School on Ion Beam Analysis and Accelerator Applications

IBA applications to Cultural Heritage

 and environmental problems

Pier Andrea Mandò

Dpt. of Physics, University of Florence, Italy and

Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Italy

mando@fi.infn.it

Laboratorio di tecniche nucleari per i Beni Culturali LABEC http://labec.fi.infn.it

IBA features that make them ideally suitable for C.H. and environmental studies

- Very large cross sections (PIXE in particular) \rightarrow very low beam currents (therefore no damage), short time needed for analysis, and great absolute sensitivity (therefore analysis of very low target mass)
- Non destructivity \rightarrow measurements can be repeated, also with other techniques
- External beams \rightarrow no need of picking up samples, large objects, ease of handling the "targets"
- Possibility of easily varying beam energy, intensity and size, in order to find the best experimental conditions for the specific problem
- Complementary information obtained by the different IBA techniques, easily implemented in the same set-up

$I B A+$ AMS accelerator facility in Florence

\square
\square
\square
operational
under installation
planned

Tandetron Accelerator
3 MV terminal voltage

IBA
dual
source
injector

Multi-sample AMS injector

High-energy AMS spectrometer

Overall view of the Florence Tandetron

An essential facility to perform IBA especially in the field of Cultural Heritage
the external beam set-up

With an external beam you can investigate in a non-destructive way the complete quantitative composition of any material you may be interested in

Analysis of ancient glass,

...glazed terracottas,

Glass mosaic tesserae found in excavations at

Villa Adriana, Tivoli

External PIXE-PIGE analysis of the glass tesserae from Villa

Adriana

External PIXE analysis of the "Ritratto di fanciullo"
by Luca Della Robbia before restoration at the Opificio delle Pietre Dure in Florence
...ancient illuminated manuscripts,

External-beam PLXE analysis of the frontispiece of Pl.16,22 (XV century, Biblioteca Laurenziana in Florence)
...historical documents,

Inks in Galileo's manuscripts (Florence National Library) analysed by external PIXE
...drawings,
...paintings on wood or canvas,

PIXE-PIGE analysis of a drawing on prepared paper, by Leonardo or his school

Differential PIXE and PIGE analysis of the "Ritratto Trivulzio" by Antonello da Messina
...or analysis of aerosols collected on filters

Particulate Matter (PM) from streaker samplers (1-hour resolution)

Typical experimental conditions in applications to C.H.

- proton beams, $1 \div 5 \mathrm{MeV}$
- $5 \div 50$ pA currents, $100 \div 200$ s runs
- $0.1 \div 1 \mathrm{~mm}$ beam size
- two X ray detectors
one for lower-Z elements, covering a small solid angle; He flow for minimising absorption the other for higher-Z elements, covering the largest possible solid angle and with proper absorbers to cut the high rate of low-energy X rays
- a gamma ray detector

Two-detector PIXE setup, collimated external beam

X ray detection efficiencies in a two-detector setup

A letter of Galileo during PIXE analysis with the external beam at the Florence accelerator

Analysis of documents of historical interest

(INFN FI, Bibl.Naz. FI, MPI Berlin)

PIXE measurements to quantitatively determine ancient inks composition

Important contribution to the chronological reconstruction of Galileo's hand-written notes about motion

Comparison of ink composition in the notes (which are not dated) with that in dated documents (letters, etc.)

> Some folios from
> Ms.Gal. 72

(Bibl. Naz. Firenze)

A precious "database" of dated inks:

records of money transactions in Ms.Gal. 26

Discriminating between different inks with PIXE

$v(s), v(t), s(t)$

Folio 128

the "starting point"

..che il grave cadente naturalmente vada continuamente accrescendo la propria velocità....

> ...secondo che accresce la distanza dal termine onde si parti....

"Dating" f: 128

$v(s), v(t), s(t)$
Folio $164 v$ - the "final result"
...sunt inter se ut radices distantiarum...

Phranou. xuqer notue fásenhcaly do, neloudx
 shoua sikiu os ruinit's as Io Cab. attamen victer of ns é nà clutto onizotoli oc. teluy to ab-ad rélox कह ac. est ut as. .x. ac. I. eaden monêta velocitax

Folio $164 v$

Folio 164 v - comparison between the two propositions

Connection between different folios (91v, 152r)

Connection between f.91v and f.152r

f. $179 r$

f. $179 v$

बि ca. warter in puo runat
ca. os catale fump onomitu sn quenticuso co. è ut-rficuto co.

> tomenta nacitaki eiuple menty ses. Siverous
> thangs icherativue tint intar ie boutoti
> eanbe rae gua goz le lanes arnitikutixes

In cienn cluationi virone eat
int Qiverte ílones inctirationes ab. ac stes uite clecations ad vitinceace. Qice mementes. mavifati cinie moñly nef ab; od mome bí movita ti utís; eanie tere reen quam ancicuse ac tit of oniki-i>e

 mones.s x. a monex por.

f. 179v

Simultaneous PIXE and PIGE analysis

- In most cases, great advantage in combining PIXE and PIGE:
- by γ rays, light elements are easily detected, while their detection through X rays is impossible at all or problematic
r External beam set-up equipped with:
- two Si(Li) dets for X rays
- Ge(Hp) det for γ rays

Glass mosaice tesserae from wall

 decorations in Villa Ad rena (Mivoli)

Surface inhomogeneities due to glass alterations

- Sodium detection and quan tification is of the greatest importance to characterise ancient glass

In Europe, two typologies are found, depending on the component used to lower the melting temperature of silica:

- natron (sodtum carbonate) \rightarrow glass with high $\mathrm{Na}_{2} \mathrm{O}$ and low $\mathrm{K}_{2} \mathrm{O}$ content (as in Roman anno Early Middle Age glass)
- Ashes from plants \rightarrow glass with high $\mathrm{K}_{2} \mathrm{O}$ content (later periods)

PIXE and PIGE analysis of ancient glass

- Surface alterations and crusts prevent from detecting sodium with PIXE

Coloured but more opaque zone (apparently with no alteration however)

Na doesn't seem to be present..

PIXE and PIGE analysis of ancient glass

 Instead, using PIGE (Na characteristic γ-rays at 441 keV)More opaque zone

Freshly cut zone

Na can be quantified by PIGE even in the presence of surface alterations, with no need of picking up samples!
High - $\mathrm{Na}_{2} \mathrm{O}$ were found (from $\mathbf{1 0 \%}$ to $\mathbf{2 0 \%}$, depending on colour), with a composition compatible with that in typical Na-Ca Roman glass

Analysis of paintings on wood on canvas

Understanding the "secrets" of painting techniques of famous artists and/or reconstructing the history of a specific painting (possibility to be a fake, previous restorations, etc.)

PIXE - PIGE analysis of "Ritratto Trivulzio" by Antonello da Messina, at LABEC, Florence

The protective

 varnish layer on paintings
two problems

1) discriminating
components in the varnish from those in paint and substrate layers
2) PIXE detection of light elements in the underlying layers (X ray absorption)

Stratigraphic analysis

If the target is not homogeneous in depth

traditional PIXE does not provide information about the stratigraphic layout of elements.
Indeed, when the beam penetrates through different layers, their contributions are added up in the spectrum with no possibility to discriminate where X rays
originate from

Differential PIXE

Consists in performing measurements on the same area
with beams of different energies

At different energies, beam
ranges are different
\rightarrow probed depth also changes

By comparing X ray spectra taken at different energies, stratigraphic information can be obtained

Differential PIXE

Analysis is made complex by several factors:

The number of layers and their thickness are not known a priori, therefore the most suitable choice of beam energies to discriminate layers is not obvious the same element may be present in different layers

X ray production cross sections change significantly, and in different ways for the different elements, at varying beam energies

Quantitative analysis
more difficult
However, diff. PIXE is often a "unique" tool to learn about elemental depth distribution in paintings without picking up samples

PIXE spectra at different energies

Prepared sample:

wood substrate, chalk $\left(\mathrm{CaSO}_{4}\right)$ preparation, lapislazuli paint

Na, Al, Si, S, K
Ca, s
\uparrow

Leonardo Madonna dei fusi

 ex-Reford version(private collection)

Oil painting on wood, 50×36

Presumably painted in 1501

Varnish composition

Using differential PIXE, the varnish composition was evaluated from the spectra collected at the lowest beam energy, when protons do not reach the underlying paint and preparation layers

Element	Concentration
$\mathrm{Na}, \mathrm{Cl}, \mathrm{Ca}$	$\sim 1 \% \%$
Fe	$\sim 0.5 \%$
$\mathrm{Al}, \mathrm{Si}, \mathrm{S}$	$0.5-1 \%$
$\mathrm{Mg}, \mathrm{P}, \mathrm{K}$	$0.2-0.5 \%$
$\mathrm{Ti}, \mathrm{Cu}, \mathrm{Ba}$	$\sim 0.1 \%$
Zn	$0.1-1 \% \%$

From the comparison of differential PIXE spectra, it was also possible to estimate the thickness of the varnish layer: from ~ 30 to ~ 50 micron

Varnish spectra for a) lower-Z elements and b) higher-Z elements

Incarnato

$\mathrm{Fe} \rightarrow$ hematite?
$\mathrm{Hg} \rightarrow$ use of cinnabar as red pigment $\mathrm{Pb} \rightarrow$ lead-white (in the paint layer? in the preparation substrate? in both?)
Ca and Fe peaks are entively accounted for by their abundance in the varnish.
An estimate of the paint layer thickness is obtained: only $15-20 \mu m!!$

Identification of lapislazuli by PIGE

Mountains, pale

blue, original
Pb in the PIXE spectrum mainly derives from lead white mixed in the
blue paint

PIXE spectrum

PIGE spectrum

hitting original blue
areas around (as seen
by a lateral scan)

One can also produce an external microbeam

Through collimation, well defined beams of no less than 100-200 $\mu \mathrm{m}$ can be produced

Smaller-size beams are obtained with strong focusing using lenses (quadrupole multiplets)

External microbeam

 set-up$\mathrm{Si}_{3} \mathrm{~N}_{4}$ exit window, 100 nm thickness

Target at $\sim 2 \mathrm{~mm}$ from exit window

X and γ detection systems as in standard external set-up
Beam magnetic scan over the sample
Mechanical scan, i.e. sample micrometric displacement in front of the beam

LIST-MODE (E,x,y)
acquisition \rightarrow element maps
Minimum beam size on
target: $10 \mu \mathrm{~m}$

scanning-IBA for Cultural Heritage: why?

Details of small size or inhomogeneous structure (even $\sim 100 \mu \mathrm{~m}$) not always easily recognised by visual inspection

Risk of misleading information from single-spot too broad beam measurements too small beam

risk of mixing info referring to different materials

risk of analysing anomalous, nonrepresentative
"points"

Dramatic improvement in significance, reliability and completeness of information, using methodologies providing "compositional maps"
Scan of relatively large areas $\left(\sim\right.$ some $\left.\mathrm{mm}^{2}\right)$ with beams around

$$
100-200 \mu \mathrm{~m} \text {, acquiring "pixel by pixel" info }
$$

Sub milli-beam

scanning IBA applications

to Cultural Heritage
glass surface alterations

Glass tesserae from Villa Adriana (I)

Problem of detecting Na by PIXE, because of surface alterations

- Using the proton "sub milli"probe external set-up
- ~80-100 micron beam size
- Magnetic beam scan on samples

Coloured but more

Glass tesserae from Villa Adriana (II)

Coloured but more
"freshly cut" zone opaque zone

X ray maps from other elements...

Absorbed, though less than Na

Cu

\Rightarrow Only absorbed in the crust (you may get an idea of its thickness...)

Sub milli-beam

scanning IBA applications

to Cultural Heritage
investigation of metal point drawings on coloured papers

VARIOUS KINDS OF METAL STYLUS TO DRAW ON PAPER (Köln, diocesan museum)

Rogier Van der Weyden
St. Lucas portraying the Virgin (detail)
Boston, Museum of Fine Arts

Silver stylus used by Hans Cranach (Hannover, Landesmuseum)

PAOLO UCCELLO - STUDY OF A KNIGHT
Uffizi, Gabinetto Disegni e Stampe Metal point, lead white + earth-green prepared paper

PISANELLO

PROFILE OF A WOMAN

 PARIS, LOUVREmetal point on prepared white paper

LEONARDO DA VINCI STUDY OF A DRAPERY ROMA, ISTITUTO NAZIONALE PER LA GRAFICA

metal point + lead white red prepared paper

Metal-point drawings on prepared paper

Knowledge of materials is needed for conservation purposes: one is dealing with very fragile and precious works, so far little studied, and mainly from the art-historical point of view

Problem:

non uniform track left by the metal stylus make material identification difficult, especially when the paper is prepared using compounds of the same metal 』

Need of a non-destructive imaging technique, with a space resolution of
 $100-200 \mu \mathrm{~m}$ at least

Paper prepared with cinnabar +Pb white

Pb stylus

Pb map

Sub milli-beam

scanning IBA applications

to Cultural Heritage

investigation of iron gall inks to discriminate their different compositions

Iron gall inks

Си X map
 State Archive in Florence

Max.

Possibility to select "good" areas, from which extracting quantitative reliable information

IBA application to

air pollution monitoring

- This field has historically been among the first where PIXE found useful application
- Still now, largely used by PIXE labs in the world
- The analytical problem is the scarce quantity of target material (aerosol deposited on filters), and the large PIXE cross sections help to achieve very good detection limits

IBA application to air pollution monitoring

- Beam currents used are much higher than for C.H. (up to $20 \div 30 n A$ depending on the problem)
- Beam size is normally larger (up to some mm^{2})
- PIGE is also standard for light elements detection
- Using non external set-ups, PESA (Particle Elastic Scattering Analysis) also provides very useful information

Why studying aerosols

- to better understand the great physical processes in the atmosphere (study of climate changes etc.)
- to evaluate pollution levels and identify pollution sources in urban and industrial areas

Aerosol (also referred to as $\mathrm{PM} \equiv$ Particulate Matter) is continuously monitored by local authorities in the main urban areas, but in most cases only average daily concentration of PM_{10} (PM with size below $10 \mu \mathrm{~m}$) is measured: compositional analyses and size-fractionated samplings are not routinely performed

- effects on environment and health
- origin (sources)
size and composition

> It is important to measure concentration and \Rightarrow composition of the different size fractions, and their time behaviour

Sampling

- time resolution matching specific demands
- size fractionation
\Rightarrow thin deposits $\left(\sim 10-300 \mu \mathrm{~g} / \mathrm{cm}^{2}\right)$ of aerosol on filters or impactors

Composition must be obtained through techniques providing

 fast runs (many samples!)high sensitivity (conc. \ll mg/cm²)
multi-elemental analysis non destructive analysis
\square Large quantity of data are collected (concentration of many elements/compounds in air, for a large number of samples)

Data analysis

Evaluation of air quality, correlation to other pollutants and meteorological parameters, comparison among sites, Identification of pollution sources and of their relative weight

Sampling

Pumping volumes of air:
Low Volume ($<0.05 \mathrm{~m}^{3} / \mathrm{min}$)
High Volume ($\sim 1 \mathrm{~m}^{3} / \mathrm{min}$)
PM is collected:
by impaction (inertial samplers)
by filtration through membranes

Size fractionation:
single mode (all aerosol below a certain size is collected) multi-mode (often just bimodal to separate fine and corase fraction)

Continuous o cumulative samplers

A multi-stage inertial sampler providing size-fractionation

Samplers

47 mm

- Sampling heads for $\mathrm{PM}_{1}, \mathrm{PM}_{2.5}$ or PM_{10}
- One-day resolution
- Mass of deposit obtained either by weighting or by β attenuation

A continuous sampler (streaker) providing bimodal size-fractionation

The streaker sampler

Fine-fraction $\left(P M_{2.5}\right)$ filter from a streaker

$$
\mathrm{PM}_{10}, \sim 280 \mu \mathrm{~g} / \mathrm{cm}^{2}
$$

IBA on aerosols

- Particle Induced X-ray Emission (PIXE)
- Particle Induced Gamma-ray Emission (PIGE)
- Particle Elastic Scattering Analysis (PESA): FS and BS (Forward and Back Scattering)

Back-scattered protons (BSP)

from target

proton deflector

	WITHOUT DEFLECTOR	WITH DEFLECTOR
BSP $(c t s / n C)$	38	0.17
PILE-UP	14%	6%
RESOLUTION $(2.3 \mathrm{keV})$	148 eV	131 eV

permanent magnets Nd-Fe-B (0.5 T)

PIXE for aerosol composition

 aerosol sample analysis is the main activity in about $1 / 4$ of PIXE laboratories in the world- multi-elemental
- high absolute sensitivity (MDL $1-10 \mathrm{ng} / \mathrm{m}^{3}$ in $5-10 \mathrm{~min}$ runs)
- no sample pre-treatments needed
- quantitative
- non destructive
- scanning on samples from streakers
- single-particle analysis is possible

Typical X ray spectra from aerosols

lower-Z elements

higher-Z elements

PIXE-PIGE set-up for 'one-day' samples

Set-up for 'one-hour' samples

- The deposited aerosol composition is determined "point by point" by PIXE and PIGE
- One can thus deduce aerosol composition in atmosphere "hour by hour" during sampling period
- Typically, sensitivity for the detectable elements comes out to be of the order of ng/ m ${ }^{3}$

PIGE

REAZIONE	$E \gamma(\mathrm{keV})$
${ }^{19} \mathrm{~F}\left(p, p^{\prime} \gamma\right){ }^{19} \mathrm{~F}$	110,197
${ }^{23} \mathrm{Na}\left(p, p^{\prime} \gamma\right){ }^{23} \mathrm{Na}$	441
${ }^{25} \mathrm{Mg}\left(p, p^{\prime} \gamma\right)^{25} \mathrm{Mg}$	585
${ }^{24} \mathrm{Mg}\left(p, p^{\prime} \gamma\right)^{24} \mathrm{Mg}$	1369
${ }^{27} \mathrm{Al}\left(p, p^{\prime} \gamma\right)^{27} \mathrm{Al}$	844,1014
${ }^{28} \mathrm{Si}\left(p, p^{\prime} \gamma\right)^{28} \mathrm{Si}$	1779
${ }^{31} \mathrm{P}\left(p, p^{\prime} \gamma\right)^{31} \mathrm{P}$	1266

HPGe detector

Thin target approximation

- Negligible self-absorption (γ rays)
- Generally, non-negligible croos section changes

Proton energy (keV)

PESA (Particle Elastic Scattering Analysis)

larger $\Delta \mathrm{E}$ for smaller M (light nuclei)

Larger $\Delta \mathrm{E}$ for larger ϑ (backscattering [BS])

$$
K(\vartheta, M / m) \equiv \frac{E_{f}}{E_{i}}=\left[\frac{\sqrt{(M / m)^{2}-\sin ^{2} \vartheta}+\cos \vartheta}{(M / m)+1}\right]^{2}
$$

PESA (Particle Elastic Scattering Analysis)

larger $\Delta \mathrm{E}$ for smaller M (light nuclei)

Larger ΔE for larger ϑ (backscattering [BS])
$\mathrm{M} \leq \mathrm{m} \Rightarrow$ only forward scattering [FS]
$K(\vartheta, M / m) \equiv \frac{E_{f}}{E_{i}}=\left[\frac{\sqrt{(M / m)^{2}-\sin ^{2} \vartheta}+\cos \vartheta}{(M / m)+1}\right]^{2}$

forward $\left(\vartheta=30^{\circ}\right)$

backward $\left(\vartheta=150^{\circ}\right)$

Teflon membranes

Set-up for PESA

PESA on aerosol samples

- Complement to PIXE
can detect light elements down to Hydrogen
- multielemental
- non-destructive
- no sample pre-treatments needed
- much less sensitive (sufficiently however!)
- requires set-ups in-vacuo
- difficult to find suitable filtering substrates
- more difficult quantitative analysis

Errors and MDL of elements detected by PESA

Element	Error $\%$	MDL $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
Hydrogen	~ 10	0.1
Carbon	~ 10	1
Nitrogen	~ 20	0.5
Oxygen	~ 15	0.4

Some examples of results

Composition of aerosol collected in the urban area of Florence, Italy

 (in collaboration with ARPAT)Sesto Fiorentino
Dec 97 - May 98 (144 f.)

Viale Gramsci - total PM_{10} concentration (2001-02)

average: $43 \mu \mathrm{~g} / \mathrm{m}^{3}$
number of days exceeding $50 \mu \mathrm{~g} / \mathrm{m}^{3}: 76$

Al and Si concentration

Na and Cl concentration

Pb and Br , before leaded gasoline ban

Hour by hour concentration of Pb during one day

Lunedì 26/1/98

Firenze - V.le Gramsci

Bromine and Lead from leaded gasoline

 01/01/2002:
In Italy, sale of leaded gasoline is forbidden
values detected in Florence

$\mu \mathbf{g / m 3}$	April June '97	April June '02
$\mathbf{B r}$	0,06	0,006
$\mathbf{P b}$	0,23	0,025

Pb limit by law
$\longrightarrow 0.5 \mu \mathrm{~g} / \mathrm{m}^{3}$ yearly average

Comparison 1997-98 with 2001-02

Comparison with 1988-89

Period	S	$B r$	$P b$
Sept-88	4.2	0.30	1.13
Sept-97	3.5	0.06	0.27
Jan-89	12.6	0.46	2.2
Jan-98	2.0	0.09	0.31
values in $\mathrm{mg} / \mathrm{m}^{3}$			

Fireworks on Dec 31

Campaigns in an industrial district 20 Km west of Florence: Montelupo Fiorentino
(ceramics, glass)

Episodes of correlated Na, K, As peaks during

 the night (March '96)

Montelupo Fiorentino: identification of industrial releases in connection with artistic glass production

Aerosol particles maintainthe fingerprint of their source even

Aerosol composition and time behaviour provide information on pollution sources after long-range transportation

Absolute Principal Component Analysis

Groups detected elements according to similarities of their time behaviour

Factor loadings

	suolo	sale	ind. 2	comb.	ind. $\mathbf{1}$
$N a$	0,16	$\mathbf{0 , 9 2}$		0,09	
$M g$	$\mathbf{0 , 8 6}$	0,43	0,12	0,06	0,12
$A l$	$\mathbf{0 , 9 4}$	0,26	0,07	0,12	0,04
$S i$	$\mathbf{0 , 9 5}$	0,21	0,14	0,10	0,08
S			0,14	$\mathbf{0 , 9 4}$	
$C l$	0,29	$\mathbf{0 , 9 0}$			
K	$\mathbf{0 , 7 3}$	0,23	0,31	0,13	0,39
$C a$	$\mathbf{0 , 9 0}$	0,09	0,23	0,06	0,18
$T i$	$\mathbf{0 , 9 2}$	0,10	0,03	0,03	0,23
V	0,38			$\mathbf{0 , 6 4}$	0,48
$C r$	0,51		0,40	0,04	0,59
$M n$	$\mathbf{0 , 8 7}$		0,24	0,05	0,34
$F e$	$\mathbf{0 , 8 9}$	0,06	0,17	0,03	0,36
$N i$	0,40		0,23	0,23	$\mathbf{0 , 7 7}$
$C u$	0,38		0,45		$\mathbf{0 , 6 7}$
$Z n$	0,23		$\mathbf{0 , 7 5}$	0,09	0,33
$B r$		0,55	0,22		$\mathbf{0 , 6 8}$
$P b$	0,19	0,22	$\mathbf{0 , 8 5}$	0,04	0,14

The case of Montelupo Fiorentino (industrial area)

Relative contribution of the various sources to total PM_{10} mass (annual average, 1998)

The case of Montelupo Fiorentino (industrial area)

Relative contribution of the various sources to total PM_{10} mass (1997-1998)

heavy traffic area

residential area
$(5 \pm 4) \%$
$(26 \pm 3) \%$
$(38 \pm 4) \%$

urban park

$$
(19 \pm 3) \% \quad(43 \pm 2) \%
$$

$(20 \pm 2) \%$

The case of Florence (urban area)

