Quasiparticle OR BCS Method

This Takes Into Account the Strong Pairing_Part of the Effective Two-Body Interaction.

The Idea is to Go From Particle Picture to Quasiparticle Picture (New Mean Field) Through Bogoliubov or Quasiparticle (qp)
Transformation. This Leads in the Lowest approximation, to Independent Quasiparticle Picture - Incorporates the Pairing Interaction.

The Quasiparticle/BCS Transformation :

$$
a_{\alpha}^{\dagger}=U_{\alpha} C_{\alpha}^{\dagger}-V_{\alpha} \tilde{C}_{\alpha} ; \tilde{a}_{\alpha}=U_{\alpha} \tilde{C}_{\alpha}+V_{\alpha} C_{\alpha}^{\dagger}
$$

The Inverse Transformation Is:

$$
C_{\alpha}^{\dagger}=U_{\alpha} a_{\alpha}^{\dagger}+V_{\alpha} \tilde{a}_{\alpha} ; \quad \tilde{C}_{\alpha}=U_{\alpha} \tilde{a}_{\alpha}-V_{\alpha} a_{\alpha}^{\dagger}
$$

Here:

$$
\tilde{C}_{\alpha}=S_{\alpha} C_{-\alpha} ; \quad \tilde{a}_{\alpha}=S_{\alpha} a_{-\alpha}
$$

With:

$$
S_{\alpha}=(-1)^{j \alpha-m_{\alpha}}
$$

The qp (New) Operators $a_{\alpha}^{\dagger}\left(a_{\alpha}\right)$

 also Obey Fermion Comnıutation rules. This Requires$U_{\alpha}^{2}+V_{\alpha}^{2}=1$

$$
V_{\alpha}=V_{-\alpha}, U_{\alpha}=U_{-\alpha}
$$

The new or qp (Particle) Vacuum $|q p\rangle$ $(\mid 0>)$ is Defined Through

$$
\begin{aligned}
a_{\alpha} \mid q p> & =0, \text { and } \\
C_{\alpha} \mid 0> & =0 .
\end{aligned}
$$

The qp or BCS State can be Expressed as

$$
|\mathrm{BCS}\rangle=\prod_{\alpha>0}\left(\mathrm{U}_{\alpha}+\mathrm{V}_{\alpha} \mathrm{S}_{\alpha} \mathrm{C}_{\alpha}^{\dagger} \mathrm{C}_{-\alpha}^{\dagger}\right)|0\rangle
$$

The qp (BCS) Transformation Does Not

 Conserve the Nucleon Number. Therefore Introduce Lagrange Multiplier λ and Use the Hamiltonian $H^{\prime}$$$
H^{\prime} \rightarrow H-\lambda \hat{N} \text {, where, } \hat{N}=\sum_{\alpha} C_{\alpha}^{\dagger} C_{\alpha}
$$

H^{\prime} Can be Written as:

$$
H^{\prime}=H-\lambda \hat{N}
$$

$$
=\sum_{\alpha}\left(\epsilon_{\alpha}-\lambda\right) C_{\alpha}^{\dagger} C_{\alpha}+\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \mathcal{V}|\gamma \delta\rangle C_{\alpha}^{\dagger} C_{\beta}^{\dagger} C_{\delta} C_{\gamma}
$$

Various Ways to Derive qp Equations:
We Follow here the Conventional Procedure.
Step I: Use Wick's Theorem to write the One Body and Two Body Particle Operators of the Hamiltonian in terms of Normal Products and Expectation Values / Contractions. Step II: Express All These in terms of qp operators using qp Transformation. Evaluate the Expectation Values wrt qp Vacuum.
The Transformed Hamiltonian Contains Three Terms:

- H_{0} a Constant with out any qp Operators

- Terms With Two qp Operators. This Contains Two Parts. The First H_{11} Contains Only a ${ }^{\dagger}$ a Terms (Required For New Mean Field) While the Second $\mathbf{H}_{20}\left(\mathrm{H}_{02}\right)$ Involves the Terms $\mathbf{a}^{+} \mathbf{a}^{+}$(a a). This Dangerous Term has to be Equated to Zero
- Terms Involving four qp Operators (Hint) arising from : $\mathrm{C}+\mathrm{C}+\mathrm{CC}:$, The Residual qp Interaction Needed While Going Beyond Mean Field

The Resulting qp Hamiltonian is:

$$
\begin{aligned}
H^{\prime} & =H-\lambda \hat{N} \\
& =H_{0}+H_{11}+H_{20}+H_{02}+H_{\mathrm{int}}
\end{aligned}
$$

Where

$$
\begin{aligned}
H_{0} & =\sum_{\alpha}\left(\varepsilon_{a}-\lambda+\frac{1}{2} \sum_{\gamma} V_{c}^{2}\langle\alpha \gamma| \mathcal{V}|\alpha \gamma\rangle\right) V_{a}^{2} \\
& +\frac{1}{2} \sum_{\alpha} U_{a} V_{a}\left(\frac{1}{2} \sum_{\gamma}\langle\alpha-\alpha| \mathcal{V}|\gamma-\gamma\rangle S_{\alpha} S_{\gamma} V_{c} U_{c}\right) \\
& =\sum_{\alpha}\left(\left(\tilde{\varepsilon}_{a}-\lambda\right) V_{a}^{2}-\frac{1}{2} \Delta_{\alpha} U_{a} V_{a}\right)
\end{aligned}
$$

$$
\mathbf{H}_{11}=\sum_{\alpha}\left((\tilde{\varepsilon}-\lambda)_{a}\left(U_{a}^{2}-V_{a}^{2}\right)+2 \Delta_{\alpha} U_{a} V_{a}\right) a_{\alpha}^{\dagger} a_{\alpha}
$$

$$
\mathbf{H}_{\mathbf{2 0}}=\sum_{\alpha}\left((\tilde{\varepsilon}-\lambda)_{a} U_{a} V_{a}-\frac{1}{2} \Delta_{\alpha}\left(U_{a}^{2}-V_{a}^{2}\right)\right) S_{a} a_{a}^{\dagger} a_{-a}^{\dagger}
$$

$$
\mathbf{H}_{20}=\mathbf{H}_{02}{ }^{+}
$$

$$
\begin{aligned}
\mathcal{E}_{\alpha} & =\varepsilon_{\alpha}-\lambda+\Gamma_{\alpha} \\
\Gamma_{\alpha} & =\frac{1}{2} \sum_{\alpha \beta}<\alpha \beta|V| \alpha \beta>V_{\beta}^{2}
\end{aligned}
$$

Γ is Self Energy Contribution to New Mean Field. It is Usually Small and is Ignored

$$
\Delta_{a}=-\frac{1}{2} \sum_{\beta}<\alpha-\alpha|V| \beta-\beta>S_{\alpha} S_{\beta} V_{d} U_{d}
$$

Step III: We Need to Retain $\mathbf{H}_{0}+\mathbf{H}_{11}$. Equate $\mathbf{H}_{20}=\mathbf{H}_{02}+$ to Zero. This gives

$$
\left(\overline{\varepsilon_{a}}-\lambda\right) U_{a} V_{a}=\frac{\Delta_{a}}{2}\left(U_{a}^{2}-V_{a}^{2}\right)
$$

Put $V_{a}=\operatorname{Sin} \vartheta_{a}, U_{a}=\operatorname{Cos} \vartheta_{a}$ Use $\quad U_{a}^{2}+V_{a}^{2}=1 \quad$ To Get

$$
\begin{aligned}
& \operatorname{Tan}\left(2 \vartheta_{a}\right)=\frac{\Delta_{a}}{\left(\overline{\varepsilon_{a}}-\lambda\right)} \\
& U_{a}^{2}-V_{a}^{2}=\operatorname{Cos}\left(2 \vartheta_{a}\right)=\frac{\overline{\varepsilon_{a}}-\lambda}{E_{a}}
\end{aligned}
$$

$$
E_{a}=\left(\left(\overline{\varepsilon_{a}}-\lambda\right)^{2}+\Delta_{a}^{2}\right)^{1 / 2}
$$

$$
V_{a}^{2}=\frac{1}{2}\left(1-\frac{\left(\bar{\varepsilon}_{a}-\lambda\right)}{E_{a}}\right)
$$

We Get (Gap Eq.)

$$
\Delta_{a}=-\frac{1}{2} \sum_{\beta}<\alpha-\alpha|V| \beta-\beta>S_{\alpha} S_{\beta} V_{d} U_{d}
$$

$$
=-\frac{1}{4} \sum_{c}\left\langle j_{a}^{2} 0\right| V\left|j_{c}^{2} 0\right\rangle\left[\frac{2 j_{c}+1}{2 j_{a}+1}\right]^{1 / 2} \frac{\Delta_{c}}{E_{c}}
$$

The Lagrange Multiplier λ is Obtained Through the Requirement That

$$
\sum_{\alpha}\left\langle C_{\alpha}^{\dagger} C_{\alpha}\right\rangle=\sum_{\alpha} V_{\alpha}^{2}=N
$$

N is the Nucleon Number (Number Eq.)

These qp or BCS (Gap and Number) are Coupled Highly Non-linear Set of Eqs.. \rightarrow Are to be Solved Self-Consistently

Interpretation of λ

The Expression $\quad\left\langle C_{\alpha}^{\dagger} C_{\beta}\right\rangle=\delta_{\alpha \beta} V_{\alpha}^{2}$
$\rightarrow \quad V_{a}^{2}\left(U_{a}^{2}=1-V_{a}^{2}\right)$
Occupation (Non-Occupation)Probability

$$
V_{a}^{2}=\frac{1}{2}\left[1-\frac{\left(\tilde{\varepsilon}_{a}-\lambda\right)}{\sqrt{\left(\tilde{\varepsilon}_{a}-\lambda\right)^{2}+\Delta_{a}^{2}}}\right]
$$

For $\quad \varepsilon_{a} \gg \lambda \quad V_{a}^{2} \approx 0$

$$
\tilde{\varepsilon}_{a} \ll \lambda \quad V_{a}^{2} \approx 1
$$

AS $\tilde{\varepsilon}$ Approaches $\lambda_{2} V_{a}^{2}$ Deviates From Unity (zero)

$$
\begin{aligned}
& \tilde{\varepsilon}_{a} \leq \lambda, V_{a}^{2} \geq 0.5 ; \\
& \tilde{\varepsilon}_{a} \geq \lambda, V_{a}^{2} \leq 0.5 \text { and } \\
& \tilde{\varepsilon}_{a}=\lambda, V_{a}^{2}=0.5 .
\end{aligned}
$$

This Gives

Interpretation of Δ

Inserting the Values of V's (U's), \mathbf{H}_{11} becomes

$$
\begin{aligned}
H_{11} & =\sum_{\alpha}\left[\frac{\left(\tilde{\varepsilon}_{\alpha}-\lambda\right)\left(\tilde{\varepsilon}_{a}-\lambda\right)}{E_{a}}+2 \Delta_{a} \frac{\Delta_{a}}{2} \frac{\left(\tilde{\varepsilon}_{a}-\lambda\right)}{\left(\left(\tilde{\varepsilon}_{a}-\lambda\right) E_{a}\right)}\right] a_{a}^{\dagger} a_{\alpha} \\
& \equiv \sum_{\alpha} E_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}
\end{aligned}
$$

Neglect $\mathbf{H}_{\text {int }} \rightarrow \quad H=H_{0}+H_{11}$
Zero qp or |BCS $>$ State Satisfies

$$
a_{\alpha}|\mathrm{BCS}\rangle=0
$$

Even - Even Nuclei \rightarrow 0, 2, $4 \ldots$ qp
 Odd-A Nuclei $\quad \rightarrow \mathbf{1 , 3 , 5} \ldots \mathrm{qp}$

$$
\text { qp Energy } \quad E_{a}=\sqrt{\left(\left(\tilde{\varepsilon}_{a}-\lambda\right)^{2}+\Delta_{a}^{2}\right)} \geq \Delta_{a}
$$

Take Δ to be in dendent of α

$$
\text { For } \quad E_{a} \approx \lambda \quad \rightarrow \quad E_{a} \approx \Delta
$$

The $2 q$ State Will be Atleast 2Δ above g.s.
For e-e Nuclei \rightarrow gap $2 \Delta_{-}$Between g.s $\&$ first Exc. State \rightarrow Agree With Expt.

For Odd-A Nuclei: The g.s. \rightarrow 1qp State Nearest to λ. Energy $\quad E_{a} \approx \Delta$, As $\tilde{\varepsilon}_{a} \approx \lambda$. There Exist Other 1 qp Levels With Energy

$$
E_{\beta \neq \alpha}=\sqrt{\left(\tilde{\varepsilon}_{b}-\lambda\right)^{2}+\Delta^{2}}
$$

$\left(\tilde{\varepsilon}_{b}-\lambda\right)$ Being Small, So several 1 qp States Will Lie Close to Each Other \rightarrow No Gap
Between the g.s. And First Exc. State.

Rough estimate of Δ

For N Valence Nucleons, The Energy of |BCS> or g.s. is:

$$
E_{N}=\langle H\rangle=\left\langle H^{\prime}\right\rangle+\lambda\langle\hat{N}\rangle=H_{0}(N)+\lambda N
$$

The g.s Energy for Nuclei With $\mathbf{N + (-)}$ one Nucleons:

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{N}+\mathbf{1}}=\left\langle H^{\prime}\right\rangle+\lambda\langle\hat{N}\rangle \simeq H_{0}(N)+\lambda(N+1)+\Delta \\
& \mathbf{E}_{\mathbf{N}-\mathbf{1}}=\left\langle H^{\prime}\right\rangle+\lambda\langle\hat{N}\rangle \simeq H_{0}(N)+\lambda(N-1)+\Delta
\end{aligned}
$$

$$
E_{N+1}+E_{N-1}-2 E_{N}=2 \Delta
$$

So, For a Given N the Gap Δ Can be Obtained From Odd-Even Mass Difference Its Approximate Value is:

1.5 MeV for Ni isotopes and $N=50$ isotones 1.2 MeV for Sn isotopes and $N=82$ isotones 0.9 MeV for Pb isotopes.

Illustration: Ni - Isotopes

Core: $\quad{ }^{56} \mathrm{Ni} \rightarrow \mathbf{Z}=28, \mathrm{~N}=\mathbf{2 8}$

Valence Levels: $1 p_{3 / 2}, 0 f_{5 / 2}$ and $1 p_{1 / 2}$

Energies: $\quad \tilde{\varepsilon}_{3 / 2}=\varepsilon_{3 / 2}=0.0, \tilde{\varepsilon}_{5 / 2}=\varepsilon_{5 / 2}=0.78$

$$
\tilde{\varepsilon}_{1 / 2}=\varepsilon_{1 / 2}=1.08 \mathrm{MeV}
$$

Interaction: Empirical and Pairing

Table \rightarrow Results For ${ }^{60} \mathrm{Ni}$ () \rightarrow Results With Pairing Int.

	λ	Δ	E	V
$1 p_{3 / 2}$	0.064	1.352	1.353	0.724
	(0.008)	(1.444)	(1.444)	(0.708)
$0 f_{5 / 2}$		1.249	1.440	0.501
		(1.444)	(1.637)	(0.597)
$1 p_{1 / 2}$		1.352	1.691	0.447
		(1.444)	(1.798)	(0.578)

Excited States: qp Configuration Mixing $\rightarrow \mathbf{H}_{\text {int }}$

Even - Even Nuclei $\rightarrow \mathbf{0 , 2 , 4} \mathbf{q p}$

Odd - A Nuclei $\quad \rightarrow$ 1, 3 may be $5 \mathbf{q p}$
Advantages: Up to $v=4$ (5) Space
Drawback: Non-conservation of \mathbf{N}

\rightarrow Spurious States

Remedy \rightarrow Number Projection Broken Pair approximation (BPA)

BROKEN PAIR APPROXIMATION (BPA)

The SM gs State for 2 Identical Nucleons

$$
s^{+}|0\rangle=\sum_{a} \frac{\hat{a}}{2} x_{a} A_{00}^{+}(a a)|0\rangle
$$

$$
\hat{a}=\left(2 j_{a}+1\right)^{1 / 2}
$$

$$
A_{J M}^{+}(a b)=\left[C_{a}^{+} \otimes C_{b}^{+}\right]_{J M}
$$

gs - Φ_{0} : P Pairs of Identical Nucleons

$$
\begin{aligned}
\Phi_{0} & \Rightarrow\left(s^{+}\right)^{p}|0\rangle=\left(\sum_{a} \frac{\hat{a}}{2} x_{a} A_{00}^{+}(a a)\right)^{P}|0\rangle \\
& \Rightarrow \tau_{+}^{P}|0\rangle=\frac{1}{P!}\left(\prod_{a} u_{a} \frac{\hat{a}^{2}}{2}\right)\left(s^{+}\right)^{P}|0\rangle
\end{aligned}
$$

$$
x_{a}=v_{a} / u_{a} ; u_{a}^{2}+v_{a}^{2}=1
$$

The gs Parameters x (\mathbf{v} or u) are obtained by:

$$
\delta\left(\left\langle\Phi_{0}\right| H\left|\Phi_{0}\right\rangle /\left\langle\Phi_{0} \mid \Phi_{0}\right\rangle\right)=0
$$

$$
\begin{gathered}
\Phi_{0}: \\
\\
\text { Special Seniority } 0 \text { State } \\
\quad>98 \% \text { of ESM gs } \\
\hline
\end{gathered}
$$

2P - Particle Component of BCS State If $\mathbf{v} / \mathbf{u} \rightarrow \mathbf{v} / \mathbf{u}$ of BCS

Excited States: BPA Basis States

$$
\tau^{+} \rightarrow A_{J M}^{+}(a b)
$$

1 BPA Basis:

$$
\left|\Phi_{J M}(a b)\right\rangle \Rightarrow A_{J M}^{+}(a b) \tau_{+}^{P-1}|0\rangle
$$

Special Seniority 2 State
Diagonalise \rightarrow Eigenvalues, Eigenvectors

${ }^{60} \mathrm{Ni}$						
J^{π}	Expt.	ESM	$v \leq 2$	1bp	BCS2qp	
	0	$0(99.8)$	0	0	0	
	2.29	$2.323(95.8)$	2.414	2.455	1.933	
		$3.268(86.7)$	3.415	3.645	2.977	
3^{+}	1.33	$1.421(99.8)$	1.418	1.421	0.946	
	2.16	$2.171(76.6)$	2.425	2.533	2.068	
		2.578	2.866	3.481	2.994	
		$2.758(55.5)$	3.439	3.506	2.991	
4^{+}	2.50	$2.370(30.0)$	3.872	3.976	3.509	
		$2.798(23.9)$	3.497	3.565	3.205	

${ }^{64} \mathrm{Ni}$						
\mathbf{J}^{π}	Expt.	ESM	$v \leq 2$	$1 b p$	BCS2qp	
	0	$0(99.8)$	0	0	0	
	2.27	$2.156(98.8)$	2.180	2.188	1.720	
		$3.559(81.2)$	3.659	3.768	3.417	
2^{+}	1.34	$1.560(99.7)$	1.556	1.559	1.110	
	2.89	$2.371(78.7)$	2.479	2.492	2.084	
		$2.597(64.9)$	3.277	3.308	2.753	
3^{+}		$3.069(36.6)$	3.445	3.454	2.946	
		$3.477(72.7)$	3.766	3.804	3.340	
	2.61	$2.257(96.3)$	2.292	2.307	1.835	
		$2.725(34.1)$	3.352	3.396	2.861	

BE(2) Transition and Quadrupole Moments of Ni Isotopes

	$B\left(E 2,0_{1}^{+} \rightarrow 2_{1}^{+}\right) ; e^{2} f m^{4}$		$Q\left(2_{1}^{+}\right) ; e f m^{2}$			
	ESM	1bp	BCS2qp	ESM	1bp	BCS2qp
${ }^{58} \mathrm{Ni}$	233	233	183	-14	-14	-8
${ }^{60} \mathbf{N i}$	386	390	303	-2	-5	-3
${ }^{62} \mathbf{N i}$	458	474	383	+2	+1	+1
${ }^{64} \mathrm{Ni}$	410	431	343	+6	+8	+5

1 (2) BPA: Good Approximation to

 Seniority 2 (4) Shell Model