Nuclear Structure (II) Collective models

P. Van Isacker, GANIL, France

Overview of collective models

- (Rigid) rotor model
- (Harmonic quadrupole) vibrator model
- Liquid-drop model of vibrations and rotations
- Interacting boson model
- Particle-core coupling model
- Nilsson model

Evolution of $E_{\mathrm{x}}\left(2^{+}\right)$

NSDD Workshop, Trieste, February 2006

Quantum-mechanical symmetric top

- Energy spectrum:

$$
\begin{aligned}
& E_{\text {rot }}(I)=\frac{\hbar^{2}}{2 \Im} I(I+1) \\
& \quad \equiv A I(I+1), \quad I=0,2,4, \ldots 6^{+} \quad \mathrm{E}(\mathrm{I})-\mathrm{E}(\mathrm{I}-2)
\end{aligned}
$$

- Large deformation \Rightarrow

22A large $\mathfrak{I} \Rightarrow$ low $E_{\mathrm{x}}\left(2^{+}\right)$.

- R_{42} energy ratio:

$$
\begin{equation*}
E_{\text {rot }}\left(4^{+}\right) / E_{\text {rot }}\left(2^{+}\right)=3.333 \ldots 0^{+} \tag{6A}
\end{equation*}
$$

$$
14 \mathrm{~A}
$$

Rigid rotor model

- Hamiltonian of quantum-mechanical rotor in terms of 'rotational' angular momentum \boldsymbol{R} :

$$
\hat{H}_{\mathrm{rot}}=\frac{\hbar^{2}}{2}\left[\frac{R_{1}^{2}}{\mathfrak{\Im}_{1}}+\frac{R_{2}^{2}}{\mathfrak{\Im}_{2}}+\frac{R_{3}^{2}}{\mathfrak{\Im}_{3}}\right]=\frac{\hbar^{2}}{2} \sum_{i=1}^{3} \frac{R_{i}^{2}}{\mathfrak{\Im}_{i}}
$$

- Nuclei have an additional intrinsic part $H_{\text {intr }}$ with 'intrinsic' angular momentum J.
- The total angular momentum is $\boldsymbol{I}=\boldsymbol{R}+\boldsymbol{J}$.

Rigid axially symmetric rotor

- For $\mathfrak{I}_{1}=\mathfrak{I}_{2}=\mathfrak{F} \neq \mathfrak{J}_{3}$ the rotor hamiltonian is

$$
\hat{H}_{\text {rot }}=\sum_{i=1}^{3} \frac{\hbar^{2}}{2 \mathfrak{I}_{i}}\left(I_{i}-J_{i}\right)^{2}=\underbrace{\sum_{i=1}^{3} \frac{\hbar^{2}}{2 \mathfrak{J}_{i}} I_{i}^{2}-}_{\hat{H}_{\text {tot }}} \underbrace{\sum_{i=1}^{3} \frac{\hbar^{2}}{\Im_{i}} I_{i} J_{i}}_{\text {Coriolis }}+\underbrace{\sum_{i=1}^{3} \frac{\hbar^{2}}{2 \widetilde{J}_{i}} J_{i}^{2}}_{i \text { intinisic }}
$$

- Eigenvalues of $H_{\text {rot }}^{\prime}$:

$$
E_{K I}^{\prime}=\frac{\hbar^{2}}{2 \mathfrak{I}} I(I+1)+\frac{\hbar^{2}}{2}\left(\frac{1}{\Im_{3}}-\frac{1}{\mathfrak{F}}\right) K^{2}
$$

- Eigenvectors $|K I M\rangle$ of $H_{\text {rot }}^{\prime}$ satisfy:

$$
\begin{aligned}
& I^{2}|K I M\rangle=I(I+1)|K I M\rangle, \\
& I_{z}|K I M\rangle=M|K I M\rangle, \quad I_{3}|K I M\rangle=K|K I M\rangle
\end{aligned}
$$

Ground-state band of an axial rotor

- The ground-state spin of even-even nuclei is $I=0$. Hence $K=0$ for ground-state band:

$$
E_{I}=\frac{\hbar^{2}}{2 \mathfrak{J}} I(I+1)
$$

The ratio R_{42}

NSDD Workshop, Trieste, February 2006

Electric (quadrupole) properties

- Partial γ-ray half-life:

$$
T_{1 / 2}^{\gamma}(\mathrm{E} \lambda)=\ln 2\left\{\frac{8 \pi}{\hbar} \frac{\lambda+1}{\lambda[(2 \lambda+1)!!]^{2}}\left(\frac{E_{\gamma}}{\hbar c}\right)^{2 \lambda+1} B(\mathrm{E} \lambda)\right\}^{-1}
$$

- Electric quadrupole transitions:

$$
\left.B\left(\mathrm{E} 2 ; I_{\mathrm{i}} \rightarrow I_{\mathrm{f}}\right)=\frac{1}{2 I_{\mathrm{i}}+1} \sum_{M_{\mathrm{i}} M_{\mathrm{f}} \mu} \sum_{\mathrm{f}}\left|\left\langle I_{\mathrm{f}} M_{\mathrm{f}}\right| \sum_{k=1}^{A} e_{k} r_{k}^{2} Y_{2 \mu}\left(\theta_{k}, \varphi_{k}\right)\right| I_{\mathrm{i}} M_{\mathrm{i}}\right\rangle\left.\right|^{2}
$$

- Electric quadrupole moments:

$$
e Q(I)=\langle I M=I| \sqrt{\frac{16 \pi}{5}} \sum_{k=1}^{A} e_{k} r_{k}^{2} Y_{20}\left(\theta_{k}, \varphi_{k}\right)|I M=I\rangle
$$

Magnetic (dipole) properties

- Partial γ-ray half-life:

$$
T_{1 / 2}^{\gamma}(\mathrm{M} \lambda)=\ln 2\left\{\frac{8 \pi}{\hbar} \frac{\lambda+1}{\lambda[(2 \lambda+1)!!]^{2}}\left(\frac{E_{\gamma}}{\hbar c}\right)^{2 \lambda+1} B(\mathrm{M} \lambda)\right\}^{-1}
$$

- Magnetic dipole transitions:

$$
\left.B\left(\mathrm{M} 1 ; I_{\mathrm{i}} \rightarrow I_{\mathrm{f}}\right)=\frac{1}{2 I_{\mathrm{i}}+1} \sum_{M_{\mathrm{i}}} \sum_{M_{\mathrm{f}} \mu}\left|\left\langle I_{\mathrm{f}} M_{\mathrm{f}}\right| \sum_{k=1}^{A}\left(g_{k}^{l} l_{k, u}+g_{k}^{s} s_{k, \mu}\right)\right| I_{\mathrm{i}} M_{\mathrm{i}}\right\rangle\left.\right|^{2}
$$

- Magnetic dipole moments:

$$
\mu(I)=\langle I M=I| \sum_{k=1}^{A}\left(g_{k}^{l} l_{k, z}+g_{k}^{s} s_{k, z}\right)|I M=I\rangle
$$

E2 properties of rotational nuclei

- Intra-band E2 transitions:

$$
B\left(\mathrm{E} 2 ; K I_{\mathrm{i}} \rightarrow K I_{\mathrm{f}}\right)=\frac{5}{16 \pi}\left\langle I_{\mathrm{i}} K 20 \mid I_{\mathrm{f}} K\right\rangle^{2} e^{2} Q_{0}(K)^{2}
$$

- E2 moments:

$$
Q(K I)=\frac{3 K^{2}-I(I+1)}{(I+1)(2 I+3)} Q_{0}(K)
$$

- $Q_{0}(K)$ is the 'intrinsic' quadrupole moment:

$$
e \hat{Q}_{0} \equiv \int \rho\left(\boldsymbol{r}^{\prime}\right) r^{2}\left(3 \cos ^{2} \theta^{\prime}-1\right) d \boldsymbol{r}^{\prime}, \quad Q_{0}(K)=\langle K| \hat{Q}_{0}|K\rangle
$$

E2 properties of ground-state bands

- For the ground state (usually $K=I$):

$$
Q(K=I)=\frac{I(2 I-1)}{(I+1)(2 I+3)} Q_{0}(K)
$$

- For the gsb in even-even nuclei ($K=0$):

$$
\begin{aligned}
& B(\mathrm{E} 2 ; I \rightarrow I-2)=\frac{15}{32 \pi} \frac{I(I-1)}{(2 I-1)(2 I+1)} e^{2} Q_{0}^{2} \\
& Q(I)=-\frac{I}{2 I+3} Q_{0} \\
& \Rightarrow\left|e Q\left(2_{1}^{+}\right)\right|=\frac{2}{7} \sqrt{16 \pi \cdot B\left(\mathrm{E} 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}
\end{aligned}
$$

Generalized intensity relations

- Mixing of K arises from
- Dependence of Q_{0} on I (stretching)
- Coriolis interaction
- Triaxiality
- Generalized intra- and inter-band matrix elements (eg E2):
$\frac{\sqrt{B\left(\mathrm{E} 2 ; K_{\mathrm{i}} I_{\mathrm{i}} \rightarrow K_{\mathrm{f}} I_{\mathrm{f}}\right)}}{\left\langle\mathrm{I}_{\mathrm{i}} K_{\mathrm{i}} 2 K_{\mathrm{f}}-K_{\mathrm{i}} \mid I_{\mathrm{f}} K_{\mathrm{f}}\right\rangle}=M_{0}+M_{\mathrm{i}} \Delta+M_{2} \Delta^{2}+\cdots$
with $\Delta=I_{\mathrm{f}}\left(I_{\mathrm{f}}+1\right)-I_{\mathrm{i}}\left(I_{\mathrm{i}}+1\right)$

Inter-band E2 transitions

- Example of $\gamma \rightarrow \mathrm{g}$ transitions in ${ }^{166} \mathrm{Er}$:

$$
\begin{aligned}
& \frac{\sqrt{B\left(\mathrm{E} 2 ; I_{\gamma} \rightarrow I_{\mathrm{g}}\right)}}{\left\langle I_{\gamma} 22-2 \mid I_{g} 0\right\rangle} \\
& \quad=M_{0}+M_{1} \Delta+M_{2} \Delta^{2}+\cdots \\
& \Delta=I_{g}\left(I_{\mathrm{g}}+1\right)-I_{\gamma}\left(I_{\gamma}+1\right)
\end{aligned}
$$

Modes of nuclear vibration

- Nucleus is considered as a droplet of nuclear matter with an equilibrium shape. Vibrations are modes of excitation around that shape.
- Character of vibrations depends on symmetry of equilibrium shape. Two important cases in nuclei:
- Spherical equilibrium shape
- Spheroidal equilibrium shape

Vibrations about a spherical shape

- Vibrations are characterized by a multipole quantum number λ in surface parametrization:

$$
R(\theta, \varphi)=R_{0}\left(1+\sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} \alpha_{\lambda \mu} Y_{\lambda, \mu}^{*}(\theta, \varphi)\right)
$$

$-\lambda=0$: compression (high energy)
$-\lambda=1$: translation (not an intrinsic excitation)
$-\lambda=2$: quadrupole vibration

NSDD Workshop, Trieste, February 2006

Properties of spherical vibrations

- Energy spectrum:

$$
E_{\text {vi }}(n)=\left(n+\frac{5}{2}\right) \hbar \omega, n=0,1 \ldots
$$

- R_{42} energy ratio:

$$
E_{\mathrm{vib}}\left(4^{+}\right) / E_{\mathrm{vib}}\left(2^{+}\right)=2
$$

- E2 transitions:

$$
2
$$

$$
\begin{aligned}
& B\left(\mathrm{E} 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)=\alpha^{2} \\
& B\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 0_{1}^{+}\right)=0 \\
& B(\mathrm{E} 2 ; n=2 \rightarrow n=1)=2 \alpha^{2}
\end{aligned}
$$

Example of ${ }^{112} \mathrm{Cd}$

Possible vibrational nuclei from R_{42}

NSDD Workshop, Trieste, February 2006

Vibrations about a spheroidal shape

- The vibration of a shape with axial symmetry is characterized by $a_{\lambda v}$.
- Quadrupole oscillations
$-v=0$: along the axis of symmetry (β)
$-v= \pm 1$: spurious rotation
$-v= \pm 2$: perpendicular to axis of symmetry (γ)

C

Spectrum of spheroidal vibrations

NSDD Workshop, Trieste, February 2006

Example of ${ }^{166} \mathrm{Er}$

NSDD Workshop, Trieste, February 2006

Rigid triaxial rotor

- Triaxial rotor hamiltonian $\mathfrak{I}_{1} \neq \mathfrak{J}_{2} \neq \Im_{3}$:

$$
\begin{aligned}
& \hat{H}_{\mathrm{rot}}^{\prime}=\sum_{i=1}^{3} \frac{\hbar^{2}}{2 \mathfrak{\Im}_{i}} I_{i}^{2}=\underbrace{\frac{\hbar^{2}}{2 \Im^{2}} I^{2}+\frac{\hbar^{2}}{2 \mathfrak{\Im}_{f}^{2}} I_{3}^{2}}_{\hat{H}_{\text {axial }}}+\underbrace{\frac{\hbar^{2}}{2 \Im_{g}}\left(I_{+}^{2}+I_{-}^{2}\right)}_{\hat{H}_{\text {mix }}} \\
& \frac{1}{\mathfrak{J}}=\frac{1}{2}\left(\frac{1}{\Im_{1}}+\frac{1}{\Im_{2}}\right), \frac{1}{\Im_{f}}=\frac{1}{\Im_{3}}-\frac{1}{\mathfrak{\Im}}, \frac{1}{\Im_{g}}=\frac{1}{4}\left(\frac{1}{\Im_{1}}-\frac{1}{\Im_{2}}\right)
\end{aligned}
$$

- $H^{\prime}{ }_{\text {mix }}$ non-diagonal in axial basis $|K I M\rangle \Rightarrow K$ is not a conserved quantum number

Rigid triaxial rotor

- Triaxial rotor hamiltonian $\mathfrak{I}_{1} \neq \mathfrak{J}_{2} \neq \Im_{3}$:

$$
\begin{aligned}
& \hat{H}_{\mathrm{rot}}^{\prime}=\sum_{i=1}^{3} \frac{\hbar^{2}}{2 \mathfrak{\Im}_{i}} I_{i}^{2}=\underbrace{\frac{\hbar^{2}}{2 \Im^{2}} I^{2}+\frac{\hbar^{2}}{2 \mathfrak{\Im}_{f}^{2}} I_{3}^{2}}_{\hat{H}_{\text {axial }}}+\underbrace{\frac{\hbar^{2}}{2 \Im_{g}}\left(I_{+}^{2}+I_{-}^{2}\right)}_{\hat{H}_{\text {mix }}} \\
& \frac{1}{\mathfrak{J}}=\frac{1}{2}\left(\frac{1}{\Im_{1}}+\frac{1}{\Im_{2}}\right), \frac{1}{\Im_{f}}=\frac{1}{\Im_{3}}-\frac{1}{\mathfrak{\Im}}, \frac{1}{\Im_{g}}=\frac{1}{4}\left(\frac{1}{\Im_{1}}-\frac{1}{\Im_{2}}\right)
\end{aligned}
$$

- $H^{\prime}{ }_{\text {mix }}$ non-diagonal in axial basis $|K I M\rangle \Rightarrow K$ is not a conserved quantum number

Rigid triaxial rotor spectra

$$
4^{+}
$$

\qquad

$$
\gamma=30^{\circ}
$$

$$
\gamma=15^{\circ}
$$

NSDD Workshop, Trieste, February 2006

Tri-partite classification of nuclei

- Empirical evidence for seniority-type, vibrational- and rotational-like nuclei:

- Need for model of vibrational nuclei.

Interacting boson model

- Describe the nucleus as a system of N interacting s and d bosons. Hamiltonian:

$$
\hat{H}_{\text {IBM }}=\sum_{i=1}^{6} \varepsilon_{i} \hat{b}_{i}^{+}+\hat{b}_{i}+\sum_{i_{i}, i_{2} i_{4}=1}^{6} v_{i, 1} v_{i i_{4} i_{i}} \hat{b}_{i,}^{+} \hat{b}_{i_{2}}^{+} \hat{b_{i}} \hat{b}_{i_{4}}
$$

- Justification from
- Shell model: s and d bosons are associated with S and D fermion (Cooper) pairs.
- Geometric model: for large boson number the IBM reduces to a liquid-drop hamiltonian.

Dimensions

- Assume Ω available 1-fermion states. Number of n-fermion states is $\binom{\Omega}{n}=\frac{\Omega!}{n!(\Omega-n)!}$
- Assume Ω available 1-boson states. Number of n-boson states is $\binom{\Omega+n-1}{n}=\frac{(\Omega+n-1)!}{n!(\Omega-1)!}$
- Example: ${ }^{162} \mathrm{Dy}_{96}$ with 14 neutrons $(\Omega=44)$ and 16 protons $(\Omega=32)\left({ }^{132} \mathrm{Sn}_{82}\right.$ inert core $)$.
- SM dimension: $\sim 7 \cdot 10^{19}$
- IBM dimension: 15504

Dynamical symmetries

- Boson hamiltonian is of the form

$$
\hat{H}_{\text {IBM }}=\sum_{i=1}^{6} \varepsilon_{i} \hat{b}_{i}^{+}+\hat{b}_{i}+\sum_{i_{i} i_{2} i_{4} i_{i=1}^{6}}^{6} v_{i_{i} i_{3} i_{4}} \hat{b}_{i \hbar}^{+} \hat{b}_{i}^{+} \hat{b_{i}} \hat{b}_{i_{4}}
$$

- In general not solvable analytically.
- Three solvable cases with $\mathrm{SO}(3)$ symmetry:

$$
\begin{aligned}
& \mathrm{U}(6) \supset \mathrm{U}(5) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3) \\
& \mathrm{U}(6) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3) \\
& \mathrm{U}(6) \supset \mathrm{SO}(6) \supset \mathrm{SO}(5) \supset \mathrm{SO}(3)
\end{aligned}
$$

$\mathrm{U}(5)$ vibrational limit: ${ }^{110} \mathrm{Cd}_{62}$

NSDD Workshop, Trieste, February 2006

$\mathrm{SU}(3)$ rotational limit: ${ }^{156} \mathrm{Gd}_{92}$

NSDD Workshop, Trieste, February 2006

$\mathrm{SO}(6) \gamma$-unstable limit: ${ }^{196} \mathrm{Pt}_{118}$

NSDD Workshop, Trieste, February 2006

Applications of IBM

NSDD Workshop, Trieste, February 2006

Classical limit of IBM

- For large boson number N the minimum of $V(\beta, \gamma)=\langle N ; \beta \gamma| H|N ; \beta \gamma\rangle$ approaches the exact ground-state energy:

$$
V(\beta, \gamma) \propto\left\{\begin{array}{lc}
\mathrm{U}(5): & \frac{\beta^{2}}{1+\beta^{2}} \\
\mathrm{SU}(3): & \frac{\beta^{4}-4 \sqrt{2} \beta^{3} \cos 3 \gamma+8 \beta^{2}}{8\left(1+\beta^{2}\right)^{2}} \\
\mathrm{SO}(6): & \left(\frac{1-\beta^{2}}{1+\beta^{2}}\right)^{2}
\end{array}\right.
$$

Phase diagram of IBM

J. Jolie et al. , Phys. Rev. Lett. 87 (2001) 162501.

NSDD Workshop, Trieste, February 2006

The ratio R_{42}

NSDD Workshop, Trieste, February 2006

Extensions of IBM

- Neutron and proton degrees freedom (IBM-2):
$-F$-spin multiplets $\left(N_{v}+N_{\pi}=\right.$ constant $)$
- Scissors excitations
- Fermion degrees of freedom (IBFM):
- Odd-mass nuclei
- Supersymmetry (doublets \& quartets)
- Other boson degrees of freedom:
- Isospin $T=0 \& T=1$ pairs (IBM-3 \& IBM-4)
- Higher multipole (g, \ldots) pairs

Scissors mode

- Collective displacement modes between neutrons and protons:
- Linear displacement (giant dipole resonance): $R_{v}-R_{\pi} \Rightarrow$ E1 excitation.
- Angular displacement (scissors resonance): $L_{\nu}-L_{\pi} \Rightarrow$ M1 excitation.

NSDD Workshop, Trieste, February 2006

Bosons + fermions

- Odd-mass nuclei are fermions.
- Describe an odd-mass nucleus as N bosons + 1 fermion mutually interacting. Hamiltonian:

$$
\hat{H}_{\text {IBFM }}=\hat{H}_{\text {IBM }}+\sum_{j=1}^{\Omega} \bar{\varepsilon}_{j} \hat{a}_{j}^{+} \hat{a}_{j}+\sum_{i_{i}=1}^{6} \sum_{j_{j} j_{2}=1}^{\Omega} \bar{i}_{i_{j}, j_{i}, j_{2}} \hat{b}_{i_{1}}^{+} \hat{a}_{j_{1}}^{+} \hat{b}_{i_{2}} \hat{a}_{j_{2}}
$$

- Algebra:

$$
\mathrm{U}(6) \oplus \mathrm{U}(\Omega)=\left\{\begin{array}{ll}
\hat{b}_{i_{1}}^{+} \hat{b}_{i_{2}} & \\
& \hat{a}_{j_{1}}^{+} \hat{a}_{j_{2}}
\end{array}\right\}
$$

- Many-body problem is solved analytically for certain energies ε and interactions v.

Example: ${ }^{195} \mathrm{Pt}_{117}$

Example: ${ }^{195} \mathrm{Pt}_{117}$ (new data)

NSDD Workshop, Trieste, February 2006

Nuclear supersymmetry

- Up to now: separate description of even-even and odd-mass nuclei with the algebra

$$
\mathrm{U}(6) \oplus \mathrm{U}(\Omega)=\left\{\begin{array}{ll}
\hat{b}_{i_{1}}^{+} \hat{b}_{i_{2}} & \\
& \hat{a}_{j_{1}}^{+} \hat{a}_{j_{2}}
\end{array}\right\}
$$

- Simultaneous description of even-even and odd-mass nuclei with the superalgebra

$$
\mathrm{U}(6 / \Omega)=\left\{\begin{array}{ll}
\hat{b}_{i_{1}}^{+} \hat{b}_{i_{2}} & \hat{b}_{i_{1}}^{+} \hat{a}_{j_{2}} \\
\hat{a}_{j_{1}}^{+} \hat{b}_{i_{2}} & \hat{a}_{j_{1}}^{+} \hat{a}_{j_{2}}
\end{array}\right\}
$$

$\mathrm{U}(6 / 12)$ supermultiplet

NSDD Workshop, Trieste, February 2006

Example: ${ }^{194} \mathrm{Pt}_{116} \&{ }^{195} \mathrm{Pt}_{117}$

Example: ${ }^{196} \mathrm{Au}_{117}$

Bibliography

- A. Bohr and B.R. Mottelson, Nuclear Structure. I Single-Particle Motion (Benjamin, 1969).
- A. Bohr and B.R. Mottelson, Nuclear Structure. II Nuclear Deformations (Benjamin, 1975).
- R.D. Lawson, Theory of the Nuclear Shell Model (Oxford UP, 1980).
- K.L.G. Heyde, The Nuclear Shell Model (SpringerVerlag, 1990).
- I. Talmi, Simple Models of Complex Nuclei (Harwood, 1993).

Bibliography (continued)

- P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, 1980).
- D.J. Rowe, Nuclear Collective Motion (Methuen, 1970).
- D.J. Rowe and J.L. Wood, Fundamentals of Nuclear Collective Models, to appear.
- F. Iachello and A. Arima, The Interacting Boson Model (Cambridge UP, 1987).

