New developments in characterizing nuclei using separators

T. Kibédi

Dept. of Nuclear Physics, Australian National University, Canberra, Australia

Workshop on "Nuclear Structure and Decay Data: Theory and Evaluation" Trieste, Italy, 2006

T. Kibèdi, NSDD Workshop, Trieste 2006

Outline:

Lecture II: New developments in characterizing nuclei using separators

- TRIUMF-ISAC
- Heavy Element Spectroscopy at JYFL
- New compact recoil separator at the ANU
- Future radioactive beam facilities

Gamma-Ray Spectroscopy at TRIUMF-ISAC

The 8π Collaboration

•A. Andreyev, G.C. Ball, R. Churchman, G. Hackman, R.S. Chakrawarthy, C. Morton, C.J. Pearson, M.B. Smith, *TRIUMF*

•P.E. Garrett, C.E. Svensson, C. Andreoiu, D. Bandyopadhyay, G.F. Grinyer, B. Hyland, E. Illes, M. Schumaker, A. Phillips, J.J. Valiente-Dobon, J. Wong, *University of Guelph*

- J.C. Waddington, L.M. Watters, McMaster University
- R.A.E. Austin, St. Mary's University
- S. Ashley, P. Regan, S.C. Williams, P.M. Walker, University of Surrey
- J.A. Becker, C.Y. Wu, Lawrence Livermore National Laboratory
- W.D. Kulp, J.L. Wood, Georgia Tech.
- E. Zganjar, *Louisiana State*
- J. Schwarzenberg, Vienna
- F. Sarazin, C. Matoon, Colorado School of Mines
- J.J. Ressler, Simon Fraser University
- J.R. Leslie, *Queens University,*

The 8π spectrometer - a versatile tool for nuclear physics

8π Spectrometer at ISAC

20 Compton-Suppressed HPGe detectors and 10 BaF2 detectors for γ-ray detection

20 plastic scintillators for β detection

5 Si(Li) detectors for conversion electron spectroscopy

Fast, in-vacuum tape transport system

Trigger rate of ~30 kHz; data transfer 5 MB/s

The 8π spectrometer is a world unique device for these types of studies. Simultaneous collection of γ -singles, $\gamma\gamma$ coincidences, β tagging, conversion electrons, and lifetime measurements

Moving tape collector for transport of activity

٠

•

٠

T. Kibèdi, NSDD Workshop, Trieste 2006

G.F. Grinyer et al., Phys. Rev. C 71, 044309 (2005)

T. Kibèdi, NSDD Workshop, Trieste 2006

Sensitivity to β branches at 10⁻⁶ level: ²⁶Na \rightarrow ²⁶Mg

^{32}Na \rightarrow ^{32}Mg decay - "Island of inversion"

³²Na (Z=11, N=21) extra 9 neutrons

N=20 magic number may disappear around Z=11

- Large B(E2; 2⁺ → 0⁺)
- Large quadrupole moments
- *Competition of normal and intruder configurations* (excitations across the N = 20 shell gap)

• Call for detailed spectroscopy (T_{1/2}, multipolarity, branching ratio)

Preliminary experiment to examine ³²Na decay

1000

• ³²Na decay investigated as a means to study the excited nuclear states of ³²Mg (Z=12, N=20).

• Investigate the breakdown of shell closures far from stability.

• β - γ coincidences measured with 8π and SCEPTAR.

 Reduce background and allow weak ³²Na decay spectrum to be measured. $(^{32}Na \text{ beam rate at } \sim 2 \text{ ions/s}).$

• Beam production with Ta target insufficient for detailed study, but expect boost of 2-3 orders of magnitude with actinide target

Tapc

transport

1460.8 keV peak

 ${}^{40}K - {}^{40}Ar$

γ-Singles

(without

T. Kibèdi, NSDD Workshop, Trieste 2006

Preliminary experiment on ¹⁵⁸Er

Data are for 1/3 of the sample, 1 detector Part of study of N=90isotopes examining shape transition Goal is to search for vital E0transitions 7d run collected 1 TB of data with 8π , <u>SCEPTAR</u>, and <u>PACES</u>

W.D. Kulp, et al.

Enhanced E0 transitions observed

Heavy Element Spectroscopy at JYFL

²⁵²No

²⁴⁹Fm

T. Kibèdi, NSDD Workshop, Trieste 2006

Courtesy of P. Greenlees

S. Hofmann / Prog. Part. Nucl. Phys. 46 (2001) 293.

T. Kibèdi, NSDD Workshop, Trieste 2006

RITU + JUROGAM + GREAT

T. Kibèdi, NSDD Workshop, Trieste 2006

M. Leino et al., Nucl. Instr. and Meth. B 99 (1995) 653.

R-D Herzberg, J. Phys. G 30 (2004) R123.

T. Kibèdi, NSDD Workshop, Trieste 2006

43 Phase I and GASP-type detectors – Ex. EUROBALL and UK-France loan pool

Efficiency ~ 4.2% @ 1.3 MeV

TDR data acquisition system – Data rate $\sim 5~\text{MB/s}$ @ 10 kHz

Software BGO suppression

Auto fill system built by University of York, part of GREAT Project

Online/Offline Sorting – Grain developed by P. Rahkila

Courtesy of P. Greenlees

The SACRED Electron Spectrometer

H. Kankaanpää, et al., Nucl. Instr. and Meth. **A534** (2004) 503 see also P.A. Butler, et al., Nucl. Instr. and Meth. **A381** (1996) 433

Courtesy of P. Greenlees

Total Data Readout (TDR) Acquisiton System

R.D. Page, et al., Nucl. Instr. and Meth. B 204 (2003) 634. The SACRED - example (Liverpool-JYFL)

Z=102

 $BE_{r}=149.2$ keV

2 keV transitions fully converted Lowest

	$E_{\gamma}(keV)$	$\alpha_{\rm K}({\sf E2})$	$\alpha_{L}(E2)$	$\alpha_{T}(E2)$
2 ⁺ → 0 ⁺ (*)	44(1)	N/A	1100	1540
4 ⁺ → 2 ⁺ (*)	102(1)	N/A	20.6	28.8
$6^+ \rightarrow 4^+$	159.5(2)	0.108	2.74	3.93
$8^+ \rightarrow 6^+$	214.1(1)	0.122	0.772	1.20

(*) transition not seen; from extrapolation using the Harris formulae

Figure courtesy of P. Greenlees

Dynamic Moments of Inertia

²⁵⁰Fm

Experiment: J.E. Bastin et al., Phys. Rev. C73 (2006) 024308

 $\beta_2 = 0.28(2)$

Raman, et al., Atomic Data and Nuclear Data Tables **78**, 1–128 (2001) GLOBAL FIT to data:

ERROR: typecheck OFFENDING COMMAND: aload

STACK:

[0.0 0.5 0.5 0.0 0.0 0.92125]