Nuclear Structure

THEORY

Y. K. Gambhir

Department of Physics,
Indian Institute of Technology, Bombay

Physical
 Nucleon

Nucleon

Observed . Mass, Charge, Size (0.8 fm) Properties• Spin, Mag. mom.,....

${ }^{11} \mathbf{L i}$

${ }^{208} \mathbf{P b}$

Nucl. Den Atom. Vol $\quad\left(0.8 \mathrm{~A}^{1 / 3}\right)^{3}$
 Atom. Den Nucl. Vol
 $\left(1.2 \mathrm{~A}^{1 / 3}\right)^{3}$

VERY VERY DENSE MATTER

$$
\frac{\text { A- nu. Vol. }}{\text { Nucl. Vol. }}=\frac{\text { A. }(4 \pi / 3)(0.8)^{3}}{(4 \pi / 3)\left(1.2 A^{1 / 3}\right)^{3}}=\frac{8}{27} \approx 30 \%
$$

Most of Nucl. Vol. is Empty

N-N int.:

V. Strong, Net Attractive

Short range, State Dep.
Non - Central

- Nucleus: A (N+Z) - Body Problem

$H \Psi_{\lambda}=\left[\sum_{i} \frac{-\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}+\sum_{i>k} V_{i k}\right] \Psi_{\lambda}=E \Psi_{\lambda}$

Can Not be Solved: Difficulties:
 - Mathematical
 - Two-Body Interaction
 (in the Nucleus)

Approximate Methods: Models Developed:
Many Models Exists

Phenomonology

Mean Field Concept:

$$
\begin{aligned}
\mathcal{H} & =\sum_{i} \frac{-\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}+\sum_{i>k} V_{i k} \\
& =\sum_{i} \frac{\left(\frac{-\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}+\mathcal{O}_{i}\right)}{\mathcal{H}_{o}^{i}}+\frac{\left(\sum_{i>k} V_{i k}-\sum_{i} \mathcal{O}_{i}\right)}{h_{I}} \\
& =\sum_{i} \mathcal{H}_{o}^{i}+h_{I}=\mathcal{H}_{o}+h_{I}
\end{aligned}
$$

Advantage

 is
Freedom to Choose \mathcal{O}_{i}

Choose $\mathcal{O}_{\imath} \Rightarrow h_{I} \quad$ Zero (Minimum)

Mean Field Helps to reduce A-Body Problem \rightarrow One Body Problem

Phenomenological (Shell Model,...) Microscopic (BBHF)

Phenomenological

- H.O. + lis
$\mathcal{O}_{i}=\frac{1}{2} m \omega^{2} r^{2}+\alpha_{l s} \hat{l} \cdot \hat{s}$

$$
\psi_{n l j m_{j}}=R_{n l}(r)\left[Y_{l} \bigotimes \chi_{1 / 2}\right]_{j m}
$$

Plan

- Mean Field Concept
- Shell Model
- Magic Nuclei : TDA - RPA
- Open Shell Nuclei
a. Configuration Mixing
b. Truncations: Seniority, BPA
c. BCS - Quasiparticle Method
d. HF, HFB, PHF, PHFB

Plan

NO CORE

- ab intio Shell Model
- DDHF - Skyrme Type Interaction
- RMF - Rel. Mean Field

Schrodinger Equation

$$
H \Psi_{\lambda}=\left[\sum_{i} \frac{-\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}+\sum_{i>k} V_{i k}\right] \Psi_{\lambda}=E \Psi_{\lambda}
$$

Bound State Problem

Basis Expansion Method

Basis Expañsion Method

$$
\mathcal{H} \Psi_{\alpha}=E_{\alpha} \Psi_{\alpha}: \mathcal{H}=\mathcal{H}_{o}+\mathcal{V}
$$

$$
\mathcal{H}_{o} \Phi_{I}^{\alpha}=e_{I} \Phi_{I}^{\alpha}\left|\Psi_{\alpha}=\sum_{I} x_{\alpha}^{I} \Phi_{I}^{\alpha}\right|
$$

$\sum\left[e_{I} \delta_{I K}+\left\langle\Phi_{K}^{\alpha}\right| \mathcal{V}\left|\Phi_{i}^{\alpha}\right\rangle-E_{\alpha} \delta_{I K}\right] x_{\alpha}^{I}=0$

$$
\mathcal{H}_{I K}=e_{I} \delta_{I K}+\left\langle\Phi_{K}^{\alpha}\right| \mathcal{V}\left|\Phi_{I}^{\alpha}\right\rangle
$$

$$
\left|\Psi_{\alpha J^{\pi} M}^{v}\right\rangle=\sum_{I} \chi_{\alpha J^{\pi} M}^{v}(I)\left|\Phi_{\alpha J_{M}}^{I}\right\rangle
$$

$$
\mathcal{H}\left|\Psi_{\alpha J^{\pi} M}^{v}\right\rangle=E_{\alpha J^{\pi} M}\left|\Psi_{\alpha J^{\pi} M}^{v}\right\rangle \mid
$$

Step I: Choice of Basis (Mean Field)

Step II: Construction of Φ_{I} - A Nucleons
Unperturbed Energies $\boldsymbol{\varepsilon}_{\mathrm{I}}$

Step IIII: Setting of Ham. Matrix \mathcal{H}

Step IV: Diagonalization of \mathcal{H}

Step I: Choose Core, Valence Level, s.p. Energy \mathcal{E}_{I}

$$
\begin{aligned}
& \mathcal{E}_{\mathrm{I}}: \text { Expt., Calculated or Parameters } \\
& \hbar \omega=41 \mathrm{~A}^{-1 / 3}
\end{aligned}
$$

Step II: Orthonormal Basis Set Φ_{I}

Group Theoretical Method

Step III: Setting up Hamiltonian Matrix
Requires Two -Body Matrix Elements
Realistic, Phenomenological, Empirical

Step IV: Diagonalization of H-Matrix Repeat for each \mathbf{J}^{π}

Hamiltonian:

$$
\begin{aligned}
& \sum_{\alpha} \varepsilon_{\alpha} C_{\alpha}^{\dagger} C_{\alpha}+\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| V|\gamma \delta\rangle C_{\alpha}^{\dagger} C_{\beta}^{\dagger} C_{\delta} C_{\gamma} \\
&\langle\alpha \beta| V|\gamma \delta\rangle=-\langle\beta \alpha| V|\gamma \delta\rangle \\
&=-\langle\alpha \beta| V|\delta \gamma\rangle \\
&=\langle\beta \alpha| V|\delta \gamma\rangle
\end{aligned}
$$

$C^{\dagger}(C)$: Particle Creation (destruction) Operator

Vacuum Obeys

$$
C_{\alpha}|0\rangle=0
$$

$C^{\dagger}(C)$ obey anti commutation relations

$$
\begin{aligned}
\left\{C_{\alpha}, C_{\beta}^{\dagger}\right\} & \equiv C_{\alpha} C_{\beta}^{\dagger}+C_{\beta}^{\dagger} C_{\alpha}=\delta_{\alpha \beta} \\
\left\{C_{\alpha}, C_{\beta}\right\} & \equiv\left\{C_{\alpha}^{\dagger}, C_{\beta}^{\dagger}\right\}=0 .
\end{aligned}
$$

Application to Closed Shell Nuclei

Hole Levels : $h_{1}, h_{2}, h_{3}, \ldots$
 Particle Levels : $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \ldots$

- 1p-1h : Lowest Energy - Excitation

$$
\left(C_{p}^{\dagger} C_{h}\right)
$$

- Higher Order (Energy) Excitations 2p-2h, 3p-3h,

Equation of Motion Method

Operator $Q_{\alpha}^{\dagger} \quad$ Obeys:

$$
\iota \frac{\partial Q_{\alpha}^{\dagger}}{\partial t}=\left[H, Q_{\alpha}^{\dagger}\right]=E_{\alpha} Q_{\alpha}^{\dagger},
$$

$$
H Q_{\alpha}^{\dagger}|\psi\rangle=\left(E_{\alpha}+E\right) Q_{\alpha}^{\dagger}|\psi\rangle
$$

$Q_{\alpha}^{\dagger}\left(Q_{\alpha}\right)$ acts as step up down Operator
Vaccum (g.s.) is defined by $Q_{\alpha}\left|\psi_{o}\right\rangle=0$.
if Set of Operators $a_{i}^{\dagger}(i=1,2,3, \ldots, \mathrm{~N})$ Obey
$\left[H, a_{i}^{\dagger}\right]=\sum_{j=1}^{N} M_{i j} a_{j}^{\dagger}$ Step up operator: $Q_{\alpha}^{\dagger}=\sum_{j} x_{j}^{\alpha} a_{j}^{\dagger}$

$$
\sum_{j} \tilde{M}_{i j} x_{j}^{\alpha}=E_{\alpha} x_{i}^{\alpha}
$$

We require $\left[H, C_{p}^{\dagger} C_{h}\right]$ and its $\mathbf{H C}$

It Contains Two Terms:

$$
\sum_{\alpha} \epsilon_{\alpha}\left[C_{\alpha}^{+} C_{a}, C_{D}^{C} C_{k} C_{i}\right]
$$

$$
\sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \mathcal{V}|\gamma \delta\rangle\left[C_{\alpha}^{\dagger} C_{\beta}^{\dagger} C_{\delta} C_{\gamma}, C_{p}^{\dagger} C_{h}\right]
$$

Use

$[A, B C]=-[B C, A]=[A, B] C+B[A, C]$

$$
=\{A, B\} C-B\{A, C\}
$$

and

$$
C_{p}|0\rangle=C_{h}^{\dagger}|0\rangle=0
$$

Where

$$
\{A, B\}=A B+B A
$$

Notice

$$
\left[C_{\alpha}^{\dagger} C_{\alpha}, C_{p}^{\dagger} C_{h}\right]=\delta_{\alpha p} C_{\alpha}^{\dagger} C_{h}-\delta_{\alpha h} C_{p}^{\dagger} C_{\alpha}
$$

$$
\left[C_{\alpha}^{\dagger} C_{\beta}^{\dagger}, C_{p}^{\dagger} C_{h}\right]=(1-P(\alpha \leftrightarrow \beta)) C_{p}^{\dagger} C_{\alpha}^{\dagger} \delta_{\beta h}
$$

Define $\quad \bar{P}=1-P$

$$
\begin{aligned}
{\left[H, C_{p}^{\dagger} C_{h}\right] } & =\left(\epsilon_{p}-\epsilon_{h}\right) C_{p}^{\dagger} C_{h} \\
& -\frac{1}{2} \sum_{\alpha \gamma \delta}\langle\alpha h| V|\gamma \delta| C_{\alpha}^{\dagger} C_{p}^{\dagger} C_{\delta} C_{\gamma} \\
& \left.+\frac{1}{2} \sum_{\alpha \beta \delta}\langle\alpha \beta|| | p \delta\right\rangle C_{\alpha}^{\dagger} C_{\beta}^{\dagger} C_{\delta} C_{h}
\end{aligned}
$$

$+\left\langle C_{\alpha}^{\dagger} C_{p}^{\dagger}\right\rangle: C_{\delta} C_{\gamma}:+\left\langle C_{\delta} C_{\gamma}\right\rangle: C_{\alpha}^{\dagger} C_{p}^{\dagger}:+\left\langle C_{\alpha}^{\dagger} C_{\gamma}\right\rangle: C_{p}^{\dagger} C_{\delta}:$ $+\left\langle C_{p}^{\dagger} C_{\delta}\right\rangle: C_{\alpha}^{\dagger} C_{\gamma}:-\left\langle C_{p}^{\dagger} C_{\gamma}\right\rangle: C_{\alpha}^{\dagger} C_{\delta}:-\left\langle C_{\alpha}^{\dagger} C_{\delta}\right\rangle: C_{p}^{\dagger} C_{\gamma}:$ $+\left\langle C_{\alpha}^{\dagger} C_{p}^{\dagger}\right\rangle\left\langle C_{\delta} C_{\gamma}\right\rangle+\left\langle C_{p}^{\dagger} C_{\delta}\right\rangle\left\langle C_{\alpha}^{\dagger} C_{\gamma}\right\rangle-\left\langle C_{\alpha}^{\dagger} C_{\delta}\right\rangle\left\langle C_{p}^{\dagger} C_{\gamma}\right\rangle$

$$
\begin{aligned}
{\left[H, C_{p}^{\dagger} C_{h}\right] } & =\sum_{p^{\prime}}\left(\epsilon_{p} \delta p p^{\prime}+\sum_{h_{1}}\left\langle p^{\prime} h_{1}\right| \mathcal{V}\left|p h_{1}\right\rangle\right) C_{p^{\prime}}^{\dagger} C_{h} \\
& -\sum_{h^{\prime}}\left(\epsilon_{h} \delta_{h h^{\prime}}+\sum_{h_{1}}\left\langle h h_{1}\right| \mathcal{V}\left|h^{\prime} h_{1}\right\rangle\right) C_{p}^{\dagger} C_{h^{\prime}} \\
& +\sum_{p^{\prime} h^{\prime}}\left(\left\langle h p^{\prime}\right| \mathcal{V}\left|p h^{\prime}\right\rangle C_{p^{\prime}}^{\dagger} C_{h^{\prime}}+\left\langle h h^{\prime}\right| \mathcal{V}\left|p p^{\prime}\right\rangle C_{h^{\prime}}^{\dagger} C_{p^{\prime}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[H, C_{p}^{\dagger} C_{h}\right]=\sum_{p^{\prime} h^{\prime}}\left(\left(\tilde{\epsilon}_{p}-\tilde{\epsilon}_{h}\right) \delta_{p p^{\prime}} \delta_{h h^{\prime}}\right.} \\
& \left.+\left\langle h p^{\prime}\right| \mathcal{V}\left|p h^{\prime}\right\rangle\right) C_{p^{\prime}}^{\dagger} C_{h^{\prime}}+\sum_{m^{\prime} h^{\prime}}\left\langle h h^{\prime}\right| \mathcal{V}\left|p p^{\prime}\right\rangle C_{h^{\prime}}^{\dagger} C_{p^{\prime}} \\
& =\sum_{p^{\prime} h^{\prime}}\left(A\left(p^{\prime} h,^{\prime} p h\right) C_{p^{\prime}}^{\dagger} C_{h^{\prime}}+B\left(p^{\prime} h^{\prime}, p h\right) C_{h^{\prime}}^{\dagger} C_{p^{\prime}}\right)
\end{aligned}
$$

The Matrices
$A\left(p^{\prime} h^{\prime}, p h\right)=\left(\tilde{\epsilon}_{p}-\tilde{\epsilon}_{h}\right) \delta_{p p^{\prime}} \delta_{h h^{\prime}}+\left\langle h p^{\prime}\right| \mathcal{V}\left|p h^{\prime}\right\rangle$ $B\left(p^{\prime} h^{\prime}, p h\right)=\left\langle h h^{\prime}\right| \mathcal{V}\left|p p^{\prime}\right\rangle$

In Coupled Representation: \mathbf{J}^{II} T

$$
\binom{\left[H, \Omega^{\dagger}\right]}{[H, \hat{\Omega}]}=\left(\begin{array}{cc}
A & B \\
-B & -A
\end{array}\right)\binom{\Omega^{\dagger}}{\hat{\Omega}}
$$

where

$$
\begin{gathered}
\hat{\Omega}_{J^{\pi} M T M_{T}}\left(p_{i}, h_{i}\right)= \\
(-1)^{J-M+T-M_{T}} \Omega_{J \pi}-M T-M_{T}\left(p_{i}, h_{i}\right)
\end{gathered}
$$

$$
\begin{aligned}
& A_{i j}^{J^{\pi} T}=\left(\tilde{\epsilon}_{p_{i}}-\tilde{\epsilon}_{h_{i}}\right) \delta_{p_{i} p_{j}} \delta_{p_{i} h_{j}}+F\left(p_{i} h_{i} p_{j} h_{j} J^{\pi} T\right) \\
& B_{i j}^{J^{\pi} T}=(-1)^{j_{p_{i}}+j_{h_{j}}+J+T} F\left(p_{i} h_{i} h_{j} p_{j} J^{\pi} T\right),
\end{aligned}
$$

Hole Particle Matrix Element

$$
\begin{aligned}
& F\left(a c d b J^{\pi} T\right)= \\
& \sum_{J^{\prime} T^{\prime}}\left(2 J^{\prime}+1\right)\left(2 T^{\prime}+1\right) W\left(j_{a} j_{b} j_{c} j_{d} ; J^{\prime} J\right) W\left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}, T^{\prime} T\right) \\
& \quad \times(-1)^{j_{a}+j_{b}+j_{c}+j_{d}}\left\langle a b J^{\prime} T^{\prime}\right| \mathcal{V}\left|d c J^{\prime} T^{\prime}\right\rangle
\end{aligned}
$$

W is Racah Coefficient

Step Up Operator

$Q^{\dagger}=X \Omega^{\dagger}-Y \hat{\Omega}$
X, Y are Eigen Vectors of the Matrix

$$
\left(\begin{array}{cc}
A & B \\
-B & -A
\end{array}\right)
$$

With Norm

$$
X^{2}-Y^{2}=1
$$

Both X and Y can be large

Illustration ${ }^{16} \mathrm{O}$

- Step I:

$$
\text { Hole levels (h): } \quad 1 p_{3 / 2}, 1 p_{1 / 2}
$$

$$
21.8,15.65 \text { (for neutrons) }
$$

($\tilde{\epsilon})(\mathrm{MeV})$:

$$
18.44,12.11 \text { (for protons) }
$$

Particle levels (p): $\quad 1 d_{5 / 2}, 2 s_{1 / 2}, 1 d_{3 / 2}$
$-4.5,-3.27,0.93$ (for neutrons)
($\tilde{\epsilon})(\mathrm{MeV})$:
$-0.59,-0.08,4.65$ (for protons)

- Step II: Construction of h-p Basis

For $J^{\pi}=O^{-} \quad T=1$ and $T=0$
$\left(1 d_{3 / 2} 1 p_{3 / 2}^{-1}\right)_{0-},\left(2 s_{1 / 2} 1 p_{1 / 2}^{-1}\right)_{0-}$
For $J^{\pi}=1^{-} \quad T=1$ and $T=0$
$\left(1 d_{5 / 2} 1 p_{3 / 2}^{-1}\right)_{1-},\left(1 d_{3 / 2} 1 p_{3 / 2}^{-1}\right)_{1-},\left(2 s_{1 / 2} 1 p_{3 / 2}^{-1}\right)_{1-}$
$\left(2 s_{1 / 2} 1 p_{1 / 2}^{-1}\right)_{1-},\left(1 d_{3 / 2} 1 p_{1 / 2}^{-1}\right)_{1-}$

For 0^{-}State

$$
\begin{array}{ll}
1 . \Rightarrow 1 \mathrm{~d}_{3 / 2} 1 \mathrm{p}_{3 / 2}^{-1} & 3 . \Rightarrow \text { hc of } 1 ; \\
2 . \Rightarrow 2 \mathrm{~s}_{1 / 2} 1 \mathrm{p}_{1 / 2}^{-1}, & 4 . \Rightarrow \text { hc of } 2 ;
\end{array}
$$

T		$\mathrm{E}(\mathrm{MeV})$	1	2	3	4
TDA	11.2	0.001	1.000			
RPA	11.2	0.001	1.000	-0.002	-0.002	
TDA	23.1	1.000	-0.001			
RPA	23.0	1.000	-0.001	-0.034	-0.002	
TDA	13.7	-0.045	0.999			
RPA	13.7	-0.048	0.999	-0.012	-0.012	
TDA	25.7	0.999	0.055			
RPA	25.6	1.000	0.053	-0.040	-0.015	

Step III: Two - Body Interaction
$\mathrm{M}=\mathrm{W}=0.15, \mathrm{H}=0.4$ and $\mathrm{B}=0.3$
Gaussian Shape, Strength $=-40 \mathrm{MeV}$

Step IV: Diagonalization
Results for $J^{\pi}=0^{-}$
Both for $T=1$ and $T=0$

Similar Results for Other States

Open Shell Nuclei

Illustration ${ }^{58} \mathbf{N i}$

Step I: Mean Field

Core: $\quad{ }_{28}^{56} \mathrm{Ni}(Z=N=28)$
Valence Levels: $\quad 2 p_{3 / 2}, 1 f_{5 / 2}, 2 p_{1 / 2}$
s. p. Energies :
$0.0,0.78$ and 1.08 MeV

Step II: Orthonormal Basis Set

2 Valence Neutrons

$$
\left(1 p_{3 / 2}\right)_{J \pi=0+2+}^{2} ;\left(2 p_{3 / 2} 1 f_{5 / 2}\right)_{J \pi=1+, 2+, 3+, 4+} ;
$$

$$
\left(2 p_{3 / 2} 2 p_{1 / 2}\right)_{J^{\pi}=1^{+}, 2^{+}} ;\left(1 f_{5 / 2}\right)_{J^{\pi}=0^{+}, 2^{+}, 4^{+}}^{2} ;
$$

$$
\left(1 f_{5 / 2} 2 p_{1 / 2}\right)_{J^{\pi}=2^{+}, 3^{+}} ; \quad\left(2 p_{1 / 2}\right)_{J^{\pi}=0^{+}}^{2}
$$

No of Basis States are:

$$
0^{+}(3), 1^{+}(2), 2^{+}(5), 3^{+}(2), 4^{+}(2),
$$

Step III: Kuo - Brown Inte. M.E.

Step IV: Diagonalization.

Results for ${ }^{58} \mathrm{Ni},{ }^{60} \mathrm{Ni},{ }^{62} \mathrm{Ni}$ and ${ }^{64} \mathrm{Ni}$.

	J^{π}	0_{1}^{+}	0_{2}^{+}	2_{1}^{+}	2_{2}^{+}	4_{1}^{+}	4_{2}^{+}
${ }^{58} \mathrm{Ni}$	EMS	0.0	2.56	1.41	2.86	2.30	
	EXPT.	0.0		1.45	2.78	2.46	
${ }^{60} \mathrm{Ni}$	EMS	0.0	2.30	1.50	2.20	2.18	
	EXPT.	0.0	2.29	1.33	2.16	2.50	
${ }^{62} \mathrm{Ni}$	EMS	0.0	2.11	1.56	2.29	2.15	
	EXPT.	0.0	2.05	1.17	2.30	2.34	
	J^{π}	$1 / 2_{1}^{-}$	$1 / 2_{2}^{-}$	$3 / 2_{1}^{-}$	$3 / 2_{2}^{-}$	$5 / 2_{1}^{-}$	$5 / 2_{2}^{-}$
${ }^{59} \mathrm{Ni}$	EMS	0.24	1.10	0.0	0.82	0.21	1.47
	EXPT.	0.47	1.32	0.0	0.89	0.34	

Is Nuclear problem solved? NO

 Reason : Huge number of Basis Φ :For ${ }^{112} \mathrm{Sn}: 12$ neutrons in five s.p. states $\left(2 d_{5 / 2}, 1 g_{7 / 2}, 3 s_{1 / 2}, 2 d_{3 / 2}, 1 h_{11 / 2}\right)$ The Number of States $\boldsymbol{\Phi}$ are for

$$
\begin{aligned}
J^{\pi} & =0^{+} \text {is } 55,907 \\
J^{\pi} & =2^{+} \text {is } 267,720 \\
J^{\pi} & =4^{+} \text {is } 426,558
\end{aligned}
$$

Solution: Truncation Schemes: Seniority Truncation Scheme Seniority (v): No. of Nucleons Left After all Pairs Coupled to $\mathbf{J}=\mathbf{0}$ are Removed.
 Even - Even: $v=0,2,4$ are OK
 Odd-Even : $v=1,3,5$ are OK

Seniority Decomposition (in \%) ${ }^{61} \mathrm{Ni}$

State J^{π}	Energy				
	Theo.	Expt.	$\nu=1$	$\nu=3$	$\nu=5$
$1 / 2_{1}^{-}$	0.02	0.28	96.9	2.9	0.2
$1 / 2_{2}^{-}$	1.02	-	24.1	74.5	1.4
$3 / 2_{1}^{-}$	0.0	0.0	92.4	7.0	0.6
$3 / 2_{2}^{-}$	1.03	0.66	31.2	65.7	3.1
$5 / 2_{1}^{-}$	0.12	0.07	97.1	2.7	0.2
$5 / 2_{2}^{-}$	0.93	0.91	24.3	71.3	0.4
$7 / 2_{1}^{-}$	0.92	1.02	-	94.9	5.1
$9 / 2_{1}^{-}$	1.00	-	-	99.3	0.7

Seniority Decomposition (in \%) ${ }^{62} \mathrm{Ni}$

State J^{π}	Energy					
	Theo.	Expt.	$\nu=0$	$\nu=2$	$\nu=4$	$\nu=6$
0_{1}^{+}	0.0	0.0	99.7	-	0.3	-
0_{2}^{+}	2.11	2.05	87.3	-	12.7	-
1_{1}^{+}	3.57	-	24.7	70.0	5.3	
2_{1}^{+}	1.56	1.17		99.4	0.5	0.1
2_{2}^{+}	2.29	2.30		89.1	10.7	0.2
3_{1}^{+}	2.84	-		40.6	59.3	0.1
4_{1}^{+}	2.15	2.34		92.9	7.0	0.1
4_{2}^{+}	2.76	-		41.6	58.3	0.1

Still Problem is Not Solved:

For ${ }^{112}$ Sn the $v=0$ States are 110
While $v=2$ states Approach Thousand

Solution:
 Quasiparticle (BCS) Theory
 Broken Pair Approximation (BPA)

Quasiparticle OR BCS Method

This Takes Into Account the Strong Pairing_Part of the Effective Two-Body Interaction.

The Idea is to Go From Particle Picture to Quasiparticle Picture (New Mean Field) Through Bogoliubov or Quasiparticle (qp)
Transformation. This Leads in the Lowest approximation, to Independent Quasiparticle Picture - Incorporates the Pairing Interaction.

