Building Grids with
Jini and JavaSpaces

Carlo Nardone
Grid Program Driver - Sun Microsystems ltaly

Sun

microsystems

- = r -y
- ._‘_‘f-.-‘... L

Dasngy, . -

Agenda

e SOA
* |ini

 |Grid
e Jini Rio

e JavaSpaces

4

o (JXTA, |xGrid ...)

e thanks to Z. Juhasz, Univ. of Veszprem (Hungary)
and many colleagues at Sun

cmn 2006-02

Big Trends

e Grid Computing moving towards a Service
Oriented Architecture (SOA)

e Draft standards “war” in Web Services space

 OGSA (Open Grid Service Architecture) is based
on Web Services

cmn 2006-02

Big Trends

e Grid Computing moving towards a Service Oriented
Architecture (SOA)

e Draft standards “war” in Web Services space

 OGSA (Open Grid Service Architecture) is based on
Web Services

e ... but SOA 1s NOT = Web Services!

e SOA architectural elements:

— What is a service? ldentity, identification ...
- How do | find a service? Discovery, registry ...
— What is the communication model?

— What i1s the programming model?

— What is the failure model?

cmn 2006-02

Web Services Approach

e Assumptions:
- WWW
- Long-running, big services

e Service Identification : WSDL

e Service Location: UDDI

e Communication Model: SOAP

e Programming model: Document Exchange
e Failure model: HTTP failure, extended

e Optimized for
- WWW (and firewalls)
— Long running, different companies, etc.

cmn 2006-02

Jini™ ~

Www.jini.org www.sun.com/jini Q;"ij

Invented by Sun Microsystems, 1999 _HN{‘

Service-oriented framework for creating
reliable distributed applications

Designed with the network in mind

Provides a spontaneous, self-healing
environment

Moves the Java platform to the network (but It
IS language independent!)

Both an infrastructure and an object-oriented
programming model

cmn 2006-02 6

Jini Approach

e Assumptions:

— Ad-hoc networking
— Change all the time, moving objects

e Service ldentification : Java types, UUIDs

e Service Location: Lookup Service/Discovery
« Communication Model: RMI/]ERI
 Programming model: Java + object mobility
e Fallure model: Leasing, RemoteException

e Optimized for
— Flexibility
— Reasonably open networks

cmn 2006-02

The benefits of Jini)

* Self-healing, fault-tolerant system JINT

 Dynamic operation supports scaling up/down
and dynamic service provisioning

e Service-oriented architecture

e Can dynamically change implementation
without affecting clients

e Fast and administration free system
Integration

cmn 2006-02 8

Jini Spontaneous Networking

 Jini enables clients to automatically discover
services at runtime

e Associative search
— Not by name lookup (e.g. http://some.url:port)
— Instead: find a service that does this or that

e Loose coupling

— Services and clients can join and leave the
system (Jini federation) at any time without
causing system failure

cmn 2006-02 9

Jini Operational Overview

e Clients and service discover
the lookup service

e Service register in the lookup
service

e Services may join and leave
the network any time

e Clients search for services In
the lookup service

reglster

v\gmter

Service

cmn 2006-02 10

The Role of the Proxy

() The proxy IS a]ava ObJECt Jini service interface

downloaded from the l It soptce oot

N _]
service cie Q_E{bﬁf@\

— provides service or

— transparently transfers private network protocol
method calls to the remote service

* Hides implementation and communication
details

— Protocol independent (TCP/IP, HTTP, SOAP, etc.)

client servar

cmn 2006-02 11

Jini Programming M

odel

 |Jini applications lease resources

— Provides automatic resource
healing

e Can use distributed events
— Notify about events in a pub

management and self-

ish-subscribe manner

e Can execute operations under transactions

e Can integrate non-Java implementations as well

cmn 2006-02

12

Jini and Java

» JavaSpaces™
. Jini Services . T?::se?cft:;ens Managers
* B U | l.d S u po n]ava » Printing, Storage, Databases...
- Platfo rm-neutral Jini Infrastructure E;ickz\;egewice
environment
. . . . « Leasi
— Object-oriented Jini Programming | _ o, ted everts
programming model R
. . . + Java RM|
e The Jint programming Java 2 Platform + Jova VM

model extends Java

e The Jini infrastructure provides the basic operation
mechanism: spontaneous configuration

— discovery, join, lookup

e |ini services, client applications use the
programming model and the infrastructure

cmn 2006-02 13

JGrid

jgrid.jini.org http://pds.irt.vein.hu

Started in 1999 at the University of Veszprem,
Dept. of Information Systems (Hungary)

Partially funded by Sun since 2003

JGrid Is a Jini-based service-oriented grid framework

It virtualises resources and applications as Jini
Services

Provides a scalable and extensible framework to
create secure large-scale grid applications

cmn 2006-02 14

Characteristics of Grid Systems

e Grid systems are dynamic
— Accidental or planned removal or resources
— Temporary or long-term network failure
- Adding new services, updating existing ones

* Important requirements

— Location transparency - no explicit server addressing
(URLs don’t work)

- Loose coupling between clients and services
- Implementation transparency

cmn 2006-02 15

JGrid Main Features

e |Grid addresses these problems and provides:
— Wide area service discovery
— Platform and protocol independence based on Java and
Jini
— Advanced security architecture

— Support for transparent sequential and parallel
program execution as well as data storage

cmn 2006-02 16

JGrid Key Services

e Authentication and Registration services
— Certificate-based access control to services and single sign-on

 Compute Service
— Executing interactive Java programs

e Batch Service

— Executing non-Java programs by integrating with batch
environments such as Sun Grid Engine and Condor

e Storage Service
— Providing access to user files over the network

e Broker Service

— Helper service for locating computational services and
managing program execution

cmn 2006-02 17

JGrid Wide Area Discovery

e Requires extension of standard Jini model
— Simple lookup service federation is complicated
— Large delays can block discovering entities

— Some extensions use P2P and flooding - not suitable for very

large systems due to unpredictable performance and network
load

e |Grid approach

— A hierarchical service overlay network
— Lookup services provide service information input
— Grid Access Points are the main gateways

— Information aggregation for content-based query routing and
flexible service matching

cmn 2006-02 18

L Sun

microsystems.

User Access — Service Browser

e The JGrid Service Lo
® ouuu
Browser features:

[«] 6o | Remaove]Gmup:| [*] Ada | Remove]|

9 [Services
@ [T =NOT ADMINISTRABLE= (20)
] . . . @ Router (veszarerr) (11646003) @ @ @ @
— lint and wide-area et ons g
Compute Service on blade0D (3718703 Router Media Service C Service C Service Ci Sernvice
Compute Service (dd8c8861) (veszprem)

E
E
E
& Compute Service on blade07 (Cf7 62380
& Compute Service on blade11.itvein.hu
] Compute Service on blade0&.itvein.hu
@ Grid Access Point (Weszprem) (3664 2c0

service discovery

- View definitions
— ServiceUl support

. 23] Registratio_n Service atIRT (13c51676)

- Security _gmunineen O

E] Compute Service on blade10.irtvein.hu
[#] Storage Service at IRT (5h589327)

[F] Compute Service an bladent (dic72el
E Compute Service on blade08.itvein.hu
E

E

€

& £ & & 8

Service C Service Grid Access Compute Service Storage Service
Point

Campute Service on hlade13.irtvein.hu
Campute Service on hladel2.irtvein.hu
Campute Service on hladetd.irtvein.hu

e e e & &

Service Comy Service Comg Service Comy Service Comg Service

N\ b t M ||\ senvices ; i
— onitoring > 5 ame = @ 7]] &
@ 7 Address - -
@ [Location Authentication Registration Batch Service at Batch Service at Compute Service

Service Senvice IRT IRT

— Plug-in mechanism for |sfme,,,

L L] L] |
Integrating client
Service added: Batch Service at IRT {=23b3708)

Mumber of affected views: 1

Mews service: $Proxy3s

p ro g ra m S W it h g r'i d Service added: Batch Service at IRT (278501c2) -||

cmn 2006-02 19

Trivial JGrid Batch Execution

Local services

. User is responsible for:
:- .+ Discovering local/remote
’ services
« Submitting to services

* Managing execution

Remote serwces

I
1
L [
| »
1
1
1
1
1

cmn 2006-02 20

Proxy of . .
dynamically B L
spawned service
object

Services can be connected
to run complex parallel
applications (co-allocation)

: (\;‘-ridl

Communication using proxies - discovery "\

cmn 2006-02 .

JGrid Batch Execution using a Broker

Local services

' Remote services

Only a local Broker is required

» Broker acts on behalf of
the user

* Only submit to broker and
retrieve results

More user friendly.

\ Grid / ‘
discovery N\

cmn 2006-02 22

JGrid User Interfaces

e |Grid services use dynamic
user interfaces

e User interface code
arrives from service

— No need to install clients

e Example:
— Use of Media Service
* Jini (ServiceUl) can
provide multiple,

alternative user interfaces
to services

— Jini 1s unprecedented In
this respect

cmn 2006-02

&Y Jini 2.0 Service Browser

File Service View Tools Hel

_GﬂrJ" Remuue| | Group: |

erices

»
B3 public (3) :
] PYM Program Executar Service () @ & @
@Compute Service on PDS (c38e3) - - -
[#] MediaService (Thilelc1) :| PYM Program Compute MediaSend

:[Executor Service Service on PDS

SSSSS

search

play selected

search for media

dtle: [|
meac | M| il Dynamically
R — downloaded
main window

Carl Off - Carmina Burana.. (L Enunet
Joe Cocker - You Can Leave Your Hat On
John B - American Girls

M People - Movin' On Up

Enva - May It Be

Dzihan & Kamien - Just You & |
Apocalyptica - The Unforgiven

Dynamically
downloaded
player window

23

Some possible uses of JGrid

e |Grid can be used for non-computational domains
as well

e Example services:
— Streaming media delivery
— News services

- On-demand computing

* Media processing and delivery, spam filtering, long-lived
service applications

- Compound services
— Banking for more effective access for customers
— Business-to-business applications

cmn 2006-02 24

... but what is Grid Computing?

e Purist view vs pragmatic view

e “Don't worry about definitions - if it's distributed,
connected by network, managed by middleware,
It's a grid” (Wolfgang Gentzsch, D-Grid)

* Most businesses need to adopt fully distributed,
virtualized architectures in their Datacenter before
considering any Grand Grid Vision

e 3 phases of Grid adoption:

— Cluster Grid
— Enterprise Grid
- Global Grid

cmn 2006-02 25

Phases of Grid Computing

&
Cluster Grid Enterprise Grid Global Grid
Departmental Computing Enterprise Computing Internet Computing
* Simplest Grid deployment * Resources shared within the * Resources shared over the Internet
e Maximum utilization of enterprise * Global view of distributed datasets
departmental resources * Policies ensure computing on * Growth path for enterprise Grids
* Resources allocated based on demand
priorities * Gives multiple groups seamless

access to enterprise resources

cmn 2006-02 26

From Local to Global

Global Grid

Cluster Grid

Enterprise Grid

Enterprise Grid

cmn 2006-02 27

Grid Adoption Trend

HPTC Grids

End user:
Academic/Research
Higher Priorities:
Price/Performance
Teraflops
Lower Priorities:
Manageability
HA
SLA's
Cost of ownership

Time

cmn 2006-02

Tech Grids

End user:
Manufacture
EDA
Oil and Gas
Finance
Pharma

Higher Priorities:
Cost Acquisition
Price/Performance
Performance
Manageability

Lower Priorities:
Availability (except Finance)
SLAs (except Finance)
Teraflops

D Sun

microsystems.

Data Center Grids

End user:
Enterprise
Service Providers
Higher Priorities:
Availability
SLAs
Utilization
Manageability
Cost of ownership
Lower Priorities :
Acquisition cost
Price/Performance
Absolute Performance
Teraflops

We're about here

Case Study: Financial Services App

 The Application

— Fraud detection system used daily by millions of consumers

cmn 2006-02

worldwide

1,000s transactions per second

24X7

0.3 TB of active data

Steady growth in throughput & data

29

Case Study: Financial Services App

 The Application

Fraud detection system used daily by millions of consumers
worldwide

1,000s transactions per second

24X7

0.3 TB of active data

Steady growth in throughput & data

e The Architecture

cmn 2006-02

— classic 2-tiered system

centralized application server, random-access data on disk

one giant domain on a large SMP (12 -> 32+ CPUs)

classic C/C++ hand-crafted code

single threaded, multi-process design, primitive data structures
In shared memory, queues for process comm.

serious mathematical computations for each transaction

30

Case Study: Financial Services App

e Distributing the architecture
- many small, cheap, fast compute nodes
* View grid as unlimited distributed RAM
— Divide data into "buckets"
— Distribute, "cache" buckets into compute nodes

— Dispatch each transaction to the "right" compute node
« HA via N + k architecture

— N compute nodes, k "spare nodes"
— Jini/Rio based automatic provisioning, fault detection and
recovery

cmn 2006-02 31

Case Study: Financial Services App

e Distributing the architecture
- many small, cheap, fast compute nodes
e View grid as unlimited distributed RAM
— Divide data into "buckets"
— Distribute, "cache" buckets into compute nodes
— Dispatch each transaction to the "right" compute node
« HA via N + k architecture
— N compute nodes, k "spare nodes"
— Jini/Rio based automatic provisioning, fault detection and
recovery

e Results
— 2X better throughput, 4x better TCO/3yrs, recovery time down 9x
— “l guess Java really works in heavy-duty environments”
- “With such a throughput, real-time processing is possible”
- “With this kind of resilience, scalability and cost, who needs

mainframes?”
cmn 2006-02 32

Distributed Architecture
M Functional Plane

cmn 2006-02

Inputs
[[]

Dispatcher

|

—

“Compute Node]| [Compute Node

.}

—|“Compute Node | Compute Node

{] L i’ustprncesnr

| I—

Resource Mgr

?| Cl'.luilptljtr. |
S
/ 2 G
LY
&
Resource Mgr S
D
&
)

33

Distributed Approach

e Application fit
— Autonomous transactions
— Partitionable data
— Deterministic, 1-to-1 map between transaction & partition
- Many real-world examples: credit scoring, stock trading, indexed
search, on-line banking, on-line catalog, payroll processing,
readonly data marts, 90% batch systems

cmn 2006-02

34

Job Scheduling

Compute, Cache #1

Distribut

cmn 2006-02 35

Job Scheduling

Input
Batch
File

% Distribut

Post

Proces

cmn 2006-02 36

Job Scheduling

Compute Cache #1

lob #1 [c]c[o]o[o]

Job #3 [[T [O[F] L)
Job #2 [[OIO[O[F]

Post

Proces

cmn 2006-02 37

Job Scheduling

Compute, Cache #1

e

Job #1
Job #53[2]2[2[2]0] .
Job #205/2[C]c][o[o]

% Post

Proces

% Distribut

Compute Cache #n

|ob #35[2[c[o[S[0]
Job #87 [@]clo][]
Job #194[c[c[o[o[0]

cmn 2006-02 38

Job Scheduling

Compute, Cache #1

Job #53[2[S[0[C[O]
Job #205[2[C[0[S[O)] °

° Job#1 BoEep] Post
Proces

% Distribut

Compute Cache #n
’ Node @

|ob #35[E[c[e[S[0)]
Job #87 2o]o[0]
Job #1940 [o[o[o[0)]

cmn 2006-02 39

Job Scheduling

Compute Cache #1

Job #53(2]2[0[0]O]
Job #205/[2]2[0[0[0)] s

L) Job #1 complete Post

Proces

% Distribut

Compute, Cache #n
°
Node n

Job #35 o [olo[alo]
Job #87 [0 [clo[o[o]
lob #1940 oo (o]0}

cmn 2006-02 40

Distributed Approach

o Application fit
— Autonomous transactions
— Partitionable data
— Deterministic, 1-to-1 map between transaction & partition
- Many real-world examples: credit scoring, stock trading, indexed
search, on-line banking, on-line catalog, payroll processing,
readonly data marts, 90% batch systems

 Resource Management

— Basically, what RAID is to storage, grids are to compute power
- but ... management is hard!
e Deployment, Recovery, Monitoring ...

— Jini Rio to the rescue!
 Dynamic Service Provisioning

e Automatic failover detection & recovery management
e Service Monitoring & Management

cmn 2006-02 41

The Dynamic Adaptive Grid

 Jini Rio Overview

Open source Jini project

Dynamic service provisioning

Handles service fail over

Manages Service Level Agreements (SLAs)

Jini Service Beans ()SBs)
e Simple component model

* Rio Components

Provision Manager
e Handles deployment, recovery, and enforcement of SLAs

Cybernodes

* Light weight container that handles service lifecycle and monitors
SLAs

— Applications may use Rio API to provide application-specific fail-

cmn 2006-02

over logic

42

S

Dynamic Failover

Compute Cache #1

Job #2052][00 (0[O

Post
AEENEE Proces

Distribut

Compute, Cache #n

[©]

Job #87[0[c[o]o[0]
Job #1940 [0[0 0[O

cmn 2006-02 43

Dynamic Failover

Compute Cache #1
Node g.
° |||||||II||
EEREE Proces
Comput Compute Cache #n

Node Node

RIO I

cmn 2006-02 44

Dynamic Failover

Compute Cache #1

Post
Proces
Compute Cache #5 Compute Cache #n
Node i. Node i. o]
. o
e)

Dlstrlhu‘[i

RIO I

cmn 2006-02 45

Dynamic Failover

Compute Cache #1
Node

% |||||||||||\
Proces
Compute Cache-‘HS Compute Cache #n

Node Node n

cmn 2006-02 46

Yet Another Approach ...

e Distributed software architecture is complex

- Remember the 8 fallacies of Network Computing by
Peter Deutsch?

— Latency, memory access, partial failure, concurrency
o Simplicity 1s Key
A Complete Distributed Framework in Only 4 Basic

Calls:

- Write

— Read/ReadIfExists

— Take/TakelfExists

- Notify

cmn 2006-02 47

JavaSpaces™

A model for building loosely coupled systems

e An assoclative shared memory abstraction that
clients on the network can use to share and
exchange objects

— Remember Linda?
- No “passing messages”, “invoke remote object”

e Benefits

- Anonymity between applications

— Uncoupled communication

— Programs can communicate through time or space
— Vast savings in design and development time

cmn 2006-02 48

What is a Space?

* A place on the network to share and store objects
e Associative shared memory for the network

e Unifies storage and communications

 Simple design -> only four basic operations

cmn 2006-02 49

JavaSpaces and Jini

 An example of a Jinl enabled service

e Extensive use of Jini technology programming
model
— Transactions (distributed consensus)
— Leases (resource reclamation)
- Remote Events (asynchronous notification)
- Same matching rules as service attributes
e Code downloading

- Interface defined as Java language interface
e Created by same people!

cmn 2006-02 50

A Dynamic Server Farm

Request Request
Client I .) . Sarver
(Animator) .
Result
Space Result

 Animator needs to render movie frames
— Writes "request for rendering" entries
— Takes render results written back
e Server processes takes
— Takes "request for rendering" entries
- Executes each request, writing back results

cmn 2006-02 51

A Dynamic Server Farm

Clients Servers

cmn 2006-02 52

A Dynamic Server Farm

Clients Servers

e Add more servers
— Don’t need to tell client about new servers

cmn 2006-02 53

A Dynamic Server Farm

Clients Servers

e Add more servers
— Don’t need to tell client about new servers

cmn 2006-02 54

A Dynamic Server Farm

\\

H

@1

//‘

Clients Servers

e Sometimes servers crash
— No need to tell client about missing servers

cmn 2006-02

55

A Dynamic Server Farm

Servers

Clients

e Add more animators
— No need to tell servers about new clients

cmn 2006-02 56

A Dynamic Server Farm

Clients

e We run other jobs
— We can add new types of jobs without touching servers

cmn 2006-02 57

JavaSpaces Implementations

e Qutrigger
— Sun Microsystems’ contributed implementation
— Part of the starter kit
 Includes source under SCSL
— 10,000 to 100,000 entries

- WwWw.sun.com/jini
e GigaSpaces

— Enterprise implementation
e Clustering
e Scalability
* High Availability
e Performance enhancements
e Integration with web services, SOAP, WSDL, UDDI, |DBC

- WWWw.gigaspaces.com

cmn 2006-02 58

JavaSpaces Real World Projects

e TeamVest
— Developed online 401(K) investment site for Intuit

— Uses spaces to run Monte Carlo simulations
 Compute server
- Www.teamvest.com

e Cisco
— Scalable Infrastructure (SI) communication framework
e High availability
e Agents
— http://developer.jini.org:80/exchange/projects/si/

cmn 2006-02 59

The Network
Is the Computer

\
e,

Thanks!

The Network is the Computer

& Sun.

microsystems

carlo.nardone@sun.com

http://blogs.sun.com/cmn

