ENSDF – Reaction Data

Coral Baglin

Lawrence Berkeley National Laboratory

Workshop on Nuclear Structure and Decay Data: Theory and Evaluation, ICTP, Trieste, 20 Feb.-3 Mar., 2006

1 dataset

0 to ~40 datasets

Summary

Principal Categories of Reactions.

• Reactions in which gammas are not detected:

Stripping and Pickup Reactions

Multi-particle Transfer Reactions

Charge-Exchange Reactions

Inelastic Scattering

Coulomb Excitation (particles detected)

Resonance Reactions ...

• Reactions in which gammas are detected:

Summary of information available from γ -ray measurements

Inelastic Scattering

Nuclear Resonance Fluorescence

(light ion,xnypγ)

(heavy ion,xnypγ)

Particle Capture

Coulomb Excitation (y's detected)

Gammas not detected

Measured Quantities of Interest:

- E(level) from particle spectrum or excitation function.
- L angular momentum transfer
- S, C²S spectroscopic factors
- β_{2} , β_{4} deformation parameters (if model independent)
- Γ , Γ_i total or partial widths for level
- B(E λ), B(M λ) transition probabilities

Stripping and Pickup

Examples:

<u>Stripping</u>: (d,p), (α,³He), (pol d,p), (³He,d), *etc*. <u>Pickup</u>: (p,d), (³He,α), (t,α), *etc*.

Quantities to Record:

- E(level), deduced by authors from charged particle spectrum.
- L and S or C²S from authors' DWBA analysis:

 $\begin{array}{ll} (d\sigma/d\omega(\theta))_{exp} = (d\sigma/d\omega(\theta))_{DWBA}.x \ N \ x \ C^2S' \\ where & S'=S \ (pickup) \ or \\ & S'=S \ x \ (2J_f+1)/(2J_i+1) \ (stripping) \end{array}$

 $(d\sigma/d\omega)$ for one angle should be given in suitably relabeled S field when spectroscopic-factor information is not provided by authors.)

• J from L±1/2 for polarised beam if vector analysing power shows clear preference between L+1/2 and L-1/2.

Relevant Documentation:

Target J π (unless 0⁺) Spectrum resolution (FWHM, keV) Normalisation factor for DWBA analysis Range of angles measured, lab or c.m. (but specify which).

Stripping and Pickup, ctd.

Deformed Nuclides; $\boldsymbol{\alpha}$ and lighter beams:

 $(d\sigma/d\omega(\theta))_{exp} / [(d\sigma/d\omega(\theta))_{DWBA} x 2N] = c^{2}(jI) V^{2},$

where c is amplitude of Nilsson state wavefunction for transferred nucleon, V is fullness factor describing partial filling of target nucleus orbitals.

• The pattern of cross sections among rotational-band members may provide a characteristic **fingerprint** for a specific Nilsson configuration, enabling a set of levels to be assigned as specific J members of a band with that configuration if:

(i) the experimental fingerprint agrees well with that predicted by Nilssonmodel wavefunctions, and

(ii) the fingerprint differs distinctly from those for other plausible configurations.

Example: $(d_{\sigma}/d_{\omega}(60^{\circ}))$ calculated (1997Bu03) for ²²⁶Ra(t, α)²²⁵Fr: Orbital: 1/2[400] 1/2[530] **1/2[541]** 3/2[402] 3/2[651] **3/2[532]** Expt. Mixed

J=3/2	23	14	1.5	103	0.0	0.7	~1.5	0.9
J=5/2	7.6	0.2	13	4.6	0.03	6.2	14	10
J=7/2	0.4	39	2.0	1.2	0.0	3.3	20	4.1
J=9/2	0.05	0.4	33	0.05	2.0	26	~45	49
Reality	(not so s	imple!):	3/2[532]	Coriolis r	nixed with	ו 1/2[541	l fits σ. e	nerav.

Multi-particle Transfer

Examples:

(p,t), (α,d), (t,p), (α,p), ⁽⁶Li,d)[·]

Quantities to Record:

- E(level)
- L if angular distribution can be fitted by a unique value

Deduced Quantities:

J π - from J(target)+L (vector sum) and $\pi_i \pi_f = (-1)^{Jf}$, for strong groups only in two-neutron, two-proton or α -particle transfer.

(*i.e.*, pairs of identical particles can be assumed to be transferred in relative s state for **strong** groups).

Charge-Exchange Reactions

Examples:

(p,n), (³He,t)

Quantities of interest:

- E(level)
- Isobaric analog state information.

Inelastic Scattering

Examples:

(e,e'), (p,p'), (d,d'), (α , α ') (at projectile energies **above** the Coulomb barrier).

Quantities to Record:

- E(level)
- L if angular distribution is fitted by unique L value
- $\beta 2$, $\beta 4$... deformation parameters (if model independent); specify whether 'charge' or 'nuclear', if relevant (typically from (α , α ') or (e,e')).
- B(E λ), B(M λ) transition probabilities (typically from (e,e')).

Coulomb Excitation (particles detected)

Examples:

(p,p'), (d,d'), (α , α ') with projectile energy **below** Coulomb barrier. **Quantities to Record:**

- E(level)
- Jπ:

• determined if the excitation probability agrees with that calculated by Alder (1960Al23).

- low energy Coulomb excitation is predominantly E2
- $B(E\lambda)$ for excitation

Resonance Reactions

Examples:

(p,p), (p,X), (γ ,n) ... (excitation function data, σ (E), $d\sigma/d\omega(\theta,E)$)

Quantities of interest:

• E(level) – calculate from SP+E(p)(c.m.) or give as 'SP+976.3', *etc.*, where 976.3 is E(p)(lab) for resonance; <u>don't</u> use both notations within the same dataset.

- Ep at resonance can be given in relabeled 'S' or 'L' field.
- Partial widths can be given in comments or relabeled 'S' field.
- Is this an isobaric analog state? (If so, specify state of which it is the analog).
- Is this a giant resonance? (If so, which one?)
- Any $J\pi$ information that can be deduced.

Note:

ENSDF is primarily concerned with <u>bound</u> levels, but includes all isobaric analog states, giant resonances, and unbound levels which overlap or give information on bound levels.

Reactions with Gammas Detected

Measured Quantities of Interest:

- E_γ photon energy
- $I\gamma$ relative intensity (or photon branching)
- α , $\alpha_{\rm K}$, ... electron conversion coefficients, usually from I(ce)/I γ , sometimes from intensity balance (note: this gives $\alpha_{\rm exp}$).
- K/L, L1/ L3 ... ce subshell ratios
- A_2 , A_4 ... Legendre polynomial coefficients characterizing angular distribution ($\gamma(\theta)$) or angular correlation ($\gamma\gamma(\theta)$).
- DCO ratio directional correlation of gammas from oriented nuclei.
- Asymmetry ratio e.g., $I\gamma(\theta_1)/I\gamma(\theta_2)$
- Linear polarization
- Level $T_{1/2}$ from γ (t), DSAM, RDM, centroid-shift, delayed coincidence, *etc.*, if measured in that reaction (state method used).
- g-factor include if measured in that reaction

Reactions with Gammas Detected – ctd.

Deduced Quantities of Interest:

• E(level) – from least-squares adjustment of E γ (GTOL), avoiding E γ for lines that have uncertain or multiple placements whenever possible. Note serious misfits.

• Band structure – indicate via band flags for levels. (Note: life will be easier if a given band has the same band-flag character in each dataset in the nuclide!)

• J π - it may be desirable to indicate authors' values in the reaction dataset and add parentheses in *Adopted Levels* if insufficient (or no!) supporting arguments are available (but note major discrepancies).

- M transition multipolarity
- δ mixing ratio ($\sqrt{(L+1)}$ -pole/(L-pole)), Krane-Steffen sign convention.

Gamma-ray Energies

• Give measured energy and uncertainty (*i.e.*, do not correct for recoil energy loss).

• State source of data (unless obvious, *e.g.*, if only one keynumber)

• Uncertainties: if authors give uncertainty as:

(i) "0.3 keV for strong lines, 1 keV for weak or poorly resolved lines"; assign 0.3 to those which could be reasonably considered 'strong' and 1 to all others, but give authors' statement in general comment on E_{γ} and define the I_{γ} that you consider 'strong' (or assign 1 keV to all).

(ii) "do not exceed 0.5 keV"; 0.5 could be assigned for all lines.

(iii) If no uncertainty is stated, point that out in general comment (for the purpose of deducing E(level) using GTOL, a default of 1 keV (adjustable by user via control record at head of dataset) will be used and this should be noted in a comment on level energy)

• If measured E_{γ} not available but G record is needed in order to give other information, deduce it from level energy difference and remove recoil energy loss; give no ΔE_{γ} and say where E_{γ} came from.

Gamma-ray Intensities

• Give relative intensities, if available (don't renormalise so strongest is 100).

• Don't mix data from different reactions, or data from same reaction at different energies, when entering RI on G records (use different datasets instead, or include in comments or tabulation).

• If branching ratios are measured independently (*e.g.*, from $\gamma\gamma$ coincidences), quote these also (*e.g.*, in a comment); one set of data may be more precise than the other.

• Give uncertainties whenever authors state them; if authors give both statistical and systematic uncertainties, show statistical on G record but state systematic in comment (so uncertainty in $I\gamma$ ratios is not distorted).

• If both prompt and delayed I_{γ} are given, use separate datasets for them or give one set under comments.

• For multiply-placed lines, specify whether quoted I_{γ} has been suitably divided between placements (& or @ in column 77).

Conversion Coefficients

• Give measured α_{K} , α_{L} , *etc.*, and subshell ratios (in comments or on continuation of G record); state how photon and ce intensity scales were normalised.

• Quote experimental coefficients (usually α) obtained using intensity balance arguments (these are frequently buried in the text of a paper); specify as "from intensity balance at xxxx level" where relevant.

• Include α (theory) on G record (from BrIcc) when needed for calculation

or argument (or α (theory)+ α (pair) if E γ > 1022 keV).

γ Linear Polarisation

 γ linear polarisation data may be available from Compton polarimeter measurements of relative I γ in planes perpendicular and parallel to reaction plane.

Such data may distinguish between electric and magnetic radiations.

Angular Distributions

I_γ as a function of angle θ with respect to beam direction: $W(\theta)=1+A_2P_2(\cos \theta)+A_4P_4(\cos \theta)+...$

- Include A₂, A₄ ...; these data are very important to evaluators and readers alike, as they provide information vital to transition multipolarity assignments.
- Remember that these are signed quantities.
- A₂, A₄ ... depend on ΔJ, mixing ratio and degree of alignment σ/J, where σ is half-width of Gaussian describing the magnetic substate population.
- σ/J is usually determined from measurements of W(θ) for known ΔJ=2 transitions. However, many authors assume σ/J=0.3, for practical purposes.
- σ /J affects only the magnitudes of A₂, A₄.
- For high-spin states, $W(\theta)$ is largely independent of J.
- Alignment is reduced if level lifetime is not small.
- W(θ) can determine ΔJ but <u>not</u> $\Delta \pi$.

Angular Distributions – ctd.

Typical values of A₂, A₄ for θ relative to beam direction if σ /J=0.3 (B. Singh, McMaster University)

ΔJ	Multipolarity	Sign of A_2	Sign of A_4	Typical A ₂	Typical A ₄
2	Q	+	-	+0.3	-0.1
1	D	-		-0.2	0.0
1	Q	-	+	-0.1	+0.2
1	D+Q	+ or -	+	+0.5 to -0.8	0.0 to +0.2
0	D	+		+0.35	0.0
0	Q	-	-	-0.25	-0.25
0	D+Q	+ or -	-	+0.35 to - 0.25	0.0 to -0.25

DCO Ratios

Directional **C**orrelations of γ -rays from **O**riented states of Nuclei

• If γ_{K} (known multipolarity) and γ_{U} (unknown multipolarity) are measured in coincidence using detectors at angles θ_{1} and θ_{2} to the beam:

DCO=I($\gamma_U(at \theta_1)$ gated by $\gamma_K(at \theta_2)$)/I($\gamma_U(at \theta_2)$ gated by $\gamma_K(at \theta_1)$).

• Sensitive to ΔJ , multipolarity and mixing ratio; **independent of** $\Delta \pi$.

• Gating transitions are frequently stretched Q, but stretched D may also be used, so specify which was used.

• Authors frequently indicate expected DCO values for stretched Q and stretched D transitions for the geometry used. It is helpful to state these.

• Remember that identical values are expected for stretched Q and for D, $\Delta J=0$ transitions (although the latter are less common).

DCO Ratios – ctd.

Typical DCO values for θ_1 =37°, θ_2 =79°, σ /J=0.3 (B. Singh, McMaster U.)

ΔJ _γ ^{gate} , Mult	ΔJ_{γ}	Mult	Typical DCO
2, Q	2	Q	1.0
2, Q	1	D	0.56
2, Q	1	D+Q	0.2 to 1.3
2, Q	0	D	1.0
2, Q	0	D+Q	0.6 to 1.0
1, D	2	Q	1/0.56
1, D	1	D	1.0
1, D	0	D	1/0.56

Multipolarity

• L and $\Delta \pi$ may be determined from measured subshell ratios or conversion coefficients.

- L alone can be determined by angular distributions or DCO ratios or $\boldsymbol{\gamma}$ asymmetry ratios.

• $\Delta \pi$ may be determined by γ linear polarisation measurements.

• When transition strengths are calculable ($T_{1/2}$ and branching known), <u>R</u>ecommended <u>Upper Limits</u> (RUL) can be used to rule out some multipolarities (*e.g.*, a stretched Q transition for which B(M2)_W exceeds 1 can be assigned as E2). Similarly, for a D+Q transition with large mixing, RUL may enable the rejection of E1+M2.

• Assign Mult only when measured information indicates clear preference for that assignment; otherwise, let $\gamma(\theta)$ or DCO data speak for themselves. (Exception: if no measurement exists but mult. is needed for some reason, use [M1+E2], *etc.*, type of entry.)

• Mult determined for a doublet will be not reliable; it can be given in comment (with disclaimer), but <u>not</u> on G record.

Mixing Ratios

• Include on G record whenever available.

• Calculate from conversion electron data or $\gamma\gamma(\theta)$ using DELTA, or from subshell ratios.

• Rely on authors' deductions from $\gamma(\theta)$, DCO or nuclear orientation data.

• <u>Note:</u> In (HI,xn γ) studies, <u>model-dependent</u> values of δ are sometimes deduced from in-band cascade to crossover transition intensity ratios; these could be given in comments (stating relevant K) if considered really important, but should <u>not</u> be entered on G record.

• Check that correct sign convention was used by authors. Convert to Krane-Steffen if not, and take special care if uncertainties are asymmetric (-2.3 +4-2 becomes +2.3 +2-4 upon sign reversal).

Inelastic Scattering

 $(p,p'\gamma)$, $(n,n'\gamma)$, *etc.*; beam energies > Coulomb barrier.

Separate these datasets from those for (p,p'), (n,n') ... and from that for Coulomb excitation.

Information of interest: typically E γ , I γ , $\gamma(\theta)$; maybe γ linear polarisation.

Nuclear Resonance Fluorescence

 (γ,γ) and (γ,γ') measurements with Bremsstrahlung spectrum; low momentum transfer so excite low-spin states (mainly E1 and M1, but some E2 excitation).

• γ spectrum measured; areas of γ peaks at Ex₀ and Ex₁, combined with knowledge of N γ (Ex₀), yields scattering cross sections from which width and branching information may be obtained.

- γ asymmetry differentiates D and Q excitation
- γ linear polarization differentiates M and E

Nuclear Resonance Fluorescence – ctd.

(Integrated) scattering crossection I_s (eV b) is often given:

 $I_{s} = ((2J+1)/(2J_{0}+1)) (\Gamma \gamma_{0} \Gamma \gamma_{f} / \Gamma \gamma) (\pi \hbar c / E \gamma)^{2} W(\theta) / 4\pi$

where J is g.s. spin, J₀ is spin of excited level, $\Gamma \gamma \cong \Gamma$ is its total width and $\Gamma \gamma_0$, $\Gamma \gamma_f$ its decay widths for γ decay to the g.s. and the final state f (for elastic scattering, $\Gamma \gamma_0 = \Gamma \gamma_f$); W(θ) represents the normalised angular distribution. Data are often taken at 127° where W=1 for D transitions.

• Give $\Gamma \gamma_0^2 / \Gamma$ values (extract if necessary) on L record (col. 65 (value), 75 (uncertainty)); relabel field.

• If $\Gamma \gamma_f / \Gamma \gamma_0$ is measured, include relative branching on G records.

 Γ is calculable from:

 $(\Gamma\gamma_0{}^2/\Gamma) / (\Gamma\gamma_0/\Gamma)^2$

using known branching, or under the assumption $\Gamma = \Gamma \gamma_0 + \Gamma \gamma_f$ (which needs to be stated).

• Then: $T_{1/2}$ (ps)= 0.456 / Γ (meV); include on L record.

Propagate uncertainties with care!

(Light lon,xnypg)

(p,xn γ), (³He, xn γ), (α ,p γ), etc.

• Separate from (HI,xnγ) studies.

• Separate from datasets in which gammas are not measured (*e.g.*, do <u>not</u> combine $(d,p\gamma)$ and (d,p)).

(Heavy lon,xnypγ)

• Relative intensities will be different for different reactions and also for a given reaction measured at different beam energies; in general, it will be simplest to use separate datasets for each study that provides significant I_{γ} or branching data.

• (HI,xnγ) reactions tend to populate yrast (lowest energy for given J) levels or near-yrast levels; populated states tend to have spins that increase as the excitation energy increases.

• Use band flags to delineate deduced band structure. If authors give configuration for band, include this in band description.

(Heavy lon,xnypγ) – ctd.

• Note inconsistencies in γ order, postulated J π , configuration, *etc.*, compared with other studies and especially with that in *Adopted Levels, Gammas.*

• Beware of multipolarity and J π assignments for which <u>no</u> supporting measurements exist. Sometimes, values inserted in order to generate a RADWARE band drawing live on in the published table of data; these do <u>not</u> qualify as 'data'!

• Multipolarities determined as D, Q, D+Q, *etc*, by $\gamma(\theta)$ or DCO are best left this way in the reaction dataset unless definite arguments exist to establish $\Delta \pi$ (otherwise 'D' (strong J π argument) and '(D)' (weak J π argument) become indistinguishable when written as, say, (M1)).

• Watch for and report statements of coincidence resolving time (or equivalent) since this might place a limit on level lifetime, thereby enabling RUL to be used to reject $\Delta \pi$ =yes for a transition multipolarity.

• For K=1/2 rotational bands, the decoupling parameter may give a clear indication of the Nilsson orbital involved in the band configuration.

(Heavy lon,xnypγ**)** – ctd.

• For near-spherical nuclei, if a cascade of $\Delta J=1$ transitions is observed at high spin with regular energy progression, those transitions may be assigned as (M1) transitions within a common band. <u>Exception</u>: in rare cases, nuclei can have alternating parity bands (reflection asymmetry); for these, $\Delta J=1$, $\Delta \pi=$ yes cascades occur.

• For a well-deformed nucleus, if a cascade of $\Delta J=2$ transitions is observed at high spin with regular energy progression, those $\Delta J=2$ transitions may be assigned as E2 transitions within a common band.

• Note, however, that octupole-deformed nuclei may exhibit an apparent band which is really two $\Delta J=2$ rotational sequences of opposite parity, connected by cascading E1 transitions.

Special Case:

Superdeformed band data are updated continuously in ENSDF by Balraj Singh (McMaster University). One should check ENSDF as one finishes one's mass chain evaluation to be sure no SD-band data have been added since the chain was downloaded for revision.

Capture Reactions

 (p,γ) , (n,γ) E=thermal, (n,γ) E=res, *etc*.

• Use separate datasets for thermal and resonance n-capture data.

• Primary and secondary transitions usually appear in the same dataset even if their intensities require different normalisations.

• The J π of the thermal neutron capture state(s) is J π (target)±1/2 (*i.e.*, s-wave capture is assumed).

• In thermal neutron capture, the multipolarity of a primary γ is E1, M1, E2 or M1+E2.

• For resonance n capture, ENSDF does <u>not</u> include the resonances and their properties; it is adequate to just list the bound states fed, their interconnecting gammas and any conclusions concerning level $J\pi$.

• In average resonance n capture, inclusion of primary gammas and their reduced intensities (which carry information on final state $J\pi$) is optional; a list of final level E and deduced $J\pi$ would suffice.

Coulomb Excitation

• If authors determine matrix element values, give them in comments and calculate $B(E\lambda)$ using

 $B(E\lambda) = |\langle M(E\lambda) \rangle|^2 / (2J_0+1)$ where J_0 is g.s. spin.

• If authors give $B(E\lambda)\downarrow$, convert it to $B(E\lambda)\uparrow$ and include it with level information.

• In the strongly deformed region, a cascade of E2 transitions with enhanced transition probabilities (B(E2)_W > 10) provides definitive evidence for a rotational band and for the sequence of J π values, provided the J π of one level is known independently.

• Calculate level $T_{1/2}$ from B(E λ) and adopted γ -ray properties when possible.

• Occasionally, mixing ratio or nuclear moment information can be extracted from matrix elements.

•Clearly indicate the direction for any $B(E\lambda)$ values given.