3 Experimental design and evaluation metrics

In this section, we present in detail the two experiments we designed to mea-
sure the performance of the BioDVC parallel application in two different com-
puting available environments: a standard Linux cluster and a computational
grid.

In Benchmark 1, we study the scalability of our application as a function
of the number of CPUs. Two DNA microarray datasets are considered. The
benchmark is executed on a Linux clusters formed by 8 Xeon 3.0 CPUs and
on the EGEE grid infrastructure ranging from 1 to 64 Xeon CPUs.

In Benchmark 2, we characterize the BioDCV application with respect to
different datasets, i.e. for different d and N values, where d is the number of
features and N the number of samples for the complete validation experiment.
A task for each single dataset is executed on the EGEE grid infrastructure
using a fixed number of CPUs.

Performance is evaluated in terms of Ttot (total execution time), defined as
the elapsed time of a full experiment (i.e., the sequential run of exp plus run
plus tracking). This elapsed time comprises several different contributions,
as stated in the following formula:

Ttot = Li + U + E0 + Eg + D + M + S (1)

with:

Li Experiment setup time at local submitter site. It includes the configuration
of setup database, and data preparation. (i.e. exp )

U Time spent for uploading data and application to the grid facility, including
delivery on Computing Element (CE).

E0 Time elapsed before computing. This includes time spent waiting for node
availability and time for data distribution onto worker nodes (WNs) within
the facility.

Eg Computing time: a function of the number of obtained CPUs, characteris-
tics of CPUs, algorithm parameters ( run ). It includes user time Eu, which
is the time that the machines exclusively devote to the application.

D Time spent for data retrieval and download. This includes copying all re-
sults (SQL files) from the WNs to the starting SE, and their transfer to
local site.

M Data merging time: reunification of retrieved data into an unique DB at
the local site.

S Semisupervised analysis time: post-processing analysis at local site. The
analysis provides the sample-tracking curves described in [3].
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We note that E0 (Time elapsed before computing) can be split in two contri-
butions:

E0 = Eq
0 + El

0 (2)

where:

Eq
0 Queueing time at grid site: the task is scheduled and waiting.

El
0 Initial latency time at grid site.

It is therefore important to evaluate Ttns (Effective execution time), where the
time spent on waiting is discarded:

Ttns = Ttot − Eq
0 (3)

and the El (Global latency time), the portion of non-computing time within
the effective execution time, i.e. the overhead caused by the grid middleware:

El = Ttns − Eg (4)

4 Results

Data presented here refer generally to one single run, due to resource avail-
ability on the computational grid. To estimate running variability, we repeat
a few simulations for the smallest datasets: the resulting error bar is within
5%.

4.1 Benchmark 1: measuring speed-up

Benchmark 1 was performed on the two datasets: LiverCanc [8] (213 samples,
ATAC-PCR, 1993 genes) and PedLeuk [9] (327 samples, Affymetrix, 12625
genes).

Table 1
Results for LiverCanc on MPBA cluster

N Li U E0 Eg Eu D M S Ttot

1 111 0 2 120136 120047 5 14 1278 121547

2 111 0 4 61039 60993 5 14 1278 62451

4 111 0 8 28267 28248 5 15 1279 29686

8 111 0 16 15318 15308 5 14 1278 16742

9



Table 2
Results for LiverCanc on Grid

N Li U E0 Eg Eu D M S Ttot Ttns El
0

E
q
0

El

1 111 36 234 102656 84709 355 8 1240 104641 104439 32 202 1783

2 111 36 225 42688 42573 355 10 1240 44665 44478 38 187 1790

4 111 36 87104 23255 21395 352 10 1240 112109 25074 75 87029 1819

8 111 36 155733 16098 10814 396 12 1240 173627 18075 184 155549 1977

16 111 36 177120 8874 6251 424 12 1240 187818 10998 300 176820 2124

32 111 36 279874 4296 2686 608 10 1240 286175 6894 593 279281 2598

Table 3
Comparing El for LiverCanc on Grid and MBPA Cluster

N El Grid El Cluster

1 1783 1411

2 1790 1412

4 1819 1419

8 1977 1434

16 2124 -

32 2598 -

In Tab. 1 and 2, the values for the terms in Eq. (1) for increasing number of
CPUs (column N) are reported for the LiverCanc dataset on the MPBA cluster
and on the grid respectively. The main difference between the two Tables is
that while E0 is negligible on the MPBA cluster, it increases exponentially
with the number of CPUs on the grid. This effect is entirely due to the Eq

0

time. Infact, when asking for 32 CPU MPI jobs on resources offered according
to a “best effort policy”, almost all the time is spent on queue.

The BioDCV core application (run) shows almost linear behaviour on exe-
cution time with respect to the number of CPUs (column EG) on both the
MPBA cluster and the computational grid.

It is also interesting to compare the Global latency time (El) for the grid
against the latency time of the cluster. Since the MPBA cluster is a dedicated
resource, the time spent on queue is zero. This means that on the cluster
El = Ttot − EG. These values are summarized in Table 3.

The results indicate that the overhead caused by the grid increases the total
latency time by about 20%. The difference is almost entirely given by trans-
ferring data to-and-from local resources and the grid, as well as to-and-from,
CE and WN within the grid.

Moreover, we note that latency constantly increases as the number of proces-
sors increases. This makes it impossible to scale the full experiment over a
large number of processors. However, this is a second order problem because,
at the moment, simulations with a large numbers of CPU is unfeasible due to
the large queue times associated with them.
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Table 4
Results for PedLeuk on MPBA cluster

N Li U E0 Eg Eu D M S Ttot

1 523 0 2 479577 479242 10 25 2584 482721

2 523 0 4 320534 320304 10 26 2584 323682

4 523 0 8 158337 158221 10 27 2584 161489

8 523 0 16 82855 82776 10 24 2584 86013

Table 5
Results for PedLeuk on Grid

N Li U Eo Eg Eu D M S Ttot Ttns El
0

E
q
0

El

4 523 232 3157 134461 115368 783 37 2575 141768 138695 64 3073 4234

8 523 232 62836 88622 65536 421 35 2575 155243 92574 167 62669 3952

16 523 232 250044 41047 27961 810 38 2575 295268 45567 330 249714 4520

32 523 232 333852 23082 14317 845 45 2575 361154 27831 529 333323 4749

Similar observations hold for the PedLeuk dataset (see Tables 4 and 5).

A graphical representation of the linear speed-up (we obtain a coefficient of
around 1 for all cases) observed on both LiverCanc and PedLeuk datasets is
shown in Fig. 5. The speed-up factor for n CPUs is defined as the user time
Eu for one CPU divided by the user time Eu for n CPUs. Note that in the
grid case, the baseline for the PeudLeuk dataset is the user time for 4 CPUs.

It is also illuminating to carefully check the Eg time spent by the run on
cluster and grid resources. Eg is actually the wall-time, but we also measured
user and system time by means of the /usr/bin/time function available on the
systems. A fraction of time (Eg - Eu) is not directly consumed by our program:
this time is related to the actual load present on the machine (WN) where the
program is executed. This time is negligible for the cluster resource, where the
node is fully dedicated to the application and no other process is competing
for resources. On grid, the scenario is more complicated: in principle the WNs
are fully dedicated to the parallel runs and the situation should resemble the
cluster one. This is true only in some cases (e.g in the case of two CPUs
and four uniform CPU runs for the LiverCanc example), while in other cases
differences in time are considerable. It is not clear at the moment why this
happens and this aspect needs to be further investigated.

4.2 Benchmark 2

Benchmark 2 was run on a suite of six microarray datasets (Cancer6): Liver-
Canc, PedLeuk, BRCA 4 (62 samples, cDNA, 4000 genes), Sarcoma 5 (35 sam-

4 original data from IFOM
5 original data from IFOM

11
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Fig. 5. Speed-up for Experiment 1

ples, cDNA, 7143 genes), Wang [10] (286 samples, Affymetrix, 17816 genes),
Chang [11] (295 samples, cDNA, 25000 genes).

In Table 6, the quantities in Eq. (1) are reported. Time in seconds (s) refers
to grid jobs executed on a fixed number of CPUs (32). In Fig. 6, the effective
execution time Ttns is plotted versus the columns of the Table. It can be
observed that Ttns increases linearly with the dataset dimension. In particular,
the discriminating factor is the product of number of genes and number of
samples (dN in Fig. 6 and in Tab. 6).

We can conclude that employing the grid facility is quite appealing whenever
the queueing policy guarantees reasonable queueing times.
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Table 6
Experiment 2 on Cancer6

Dataset name dN x 10e-7 ? DB (MB) Li U Eg D M S Ttns

1 PL 4.1 (327,12625) 32 522 231 23082 845 45 2575 27831

2 Morishita 0.4 (213,1993) 3.7 111 36 4296 608 10 1240 6894

3 BRCA 0.2 (62,4057) 2.2 90 24 635 365 7 810 2534

4 Sarcoma 0.3 (35,7143) 2.2 149 25 386 356 9 1343 2887

5 Wang 0.5 (286,17816) 40 920 547 132279 947 38 2725 138355

6 Chang 0.7 (295,24481) 57 1399 625 107471 1061 56 3254 114546

? numbers of samples and genes in parentheses
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Fig. 6. Different measures of times vs. footprint of Cancer6

5 Discussion and Conclusions

The data presented in the previous section, which sum up to 139 CPU days
within the Egrid [14] infrastructure, allows some observations about the gen-
eral behavior of the BioCDV system on LCG [13]/EGEE [12] computational
grids. The system actually fits well in the environment provided by the com-
putational grid considering that it required little integration work in order
to be ported to such an environment. The performance penalty payed with
respect to a standard parallel run performed on local cluster is limited and
it is mainly due to data transfer. This aspect could probably be improved if
the advanced data management techniques included in the application were
coupled with data grid tools more efficiently.
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At the moment, the main drawback in using the grid is the long waiting time
in case of the largest parallel simulations. In the case of the Egrid production
grid, this issue is considerable due to the fact that the Egrid VO can access
only one large grid facility site (the INFN.IT Padova site), where resources
are made available on a best effort basis. The planned experiment is currently
aiming at a very competitive scientific result and thus the experimental phase
requires stability in resource availability.

Current limitations may be overcome by replacing the MPI approach with
an ad-hoc software layer implementing a client-server model that submits N
different single CPU jobs instead of one single job asking for N CPUs. We
are currently investigating if and how this method can be applied to BioCDV
systems.

BioDCV is an open source application and it is currently distributed under
GPL. (SubVersion repository at http://biodcv.itc.it).
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