

Experimental Nuclear Structure Part II

Filip G. Kondev kondev@anl.gov

Workshop on "Nuclear Structure and Decay Data: Theory and Evaluation", Trieste, Italy

February 20th-March 3rd, 2006

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Outline

I) Lecture I: Experimental nuclear structure techniques

- Introduction
- Reactions used to populate excited nuclear states
- **Techniques used to measure the <u>lifetime</u> of a nuclear state**
 - Coulomb excitation, electronic, activity, indirect

II) Lecture II: Contemporary Nuclear Structure Physics at the Extreme

- **Given Spectroscopy of nuclear K-Isomers**
- **D** Physics with large γ -ray arrays
- Gamma-ray tracking the future of the nuclear γ–ray spectroscopy

Generation of Angular Momentum in Nuclei

What is a Nuclear Isomer?

Nuclear Isomer– a long-lived excited nuclear state ($T_{1/2} > 1$ ns)decays by emission of α , β , γ , p, fission, cluster

The first one discovered by O. Hahn in Berlin in 1921 – decay of ²³⁴Pa (70 s) von Weizsacker, A. Bohr & B. Mottelson

K-Isomers – the building blocks

K-Selection Rule and Reduced Hindrance

K Isomers: Where to find them?

K-Isomers in the A~180 Region

Pairing Destruction in Nuclei

In general there are two anti-pairing mechanisms :

- (a) Coriolis anti-pairing induced by the fast rotation
- (b) Blocking occupation of level(s) by unpaired nucleon(s)

Pairing Gap & Seniority

Pairing & Moment of Inertia

Needs an experimental confirmation !

... at Extreme of Seniority – the case of ¹⁷⁵Hf

¹⁷⁵Hf Experiments at ANL and ANU/Canberra

Pulsed Beam Technique

Well defined "clock"

Sensitive to in-beam and decay events

<u>ANL Experiment</u>

⁴⁸Ca(¹³⁰Te,3n)@194 MeV
Pulsed beam & Gammasphere 1 ns on / 825 ns off
Thin target 1 ns on / 82.5 ns off

Complementary Experiment at ANU

⁹Be(¹⁷⁰Er,4n)@50 MeV

Pulsed beam & CAESAR array (8 CS Ge detectors) 4 μs on/60 μs off

Decay of the 57/2- Isomer

Office of Science U.S. Department of Energy

Structures above the 45/2+ *Isomer*

of Energy

"Normal" Decay Branches

Office of Science U.S. Department of Energy

K-hindrances in the decay of the 57/2- Isomer

Technology

of Energy

Rotation of the 57/2- Isomer

Has the Pairing Really Gone?

... at Extreme of Neutron number – the case of ¹⁷⁷Lu

Structures Above the $K^{\pi}=23/2$ - isomer

 $\alpha - \gamma - \gamma$ -time coincidences 4p particle-detector array; 37 MeV 7Li ; angular momentum in 6-13 h - breakup-compound

¹⁷⁶Yb(⁷Li, α 2n) McGoram ANU PhD; to be published

An evidence for a β -decaying isomer?

PHYSICAL REVIEW C 69, 024320 (2004)

Evidence for a high-spin β -decaying isomer in ¹⁷⁷Lu

Sareh D. Al-Garni,^{1,*} P. H. Regan,^{1,†} P. M. Walker,¹ E. Roeckl,² R. Kirchner,² F. R. Xu,³ L. Batist,^{2,4} A. Blazhev,^{2,5} R. Borcea,² D. M. Cullen,^{6,7} J. Döring,² H. M. El-Masri,¹ J. Garces Narro,¹ H. Grawe,² M. La Commara,^{2,8} C. Mazzocchi,^{2,9} I. Mukha,^{2,10} C. J. Pearson,¹ C. Plettner,² K. Schmidt,² W.-D. Schmidt-Ott,¹¹ Y. Shimbara,¹² C. Wheldon,^{1,2,6} R. Wood,¹ and S. C. Wooding^{1,2}

11.4 MeV/nucleon ¹³⁶Xe beam on ¹⁸⁶W target; thermal ion source; mass separation

177**Hf**

Deep Inelastic Experiment at ANL

¹³⁴ Ce	¹³⁵ Ce	¹³⁶ Ce	¹³⁷ Ce	¹³⁸ Ce	¹³⁹ Ce	¹⁴⁰ Ce	¹⁴¹ Ce	¹⁴² Ce
¹³³ La	¹³⁴ La	¹³⁵ La	¹³⁶ La	¹³⁷ La	¹³⁸ La	¹³⁹ La	¹⁴⁰ La	¹⁴¹ La
¹³² Ba	¹³³ Ba	¹³⁴ Ba	¹³⁵ Ba	¹³⁶ Ba	¹³⁷ Ba	¹³⁸ Ba	¹³⁹ Ba	¹⁴⁰ Ba
¹³¹ Cs	¹³² Cs	¹³³ Cs	¹³⁴ Cs	¹³⁵ Cs	¹³⁶ Cs	137 _{C.S}	¹³⁸ Cs	¹³⁹ Cs
¹³⁰ Xe	¹³¹ Xe	¹³² Xe	¹³³ Xe	¹³⁴ Xe	¹³⁵ Xe	¹³⁶ Xe	1.7 _{Xe}	¹³⁸ Xe
129	130 ₁	131 ₁	132	133	134 ₁	100	136	137
¹²⁸ Te	¹²⁹ Te	¹³⁰ Te	¹³¹ Te	¹³² Te	¹³³ Te	¹³⁴ Te	¹³⁵ Te	¹³⁶ Te
¹²⁷ Sb	¹²⁸ Sb	¹²⁹ Sb	¹³⁰ Sb	¹³¹ Sb	¹³² Sb	¹³³ Sb	¹³⁴ Sb	¹³⁵ Sb
¹²⁶ Sn	¹²⁷ Sn	¹²⁸ Sn	¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn

182_{VV}

181_{Ta}

¹⁸⁰Hf

179_{Lu}

178_{Yb}

¹⁷⁷Tm

¹⁷⁶Er

183_W

¹⁸²Ta

¹⁸¹Hf

180_{LU}

179_{Yb}

¹⁷⁸Tm

177_{Er}

181_W

¹⁸⁰Ta

¹⁷⁹Hf

178_{Lu}

177_{Yb}

¹⁷⁶Tm

175_{Er}

VLu

Projectile-like nuclei

Target-like nuclei

K^π=39/2- *isomer in* ¹⁷⁷*Lu*

Is this the claimed β - decaying isomer?

□ unprecedented transition strength for the 759 keV, non K-forbidden, E3 transition (10^{9} ! times retarded compared to W.u. if $T_{1/2}$ =7 min)

Use FRS@GSI or LISE3@GANIL to ID nuclei. Transport some in isomeric states (TOF~ 300 ns). Stop and correlate isomeric decays with nuclei id.

⁹²Mo fragmentation on ^{nat}Ni target

The future of γ -ray spectroscopy

Historical perspective Principle of gamma ray tracking Physics opportunities Technical challenges **Status of project**

Gamma-ray Detector Development

Crucial to Nuclear Physics Research

- Advances in detector technology have resulted in new discoveries.
 - Innovations have improved detector performance.
 - Energy resolution
 - Efficiency
 - Peak-to-total ratio
 - Position resolution
 - Directional information
 - Polarization
 - Auxiliary detectors
 - Tracking is feasible, will provide new opportunities and meet the challenges of new facilities.

$$R \sim \left[\frac{P}{T} \times \varepsilon \times \frac{E_{spacing}}{\Delta E}\right]^{n}$$

High energy resolution
Large P/T ratio
Large photopeak efficiency
Good timing resolution
Wide energy range
Large solid angle
High granularity
High resolving power

 $\Delta E_{\gamma}=2.5 \text{ keV @1.3 MeV}$ $\sim 60\%$ 10% @ 1.3 MeV <10 ns $\sim 30 \text{ keV} - 20 \text{ MeV}$ $\sim 4\pi$ high fold coincidences ability to isolate a given sequence of γ rays

Historical Perspective

~1980-1982 TESSA Escape suppressed array at NBI

> 1983 TESSA to Daresbury Heavier Ion beams 6 ESS using NaI(TI) Channel selection included, 50 element inner BGO ball

~1980 states to spin ~30 naked Ge arrays

I ~ 1% sensitivity

Historical Perspective – era of large arrays

~1987 BGO replaces NaI(TI) HERA, TESSA3

 $I \sim 0.1\%$ sensitivity

~1995

Large γ–ray arrays Eurogam, Gammasphere, Euroball's, GASP

 $I \sim 0.001\%$ sensitivity

Gammasphere spectrometer

- A spectrometer with high detection sensitivity to nuclear electromagnetic radiation due to its high resolution, granularity and efficiency
- Consists of a spherical shell of 110 large volume HpGe detectors each enclosed in a BGO shield

Funded by DOE, US

Gammasphere operation

From 1993 to 1997 GS was constructed and sited at the 88-Inch Cyclotron, LBNL 130 experiments super deformation Given From 1998 to 2000 GS operated at ATLAS, ANL 101 experiments nuclei far from stability **From March 2000 till January** 2002 at LBNL

Since March 2002 till now GS is back at ANL

How we do research with Gammasphere ...

"Gammasphere in Action ... "

Universal Studio Picture

European collaboration France, Denmark, Germany, Italy, Sweden and the UK

30 Large single crystal Ge detectors

> Pioneering Science and

Technology

26 Clover Ge detectors 4 crystals per cryostat

239 Ge crystals Suppression shields Total peak efficiency ~9.4% Intensity limit ~ 10⁻⁵

15 Cluster Ge detectors7 encapsulated Ge crystals per cluster

Gamma-ray arrays in US & Canada

Yrast Ball, Yale University 10 Clover 17 Ge

CLARION, ORNL

FSU Array, USA

8π, TRIUMF ~100 Ge detectors

Gamma-ray arrays in Europe

Australia, Asia & Africa

CAESAR, Australia

Afrodite, South Africa

Smaller arrays operate in India, China and Japan

Interaction of gamma rays with matter

Compton Suppression – improving the peak to background ratio

Office of Science U.S. Department of Energy

Gamma-ray Tracking Concepts

Compton Suppressed Ge

Gamma Ray Tracking

 $N_{det} = 100$ Peak efficiency = 8-10% **Efficiency limited**

 $N_{det} = 100$

Segmentation

Peak efficiency = 60 %

Pulse shape analysis in segments \rightarrow 3D position

Tracking of photon interaction points \rightarrow energy, position

Fraction of Reaction Channel

ADVANCED GAMMA

TRACKING ARRAY

Exogam, Miniball, SeGa: optimized for Doppler correction at low γ -multiplicitiy $\rightarrow \epsilon$ up to 20%

GRETA/GRETINA

• Resolving power: 10⁷ vs. 10⁴

- Cross sections down to ~1 nb
 - Most exotic nuclei
 - Heavy elements (e.g. ²⁵³,²⁵⁴No)
 - Drip-line physics
 - High level densities (e.g. chaos)

• Efficiency (high energy) (23% vs. 0.5% at E_{γ} =15 MeV)

- Shape of GDR
- Studies of hypernuclei
- Efficiency (slow beams) (50% vs. 8% at E_{γ} =1.3 MeV)
 - Fusion evaporation reactions
- Efficiency (fast beams) (50% vs. 0.5% at E_{γ} =1.3 MeV)
 - Fast-beam spectroscopy with low rates -> RIA

- Angular resolution (0.2° vs. 8°)
 - N-rich exotic beams
 - Coulomb excitation
 - Fragmentation-beam spectroscopy
 - Halos
 - Evolution of shell structure
 - Transfer reactions
- Count rate per crystal (100 kHz vs. 10 kHz)
 - More efficient use of available beam intensity
- Linear polarization
- Background rejection by direction

AGATA (Advanced GAmma Tracking Array)

•180 large volume 36-fold segmented Ge crystals in 60 triple-clusters

- Digital electronics and sophisticated Pulse Shape Analysis algorithms allow
- Operation of Ge detectors in position sensitive mode $\rightarrow \gamma$ -ray tracking

Highly segmented Ge Detectors

GRETINA Detectors

- Tapered hexagon shape
 Highly segmented 6 × 6 = 36
- Close packing of 3 crystals
- 111 channels of signal

Received June 4, 2004

AGATA Detectors

Hexaconical Ge crystals 90 mm long 80 mm max diameter 36 segments Al encapsulation 0.6 mm spacing 0.8 mm thickness 37 vacuum feedthroughs

3 encapsulated crystals 111 preamplifiers with cold FET ~230 vacuum feedthroughs LN₂ dewar, 3 litre, cooling power ~8 watts

Ingredients of *γ*-ray Tracking

In-beam test

Experiment

- LBNL 88" Cyclotron
- Prototype II detector
- 82 Se + 12 C @ 385 MeV
- 90 Zr nuclei ($\beta \sim 8.9\%$)
- 2055 keV ($10^+ \rightarrow 8^+$) in 90 Zr
- Detector at 4 cm and 90°
- •Three 8-channels LBNL signal Digitizer modules (24 ch.)

Analysis

- Event building
- Calibration : cross talk
- Signal decomposition
- Doppler correction

In-beam test Results

Office of Science U.S. Department of Energy

TIGRESS TRIUMF, CANADA

ISAC II

Nuclear Structure: Evolution of Nuclear Shell Structure Pairing Correlation far from Stability Mirror Nuclei and Isospin Symmetry oulomb Excitation with Bragg/PPAC Fusion Evaporation reactions with CsI(Tl) and neutron detector arrays

Structure studies of astrophysically important states Transfer reactions with EMMA/Si Array

Gamma Ray Lines of the Cosmos

Science ObjectiveIsotopes and Lines (MeV)Understand Type Ia SN explosion
mechanism and dynamics56Ni (0.158, 0.812, ...)56Co (0.847, 1.238, ...)57Co (0.847, 1.238, ...)

Onderstand Type Ta Six explosion	NI(0.130, 0.012,)
mechanism and dynamics	⁵⁶ Co (0.847, 1.238 ,)
5	⁵⁷ Co (0.122)
Understand Core Collapse SN	⁵⁶ Ni (0.158, 0.812 ,)
explosion mechanism and	⁵⁶ Co (0.847, 1.238 ,)
dynamics	⁵⁷ Co (0.122), ²⁶ Al (1.809, 0.511)
Map the Galaxy in	²⁶ Al (1.809, 0.511)
nucleosynthetic radioactivity	⁶⁰ Fe, ⁶⁰ Co (<i>1.173, 1.332</i>)
	⁴⁴ Ti (0.068, 0.078, 1.16)
Map Galactic positron	e^+ – e^- annihilation (0.511 , 3 photon
annihilation radiation	continuum)
	SN Ia ⁵⁶ Co positrons (0.511)
	²⁶ Al and ⁴⁴ Ti positrons (0.511)
Understand the dynamics of	¹³ N, ^{14,15} O, ¹⁸ F positrons (0.511)
Galactic Novae	⁷ Be (0.478), ²² Na (1.275, 0.511)
Cosmic Ray Interactions with the	12 C (4.4), 16 O (6.1), 20 Ne(1.634),
ISM	²⁴ Mg(1.369 ,2.754), ²⁸ Si(1.779),
	⁵⁶ Fe(0.847 , 1.238)
Neutron Star Mass-Radius	p-n (2.223)

The Concept

Position sensitive gamma ray detectors have been under development for many years

- □ In Space Science
- □ In Medical Imaging
- □ In Basic Nuclear Research

Scintillator: Nal, Csl, LSO

Semi-conductor: Si, CdZnTe, CdTe

□ In Homeland Security and Verification.

High Purity Germanium: offers the best energy resolution and timing for intermediate (40-2500 keV) radiation. Very large and efficient detectors can now be fabricated.

Key Question:

Can reliable, efficient, high resolution *position sensitive* germanium detectors be produced and incorporated into practical devices? 63

Ge Strips Detectors – an excellent choice!

based on the HpGe planar detector technology

have orthogonal electrodes
 (strips) that provide position
 localization of the interactions

operates like a conventional p-i-n diode

pulse-shape analysis – the depth of the interactions

Technology: Wafer Selection

REAL NEED FOR FINANCING OF FACILITY TO GROW BIGGER BOULES......(15cms)

ANL HpGe Strips Detector

With the premier US germanium detector manufacturer, <u>Ortec</u>, we have built

- **the biggest** (~90 mm x 90 mm x 20 mm)
- □ *the best* (~1.0 keV at 122 keV, ~2.0 keV at 1.3 MeV)

Ge strips detector in the world!

2D Imaging Capabilities

Compton Camera

$$\cos \theta_1 = [1 - m_e c^2 ((E_\gamma - E_{\gamma 1}) / E_\gamma E_{\gamma 1})]$$
$$E_\gamma = E_{\gamma 1} + E_{\gamma 2}$$

Concept

Gamma ray Compton scatters in the first detector

Positions and energies of individual interactions enables to determine pathway of gamma ray in the detector - gamma-ray tracking!

Energies and positions define cone of incident angles (electron path is not measured)

Cones are projected on a plane or a sphere (one circle per event) for 2D or into a cube (one cone per event) for 3D imaging

Compton Camera

Office of Science U.S. Department of Energy

Doppler Correction

Polarization in α - γ coincidences

Imaging

Varying source-object-detector baseline can give large magnification This image 5mm steel ball bearing

Direct Determination of materials by differential absorption

Digital Signal Processing

Here lies the most exciting prospect. The drifting charge created by the gamma rays induces images that allows the interaction points to be accurately located.

4 00 - U mo

Shallow (Close to Electrode) Central

Deep (Far from Electrode) Right Side

Digital pulse processing

DEPTH From front-back time difference of charge pulse arrival

> 1-2 mm but depends on position

LATERAL From asymmetry of induced transient signals

